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Abstract. The transport network in many countries relies on ex-
tended portions which run underground in tunnels. As tunnels age,
repairs are required to prevent dangerous collapses. However repairs
are expensive and will affect the operational efficiency of the tunnel.
We present a decision support system (DSS) based on supervised
machine learning methods that learns to predict the risk factor and
the resulting repair urgency in the tunnel maintenance planning of a
European national rail operator. The data on which the prototype has
been built consists of 47 tunnels of varying lengths. For each tunnel,
periodic survey inspection data is available for multiple years, as well
as other data such as the method of construction of the tunnel. Expert
annotations are also available for each 10m tunnel segment for each
survey as to the degree of repair urgency which are used for both
training and model evaluation. We show that good predictive power
can be obtained and discuss the relative merits of a number of learning
methods.

1 INTRODUCTION

Complex decision making in domains with high impact, such as
infrastructure management, is a challenging task that requires the
consideration of a large number of parameters and their dependencies.
For example, in the case of tunnel management, accurate pathology
diagnosis and early risk assessment are critical for making cost effec-
tive maintenance plans. The common practice is that such decisions
are made by a small number of domain experts, who follow their
intuitions and apply tacit knowledge gained over many years of ex-
perience. This results in unsustainable subjective decision models,
where it is common for experts to have no clear consensus on how
the factors influence the outcomes and knowledge can be lost when
experts leave.

We tackle these issues in the context of tunnel management within
the EU project NETTUN3. Initial work [13] was focussed on follow-
ing ontology engineering methodologies, where we engaged domain
experts with extensive experience in tunnel management in a knowl-
edge elicitation process to identify the concepts they consider and the
rules they apply when diagnosing the pathologies of a tunnel based
on its characteristics and inspection data.

Diagnosis of the pathologies is not sufficient, the experts are also re-
quired to assess the urgency of repairs that sections of tunnels require:
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2 Société Nationale des Chemins de Fers Français (SNCF), France, emails:
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the available maintenance budget must be prioritised, in particular
taking account considerations relating to public safety. Compared to
diagnosing pathologies the decision processes for prioritisation are
more complex and difficult for the experts to articulate, and the on-
tology based methods for pathology diagnosis are not so appropriate
since deciding priorities are not so much conceptual distinctions but a
process of ranking. Furthermore, ontological models can have some
limitations. Firstly, they may not be able to capture the true complexity
of the decision process. Secondly, the process of validating these mod-
els is important, but laborious and slow. It is hard to identify missing
or inaccurate rules, and some rules are “more reliable” than others,
but experts typically cannot articulate this information. Furthermore,
there are aspects of the decision process, such as risk assessment and
potential for further degradation of tunnel portions, which take into
account a number of parameters which experts find hard to specify
declaratively.

To address these challenges, we adopt supervised machine learning
models, taking advantage of the existence of provenance data with
past observations and expert decisions. To the best of our knowledge
this is the first time that machine learning methods are used in this
domain for this task. A similar domain where such issues have been
investigated is that of diagnosing the condition of water pipes, where
most recent work focusses on Bayesian approaches [15, 8]. In our
study we preferred to investigate other state of the art machine learning
models (Section 3) that require little input from the experts since
this is problematic as noted above.The methods we employ can also
learn from the data with minimal pre-processing. Another closely
related case study employed a Gaussian process model to classify
surrounding rocks in tunnels, as this knowledge is important for their
design and construction [16]. Although Gaussian processes are also
able to provide probabilistic estimates, their performance tends to
degrade in high dimensional problems when the number of features is
a few dozens or more, such as the case here.

There appears to be very little work on DSS for tunnel mainte-
nance. We have already mentioned [13] above which is concerned
with pathology diagnosis, which is also the topic of [11] which also
focusses on the uses of sensors to obtain a score per segment (some-
what similarly to the cotation score described below). There are a
number of DSS to support other aspects of tunnel management, in
particular, construction (e.g. [9]). There are also a variety of investiga-
tions into DSS for other kinds of transport infrastructure, e.g. highway
maintenance [10], bridges [5], pavement maintenance [4], overpasses
[17].

The rest of the paper is organised as follows. Section 2 describes
the tunnel data and the pre-processing steps undertaken to make them
suitable for the machine learning methods used in this project, which
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are described in Section 3. Section 4 evaluates the chosen methods,
while Section 5 discusses further work and concludes the paper.

2 DATA

We have data for 47 tunnels from a national rail company. For each tun-
nel, survey data was collected during periodical inspections (typically
every four years), and in the dataset there are multiple inspections
for most of the tunnels (between one and four for each tunnel) re-
sulting in a total of 137 inspection surveys in the dataset. For the
purposes of recording surveys, each tunnel is decomposed into 10m
segments. This results in a total of 8283 segments or data points. The
tunnels vary in length and the average number of segments is μl = 62
with standard deviation of σl = 70. There are also characteristics
describing the properties of the tunnel, which can be regarded as static
(i.e. set at the time of tunnel construction, and not varying over time
subsequently). These variables along with the urgency repair scale are
explained in more detail in the following section.

2.1 Description

The static characteristics data of each tunnel segment are called influ-
encing factors, of which there are 32. Examples of influencing factors
are the climate of the area, the ground type the tunnel was built on, the
lining type (see Figure 1a), etc. The influencing factors are nominal
data and the possible values for each of them are different. For exam-
ple, the climate influencing factor can be ‘favourable conditions’ or
‘medium conditions’ or ‘hard conditions’; the ground type influencing
factor can be one of the following values, ‘altered rock’, ‘compact
rock’, ‘soil’ or ‘mix ground’.

The tunnels are periodically inspected for potential problems,
which are called disorders. In this dataset 24 disorders are present.
Examples of disorders are moisture (Figure 1b), displacement of a
lining element (Figure 1c), etc. The disorders are binary variables,
representing their presence or absence, and unlike influence factors,
they can change over time.

The experts in rail company have developed a model that aggregates
the observed disorders in each 10m segment into a single numeric
value, called the cotation value (0-100) which provides a summary
of the degree of disorders in that segment (see Figure 2). The higher
the value the worse the condition of the tunnel is. But it does not take
account of influencing factors; so a lower cotation value may be more
urgent to repair if its influencing factors are particularly egregious.

Lastly, we collected the experts’ recommendations about the ur-
gency of repairs for these 47 tunnels, and these values are treated
as the ground truth, and as the target variable that a model learns.
This was given in a scale from 1 to 5, which denote the following
recommendations: 1: “the segment is good and no repairs are needed”,
2: “pay attention to this segment but no repairs need to be planned
at the moment”, 3: “repairs need to be planned within u3 time”, 4:
“repairs need to be planned within u2 time”, and, 5: “repairs need
to be planned within u1 time”; with u1 < u2 < u3, i.e. 5 denotes
that a tunnel segment requires the most urgent repairs (see example
annotation in Figure 2).

2.2 Preparation

The dataset is biased towards the first two scales denoting ‘no repair’:
category 1 accounts for 84% of the data, while category 2 accounts
for a further 5% of it. Combined, they yield a ratio of 8:1 of ‘no repair’
versus ‘repair’. Moreover, 11 of the tunnels and 44 of the periodic

inspections are classified along their full length with the category
good (1), hence, offering little further information about this category
that is not covered from the rest of the data. These 11 “good tunnels”
are filtered out before further processing, resulting in a remaining
total of 37 tunnels, 93 inspections and 6211 segments/data points with
a bias ratio between the {1, 2} versus {3, 4, 5} categories, i.e. ‘no
repair’ versus ‘repair’, of approximately 6:1 (85% of the data), which
is a small improvement from before.

As the most critical decision for the tunnel owner is whether a
tunnel segment requires repairs or not we have collapsed these five
categories into two by merging 1-2 together representing ‘no repair’,
and 3-5 into ‘repair’. Essentially, this makes the independent variable
a binary one denoting whether a tunnel segment requires repairs or
not. A further stage of model building can be used to distinguish
between the urgency of repair in the former case (3,4,5).

In summary, the dataset used for model building consists of 37
tunnels comprising 93 period inspections and 6211 segments. The
target variable is binary: ‘repair’ (3,4,5) vs ‘no repair’ (1,2) with a 1:6
ratio. Each instance is represented by an attribute vector consisting of
24 disorders, 32 influencing factors, and a cotation value.

3 METHODS

We conducted an initial investigation to verify the non-linearity nature
of the problem using a logistic regression model for different sensitiv-
ity threshold values. The results of Figure 3 confirmed this hypothesis,
as it can be seen that it performs inadequately regardless of the value
of sensitivity. Factor analysis, dimensionality reduction and appropri-
ate transformation could possibly help to improve its performance,
but on the other hand there are other state of the art methods that are
better suited in such cases and able to learn the non-linear relations of
such complex data.

As a result, we decided to investigate the effectiveness of three
popular state of the art models of machine learning: decision trees,
random forests and support vector machines. The reasons for choosing
these and a brief explanation of the models is given in this section.

3.1 Decision Trees

One of the desired requirements was for the tunnel diagnosis experts
to be able to understand the reasons for the classification produced by
the machine learning method; the ultimate decision as to the urgency
of repair remains with a human, and the DSS is aimed to support their
decision and recommendation. For this reason one of the models we
investigated was a decision tree, as it offers excellent and fast explana-
tions on the underlying reasoning while still performing sufficiently
in most cases: the expert is able to inspect the decision tree and see
why a particular categorisation has been made.

Decision trees are non-parametric machine learning methods that
partition the state space using decision rules, so that training instances
xi of the same category yi are grouped together. They are most com-
monly represented as a decision tree structure. The key question
during training is which dependent variable to use for the split. In
general, this is achieved by computing the impurity (H) of the dataset
before and after the split for a given variable. So at each node m
denote its data as Q. For each candidate split θ = (j, tm) consisting
of a feature j and threshold tm, partition the data into Qleft(θ) and
Qright(θ) subsets:

Qleft(θ) = {(x, y)|xj ≤ tm} (1)

Qright(θ) = {(x, y)|xj > tm} = Q \Qleft(θ) (2)
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(a) Example of shotcrete lining type influ-
ence factor

(b) Example of moisture disorder (c) Example of displacement of lining ele-
ment disorder

Figure 1: Pictorial examples of particular values of some influencing factors and disorders of the tunnels

Figure 2: A graph of cotation values for an example tunnel. Also shown
are the expert annotations for the ground truth for the urgency of repair:
here “nothing” corresponds to repair urgency 1; “pay attention” to 2;
U3 to 3; U2 to 4; and U1 to 5.

The impurity at m is computed using an impurity function H():

G(Q, θ) =
nleft

Nm
H(Qleft(θ)) +

nright

Nm
H(Qright(θ)) (3)

and in this paper we used the Gini impurity:

H(Xm) =
∑

k

pmk(1− pmk) (4)

The final step is to select the variable for this node and the parame-
ters that minimize the impurity, i.e. in this case the variable with the
highest Gini gain:

θ∗ = argminθ G(Q, θ) (5)

3.2 Random Forests

Another machine learning model that we investigated was random
forests [1, 2], because they typically offer good classification per-
formance at the trade-off of being harder to explain the underlying
reasoning processes.

Random forests fall in the category of ensemble methods, which
build estimators based on multiple weak classifiers, in this case short
length decision trees, and specifically in this study these were CART
models. Each tree is build on a random sample of the training dataset,
and this process is known as bootstrap aggregating or bagging for
short. Furthermore, each tree selects randomly a subset of the features
which is used to train the decision tree on the random training sub-
sample. The advantage of data and feature bagging is that the resulted
meta-classifier has reduced variance and overfitting.

Figure 3: Logit model fitted on the dataset (best visualized in colour)

3.3 Support Vector Machines

Lastly we chose to investigate support vector machines since they
are typically effective in high dimensional spaces, and from our past
experience we have achieved better than state of the art results in
similar problems [12].

A support vector machine constructs a hyper-plane or set of hyper-
planes in a high or infinite dimensional space, which can be used
for classification. Intuitively, a good separation is achieved by the
hyper-plane that has the largest distance to the nearest training data
points of any class (so-called functional margin), since in general the
larger the margin the lower the generalization error of the classifier.
New examples are then mapped into that same space and predicted to
belong to a category based on which side of the gap they fall on. The
separating lines can be linear functions as well as non-linear ones. In
this investigation a radial-basis function is used as the kernel for the
separation.

4 RESULTS & DISCUSSION

Using the formatted data described in Section 2 we performed a cross-
validation study with the methods presented in Section 3. The details
of the experiments and the performance results are presented and
discussed in this section.

4.1 Performance metrics

The performance metrics report are precision (p), recall (r) and f2-
score (f2) for class ‘repair’, as well as Cohen’s kappa coefficient (κ)
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which is a more robust measurement of accuracy, particularly when
there is class imbalance. When averages are reported these are the
micro-averages, unless stated otherwise. We chose f2 rather than f1
since we wish to emphasise recall over precision – a false negative is
potentially much more serious than a false positive.

4.2 Cross-validation

In order to test the performance of the models we conducted a leave-
one-tunnel-out cross-validation (the whole tunnel, with all of its sur-
veys). This type of cross-validation is more suitable in this case, as
the typical procedure of performing k-fold cross-validation, i.e. by
randomly populating the folds from the data seems to overestimate the
performance of the classifiers, as shown by the results in Table 1 and
Table 3 (presented in Section 4). Since adjacent tunnel segments are
not truly independent instances (there are likely to be similar disorders
in adjacent segments), by having the possibility one segment in the
training data and its neighbour in the test data does not represent truly
random sampling method. This is analogous to research in activity
recognition from video data in which a preferred methodology is to
leave-one-person-out [12].

Table 1: Micro performance metric averages showing that typical
cross-validation (results shown for 5-folds) overestimates the true
performance of the classifiers in comparison to the results shown in
Table 3 where a leave-one-tunnel-out cross-validation methodology
was used.

precision (p) recall (r) f2-score (f2) kappa (κ)
DT .86 .87 .89 .87
RF .91 .89 .89 .89
SVM .92 .85 .86 .88

Leaving one tunnel out is more representative of the use case when
a new tunnel comes in.

The tunnels vary in number of segments with the smallest having
3 segments (30m) and the longest 377 segments (3.7Km), with an
average number of segments of μl = 62, and standard deviation
σl = 70. Very small tunnels, like the ones with 3 segments, can
potentially bias the results in a positive or negative way. For this
reason we decided to define a minimum number of segments that a
tunnel must have in order to be considered as a cross-validation test
case. The question then is whether choosing a minimum length of
the tunnels to be cross-validated can also have any biased effect on
the performance metrics of the classifiers. As such, we conducted an
analysis by cross-validating for various lengths of the tunnels for a
range of 10 minimum segments up to 100 minimum segments with a
step of 5. Figure 4 shows the results a random forest classifier using
500 CART estimators.

It can be seen from the plot that choosing any particular minimum
length does not influence significantly the results in some biased
manner. Similar graphs were obtained for the rest of the models. As
such, it is safe to choose a minimum length of 10 segments to have
the most exhaustive cross-validation analysis. Only one tunnel had a
length of less than 10 segments, resulting in a 36-fold cross validation
(the 37th tunnel was still included in the training data in each fold).

4.3 Class imbalance

As described earlier the dataset even after the initial filtering still
remains biased towards the ‘no repair’ class with a ratio of about

Figure 4: Investigation of the effect of number of folds in leave-one-
tunnel-out cross-validation using a random forest classifier, the x-axis
has i, j values where i is the minimum number of segments for a
tunnel to be considered in the fold, and j is the number of tunnels
with more segments than the minimum length (best visualized in
colour)

6:1. Learning from imbalanced data is a common issue and a num-
ber of solutions have been proposed [7], mainly based on under-
sampling the most popular class(es) or over-sampling the smaller
one(s). We initially performed a k-fold cross-validation with a number
of under/over-sampling methods and found that the most balanced
results in terms of precision and recall were achieved with Tomek
links under-sampling [14] and synthetic minority over-sampling tech-
nique (SMOTE [3]), which are both well-established and widely used
methods that deal with the issue of class imbalance. We used both
of these in the performance analysis of the classifiers in full leave-
one-tunnel-out cross-validation, as well as tested the models with no
sampling leaving the original training data unaltered.

4.4 Baseline

Table 2 presents the results from a weighted random guess according
to the classes ratio in the training set on a leave-one-tunnel-out cross-
validation.

Table 2: Class-portion-weighted random guess baselines

precision (p) recall (r) f2-score (f2) kappa (κ)
No sampling .14 .14 .14 .00
Tomek links .13 .13 .13 .00
SMOTE .87 .53 .33 .00

4.5 Classifiers results

As described in Section 3 the classifier models we investigate are
a CART tree, a random forest (RF) and a support vector machine
(SVM). Table 3 shows the performance of the three models using no
sampling, Tomek links under-sampling and SMOTE over-sampling
(Section 4.3) in a leave-one-tunnel-out cross-validation (Section 4.2).

As expected, decision trees tend to perform overall worse than
the other two methods in all sampling cases. An interesting result is
that with Tomek links under-sampling they have a higher recall value
(r = 0.73) than the others, i.e. they are able to recognise more of the
‘repair’ class than the other two methods, but their precision is much
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Table 3: Performance metrics of the investigated models in a leave-
one-tunnel-out cross-validation.

precision (p) recall (r) f2-score (f2) kappa (κ)
no sampling

DT .61 .65 .64 .57
RF .79 .68 .70 .70
SVM .82 .69 .71 .71

Tomek links under-sampling
DT .58 .73 .70 .59
RF .80 .68 .70 .70
SVM .81 .69 .71 .71

SMOTE over-sampling
DT .60 .68 .66 .57
RF .76 .70 .71 .69
SVM .59 .82 .76 .62

lower (p = 0.58), which means that they might become “annoying”
to the experts if many segments that require no repairs are highlighted
as needing so. It seems that under-sampling of the data allows the
decision tree to better generalize by over-fitting even less on the ‘no
repair’ class, since many of its training instances, which might be
carrying “noisy” information has been removed.

A similar outcome appears with the SVM when SMOTE over-
sampling is used. Its recall value is the highest among all models and
all sampling methods (r = 0.82), given that SMOTE over-sampling
possibly has amplified the ‘repair’ class, resulting in more and stronger
support vectors. However, partly due to the trade-off between preci-
sion and recall, its precision value is one of the lowest (p = 0.59).

The best balance between precision and recall is given by RF and
SVM under Tomek links under-sampling with similar performance
metrics. RF also performed similarly with SMOTE over-sampling
given its tolerance to over-fitting, however for a marginally worse
recall, but about 4-5% better precision, the RF and SVM models with
Tomek links seem better suited.

Lastly, all models perform significantly better than the baseline.
However, the best results using leave-one-tunnel-out cross-validation
were in the range of 0.7-0.8, which are worse than when using stan-
dard cross-validation, which were around 0.9. Given the number of
variables and the number of tunnels, it is likely that more data and
further investigation and discussion with the experts is needed.

4.6 Finding the most important factors

In the results presented in the previous section the full sets of disorders
and influencing factors were used, which together with the cotation
value account for 57 independent variables in total. We investigated
whether all factors are equally important and if the models, despite
their tolerance and the measurements we had taken, have still over-
fitted. Figure 5 shows the cross-tabulations of the disorders from their
contingency tables4.

The graph shows that some disorders are more discriminative than
others for separating the two classes. For example, it seems that
disorders 7, 8, 17, 19, etc. occur more frequently when a tunnel
needs repairs, while for example 1, 3, 6, etc. offer very little variation
between the two classes. Due to the large number of possible values
that the influencing factors can take, a similar cross-tabulations plot
for them is not visually informative.

Ideally, it would be beneficial to perform some form of dimen-
sionality reduction by factor analysis, such as principal component
analysis or linear discriminant analysis. Factor analysis methods work

4 Due to intellectual property reasons we do not display the names of all of
the disorders; instead, they are numerically denoted.

Figure 5: Cross tabulations of the disorders

on the assumption of continuous variables and thus not apply due
to presence of categorical variables in our data. Instead, the models
of the decision tree and of the random forest are able to provide an
estimate on the importance of the features. For decision trees the
importance of a feature is the Gini importance which is computed
as the (normalized) total reduction of the criterion brought by that
feature [2]; while for the random forest model the importance of the
features is given by averaging the feature importance of each tree. The
importance of each feature is a numerical value between 0-1, with
higher values signifying more importance. It can be thought as the
amount of variability that a feature explains in the dataset.

Table 4: Five most important disorders and influencing factors accord-
ing to the decision tree and random forest models

disorder importance influence factor importance
rock faults .07 climate .04
rock deterioration .05 lining type .04
falling/missing of

lining element .05 discontinuities density .03

leakage .05 drainage system .03
moisture .05 water flow/load .03

The variable with the highest importance value is that of cotation,
with an average importance between the decision tree and the random
forest of 0.66. This is expected as the experts use soft thresholds
that directly give a classification, in many cases regardless of the
other factors when this value is high enough. To better understand the
importance of the disorders and the influence factors, we excluded
the cotation value and tested the models with only the disorders and
the influence factors.

Table 4 shows the five most important factors for each of the disor-
ders and influencing factors. The 15 most important disorders and 8
most important influencing factors are able to explain 80% of the vari-
ability of the dataset. Further, Table 5 shows the association between
influencing factors and disorders by listing the five most correlated
ones according to Cramer’s V [6] and with φc > 0.37. Some of
these relations are explained by the tunnel experts. For example, the
presence of a waterproofing system, which protects from extrados
hydraulic pressure, can influence diagonal cracks occurring in situ-
ations like landslides, lateral thrust, or differential settlement. For a
tunnel with an unlined longitudinal profile, the joint rock patterns
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and cracks may create polyhedron which are potentially unstable –
an example of relationship between tunnel shape and rock elements.
Further discussions with the experts has also revealed that our system
is identifying patterns which they would over-fit to a set of tunnels,
yet this would not benefit a holistic approach. For example, hydraulic
overpressure may not be a common occurrence but must be factored
in, if it occurs.

Table 5: Five most correlated disorders and influencing factors accord-
ing to Cramer’s V co-efficient

disorder influencing factor Cramer’s V (φc)
diagonal cracks waterproofing system 0.53
missing rock elements tunnel shape 0.53
diagonal cracks strain anisotropy 0.52
diagonal cracks tunnel age 0.47
rock deterioration tunnel shape 0.43

4.7 Classifier results when using the most
important factors

Following the analysis from the previous section for the most impor-
tant factors, we used the set of the 23 disorders and influence factors
together with the cotation value to retest the models. The results are
shown in Table 6.

Table 6: Performance metrics of the investigated models using the most
discriminant disorders and influence factors in a leave-one-tunnel-out
cross-validation.

precision (p) recall (r) f2-score (f2) kappa (κ)
no sampling

DT .62 .71 .69 .60
RF .80 .69 .71 .71
SVM .82 .68 .70 .70

Tomek links under-sampling
DT .61 .72 .69 .60
RF .79 .70 .72 .71
SVM .81 .69 .71 .71

SMOTE over-sampling
DT .52 .68 .65 .52
RF .78 .70 .72 .70
SVM .58 .81 .75 .61

It can be seen that the results are fairly similar to the ones before
when using the complete set of variables. This means that 24 factors
out of the total 57 are sufficient for classifying the data equally well,
i.e. a dimensionality reduction of nearly 50%.

5 CONCLUSIONS

In this paper we have presented the results of a decision support sys-
tem based on state of the art machine learning methods for the domain
of tunnel maintenance by a European national rail operator. This is a
critical application domain, as many businesses rely on reliable and
safe transport infrastructure, while the high cost of the repairs (and
disruption to journeys during their implementation) dictate careful
financial and operation planning.

A specialised cross-validation procedure was employed to avoid
misleading overestimated results compared to standard methods. The
performance metrics have demonstrated a good level of effectiveness
of the algorithms. To deal with the class imbalance, since as expected
health portions are many more than unhealthy ones, we utilized popu-
lar and well-tested methods of under- and over-sampling. However,

the results showed that there were no significant differences, which
implied that the class bias in this case is not detrimental to the effec-
tiveness of the algorithms. Also, it was shown that similar results can
be obtained with half the features from the original set, which are able
to explain the majority variability of the dataset and has the potential
to reduce the possibility of overfitting to the training set.

Current future work is focusing on integration of the system to
the end-users’ site, as well as further discussions with the experts
and extensive testing with further data. We also plan to hierarchically
refine the 1-5 classification (in particular to split the “repair” case
(3-5) into those which are most urgent and those which are not).
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