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Abstract 

During their operation, modern aircraft engine components are subjected to increasingly demanding operating conditions, 
especially the high pressure turbine (HPT) blades. Such conditions cause these parts to undergo different types of time-dependent 
degradation, one of which is creep. A model using the finite element method (FEM) was developed, in order to be able to predict 
the creep behaviour of HPT blades. Flight data records (FDR) for a specific aircraft, provided by a commercial aviation 
company, were used to obtain thermal and mechanical data for three different flight cycles. In order to create the 3D model 
needed for the FEM analysis, a HPT blade scrap was scanned, and its chemical composition and material properties were 
obtained. The data that was gathered was fed into the FEM model and different simulations were run, first with a simplified 3D 
rectangular block shape, in order to better establish the model, and then with the real 3D mesh obtained from the blade scrap. The 
overall expected behaviour in terms of displacement was observed, in particular at the trailing edge of the blade. Therefore such a 
model can be useful in the goal of predicting turbine blade life, given a set of FDR data. 
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Abstract 

This paper investigates the accuracy of the shear strain Maximum Variance Method (γ−MVM) and Maximum Damage Method 
(MDM) in predicting the orientation of crack initiation planes under both constant and variable amplitude multiaxial fatigue 
loading. The γ−MVM defines the critical plane as the plane on which the variance of the resolved shear strain reaches its 
maximum value. In contrast, a specific multiaxial fatigue criterion is needed to be used along with the MDM to predict the 
orientation of the critical plane under multiaxial fatigue loading. As far as variable amplitude multiaxial loading is concerned, the 
MDM have to be used by applying with a certain fatigue criterion, a cycle counting method and a cumulative damage rule. In this
paper, the MDM is applied with Fatemi & Socie’s criterion, Bannantine & Socie’s cycle counting method and Palmgren-Miner’s 
linear rule. The MDM assumes that the critical plane is the plane experiencing the maximum accumulated damage. Experimental 
data for several metals tested under constant and variable amplitude multiaxial fatigue loading taken from literature are used to
assess the accuracy of these two methodologies. The results show that the predictions made by both the γ−MVM and MDM have 
good accuracy for the investigated materials and investigated load histories: 90% of the predictions made by the γ−MVM and 80% 
of the predictions made by the MDM fall within a scatter band of 20%. 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the Scientific Committee of ECF21. 
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Then the shear strain resolved along of a generic direction on a generic plane, γq(t), can be obtained by tensor 
rotation of the above strain tensor to this direction. Alternatively, γq(t) can also be expressed by the following scalar 
product: 

( ) ( ) de •= t
tq

2
γ                                  (3) 

where, d and e can be expressed as follows: 
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Therefore, the variance of the shear strain resolved along a generic direction q can be expressed in the following 
form: 
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All the candidate critical planes can be obtained by determining the global maxima of the variance of the 
resolved shear strain, as discussed by Susmel (2010) and Wang and Susmel (2016). 
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All the candidate critical planes can be obtained by determining the global maxima of the variance of the 
resolved shear strain, as discussed by Susmel (2010) and Wang and Susmel (2016). 
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reference to the method used by Susmel et al. (2014) and Marciniak et al. (2014), then an angle of ±45° was added 
to the observed crack angle in the original literature to obtain the orientation of the crack initiation plane. 

The static and fatigue properties of the investigated materials are listed in the Table 1. The investigated loading 
paths are shown in Fig. 2. Figs 3 and 4 show the comparison of the predicted orientation of crack initiation plane 
and the experimental observation on the cracking behavior. The ranges of the crack shown in these two figures are 
from 0° to 260°. Here, the crack plane at angle 0° is the same plane as the one which have orientation angle equal to 
180°. The definition of the angle of crack plane is shown down-right in Figs 3 and 4. 80 data taken from literature 
are used in this evaluation. However, some data are hidden from view because of some other data in front of them. 
The results show that both the γ-MVM and MDM can predict the orientation of the crack initiation plane with a 
good level of accuracy. 90% of the predictions made by the γ-MVM fall within the 20% scatter band, and 95% of 
the predictions fall within the 30% scatter band. The MDM provides good predictions. 80% of the estimates made 
by the MDM fall within the 20% scatter band, and 90% of the estimates fall within the 30% scatter band. 

Table 1: Static and fatigue properties of the investigated materials. 

Material Ref. E (MPa) G (MPa) σy (MPa) k in FS criterion (MPa) b0 c0

S45C Kim et al. (1999) 186,000 70,600 496 1 0.198 685 -0.12 -0.36 
1050 QT Steel Shamsaei et al. (2011) 203,000 81,000 1009 0.6 3.48 777 -0.062 -0.725
304L steel Shamsaei et al. (2011) 195,000 77,000 208 0.15 0.211 743 -0.145 -0.394
S460N Jiang et al. (2007) 208,500 80,200 500 1 0.487 559.8 -0.086 -0.493

A                               T                               P                              AT                             E1                       E2 

M1                            M2                             M3                            M4                            M5                            N1 

N2                               N3                           N4                              N5                             O1                             O2 

R01                          R02                            FR                             PI 

Fig. 2. Investigated strain paths 
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3. The Maximum Damage Method (MDM) 

The stress and strain states summarized via Eq. (1) and Eq. (2) are also used in the MDM, and the stress and 
strain components on a generic direction of a generic plane are obtained by tensor rotation. 

The MDM always needs to be applied with a specific multiaxial fatigue criterion to predict the orientation of the 
critical plane. In the present paper, the FS criterion is used along with the MDM. As far as variable amplitude 
multiaxial loading is concerned, the cycle counting method and the fatigue damage cumulative rule are also required. 
Bannantine & Socie’s cycle counting method (Bannantine and Socie, 1991) and Palmgren-Miner’s linear damage 
rule (Palmgren, 1924; Miner, 1945) are used in this paper. 

In more detail, the resolved shear stain and the normal stress can be obtained by projecting the loading history on 
a generic direction of a generic plane. The resolved shear strain cycles and the maximum normal stresses during the 
shear strain cycles are identified by using Bannantine & Socie’s cycle counting method. The i-th loading damage is 
calculated by using the FS criterion, and the accumulated damage is calculated according to Palmgen-Miner’s linear 
rule. This calculation should be done in every direction on every plane at the critical location. 

The shear-strain based multiaxial fatigue criterion proposed by Fatemi and Socie (1988) can be expressed as 
follows: 

( ) 0
0max, 221
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where Δγ/2 is the shear stain amplitude relative to the critical direction on the certain plane, σn,max is the maximum 
normal stress occurring during the same cycle of Δγ/2 on this plane, k is a material constant, and σy is the material 
yield strength. 

The total damage is calculated according to Palmgren-Miner’s linear rule as follows: 
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where ni is the number of loading cycles, Nf ,i is the total cycles to failure under the i-th loading, and Dtot is the total 
value of the damage sum. 

4. Experimental valuations 

In order to check the accuracy of the γ-MVM and MDM in predicting the orientation of the critical plane under 
multiaxial loading the experimental research for S45C steel by Kim et al. (1999) under short variable amplitude 
multiaxial loading, the observation of cracking behavior for S460N by Jiang et al. (2007) under multiaxial constant 
loading and the observed cracking behavior of 1050QT steel and 304L steel under discriminating strain paths by 
Shamsaei et al. (2011) were taken into consideration. 

According to the research by Forsyth (1961), Socie and Marquis (2000), Marciniak et al. (2014) and Susmel et al. 
(2014), the propagation process of micro/meso-crack can be described by two stages: Stage I is crack initiation, and 
Stage II is crack propagation. Usually, for elasto-plastic metallic materials, Stage I cracks initiate on those plane of 
maximum shear. Stage II cracks tend to propagate perpendicular to the normal stress. Therefore, in the current paper, 
if the length of the observed crack in the original literature is of the order of millimeters, the observed angle is 
deemed to be the orientation of the crack initiation plane. If the crack length is in the centimeter scale, with 
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reference to the method used by Susmel et al. (2014) and Marciniak et al. (2014), then an angle of ±45° was added 
to the observed crack angle in the original literature to obtain the orientation of the crack initiation plane. 

The static and fatigue properties of the investigated materials are listed in the Table 1. The investigated loading 
paths are shown in Fig. 2. Figs 3 and 4 show the comparison of the predicted orientation of crack initiation plane 
and the experimental observation on the cracking behavior. The ranges of the crack shown in these two figures are 
from 0° to 260°. Here, the crack plane at angle 0° is the same plane as the one which have orientation angle equal to 
180°. The definition of the angle of crack plane is shown down-right in Figs 3 and 4. 80 data taken from literature 
are used in this evaluation. However, some data are hidden from view because of some other data in front of them. 
The results show that both the γ-MVM and MDM can predict the orientation of the crack initiation plane with a 
good level of accuracy. 90% of the predictions made by the γ-MVM fall within the 20% scatter band, and 95% of 
the predictions fall within the 30% scatter band. The MDM provides good predictions. 80% of the estimates made 
by the MDM fall within the 20% scatter band, and 90% of the estimates fall within the 30% scatter band. 

Table 1: Static and fatigue properties of the investigated materials. 

Material Ref. E (MPa) G (MPa) σy (MPa) k in FS criterion (MPa) b0 c0

S45C Kim et al. (1999) 186,000 70,600 496 1 0.198 685 -0.12 -0.36 
1050 QT Steel Shamsaei et al. (2011) 203,000 81,000 1009 0.6 3.48 777 -0.062 -0.725
304L steel Shamsaei et al. (2011) 195,000 77,000 208 0.15 0.211 743 -0.145 -0.394
S460N Jiang et al. (2007) 208,500 80,200 500 1 0.487 559.8 -0.086 -0.493
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Fig. 2. Investigated strain paths 
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3. The Maximum Damage Method (MDM) 

The stress and strain states summarized via Eq. (1) and Eq. (2) are also used in the MDM, and the stress and 
strain components on a generic direction of a generic plane are obtained by tensor rotation. 

The MDM always needs to be applied with a specific multiaxial fatigue criterion to predict the orientation of the 
critical plane. In the present paper, the FS criterion is used along with the MDM. As far as variable amplitude 
multiaxial loading is concerned, the cycle counting method and the fatigue damage cumulative rule are also required. 
Bannantine & Socie’s cycle counting method (Bannantine and Socie, 1991) and Palmgren-Miner’s linear damage 
rule (Palmgren, 1924; Miner, 1945) are used in this paper. 

In more detail, the resolved shear stain and the normal stress can be obtained by projecting the loading history on 
a generic direction of a generic plane. The resolved shear strain cycles and the maximum normal stresses during the 
shear strain cycles are identified by using Bannantine & Socie’s cycle counting method. The i-th loading damage is 
calculated by using the FS criterion, and the accumulated damage is calculated according to Palmgen-Miner’s linear 
rule. This calculation should be done in every direction on every plane at the critical location. 

The shear-strain based multiaxial fatigue criterion proposed by Fatemi and Socie (1988) can be expressed as 
follows: 
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where Δγ/2 is the shear stain amplitude relative to the critical direction on the certain plane, σn,max is the maximum 
normal stress occurring during the same cycle of Δγ/2 on this plane, k is a material constant, and σy is the material 
yield strength. 

The total damage is calculated according to Palmgren-Miner’s linear rule as follows: 
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where ni is the number of loading cycles, Nf ,i is the total cycles to failure under the i-th loading, and Dtot is the total 
value of the damage sum. 

4. Experimental valuations 

In order to check the accuracy of the γ-MVM and MDM in predicting the orientation of the critical plane under 
multiaxial loading the experimental research for S45C steel by Kim et al. (1999) under short variable amplitude 
multiaxial loading, the observation of cracking behavior for S460N by Jiang et al. (2007) under multiaxial constant 
loading and the observed cracking behavior of 1050QT steel and 304L steel under discriminating strain paths by 
Shamsaei et al. (2011) were taken into consideration. 

According to the research by Forsyth (1961), Socie and Marquis (2000), Marciniak et al. (2014) and Susmel et al. 
(2014), the propagation process of micro/meso-crack can be described by two stages: Stage I is crack initiation, and 
Stage II is crack propagation. Usually, for elasto-plastic metallic materials, Stage I cracks initiate on those plane of 
maximum shear. Stage II cracks tend to propagate perpendicular to the normal stress. Therefore, in the current paper, 
if the length of the observed crack in the original literature is of the order of millimeters, the observed angle is 
deemed to be the orientation of the crack initiation plane. If the crack length is in the centimeter scale, with 
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5. Conclusions 

1. For the investigated materials under investigated loading conditions, both the γ-MVM and the MDM can 
predict the orientation of the crack initiation plane with a good level of accuracy. 

2. 90% of the predictions made by the γ-MVM fall within the 20% scatter band, and 95% of the predictions fall 
within the 30% scatter band. The MDM provides a good prediction. 80% of the data estimated by the MDM 
fall within the 20% scatter band, and 90% of the estimates fall within the 30% scatter band. 
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Fig. 3. Comparison of experimental and calculated crack initiaton plane according to the γ-MVM 

Fig. 4. Comparison of experimental and calculated crack initiaton plane according to the MDM 
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