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ABSTRACT 
 

The recent growth of the Web of Data has brought to the fore the 

need to develop intelligent means to support user exploration 

through big data graphs. To be effective, approaches for data 

graph exploration should take into account the utility from a 

user’s point of view. We have been investigating knowledge utility 

– how useful the trajectories in a data graph are for expanding 

users’ knowledge. Following the theory for meaningful learning, 

according to which new knowledge is developed starting from 

familiar entities (anchors) and expanding to new and unfamiliar 

entities, we propose here an approach to identify knowledge 

anchors in a data graph. Our approach is underpinned by the 

Cognitive Science notion of basic level objects in domain 

taxonomies. Several metrics for extracting knowledge anchors in 

a data graph, and the corresponding algorithms, are presented. The 

metrics performance is examined, and a hybridization approach 

that combines the strengths of each metric is proposed. 

 

Keywords 
Data graphs; exploratory search; knowledge utility; basic level 

objects. 

 

1. INTRODUCTION 
Data graphs (in the form of RDF Linked Data) have become 

widely available on the Web and are being used in a myriad of 

applications [1, 2, 17]. Gradually, data graphs are also being 

exposed to users, taking advantage of the exploration of the rich 

knowledge encoded in the graph. In many cases, users exploring 

data graphs will have no (or limited) familiarity with the specific 

domain and little (or no) awareness of the encoded knowledge in 

the graph. In other words, the users’ cognitive structures about the 

domain may not match the semantic structure of the data graph. 

This can hinder graph exploration, as the users may not be able to 

identify which paths are most useful, leading to confusion, high 

cognitive load, and frustration. 

Our research deals with supporting navigation in data graphs 

through intelligent nudging, directing people to trajectories with 

high utility.  Specifically, we consider knowledge utility – how 

useful a trajectory in a graph is to expand one’s knowledge in the 

domain.  Our earlier research has shown that while exploring data 

graphs in unfamiliar (or partially familiar) domains, users 

serendipitously learn new things [5, 15].  To make the  
 

 

serendipitous learning ‘more likely’, we seek to identify ‘good’ 
trajectories which are helpful for expanding one’s knowledge. 
 

It is critical to identify anchoring entities in the data graph that 

serve as knowledge bridges to learn new concepts. Such anchors 

can also be used to facilitate adaptation and personalization [29]. 

Our earlier observations, in a controlled user study investigating 

nudging strategies for exploration [15], have suggested that paths 

which start with familiar and highly inclusive entities and bring 

something new are likely to have good knowledge utility. This 

directed us to adopt the subsumption theory for meaningful 

learning [6], where familiar and inclusive entities are used as 

knowledge anchors to subsume new knowledge into users’ 
cognitive structure. Hence, the key challenge is: 

How to develop automatic ways to identify data graph entities 

that provide knowledge anchors for navigation paths. 

We utilize the Cognitive Science notion of basic level objects1 

[7], to develop algorithms for identifying knowledge anchors in a 

data graph (KADG). These anchors will refer to the most inclusive 

categories at which objects are easily identified; and hence can 

provide good anchors for knowledge exploration. We will present 

two groups of metrics for identifying KADG together with 

algorithms for applying these metrics: 

 distinctiveness metrics which  identify  differentiated 

categories whose attributes are shared amongst the category 

members and not associated to members of other categories; 

and 

 homogeneity metrics which identify basic categories whose 

members share many attributes together. 

The main contribution of the research presented in this paper is: 

 Formal description and implementation of metrics and the 

corresponding algorithms for identifying KADG. 

 Analysis of the performance of the algorithms using a 

benchmarking set of knowledge anchors identified by humans. 

 

2. RELATED WORK 
The growth of data graphs, including Linked Data, has opened a 

new avenue of research in developing computational models to 

facilitate data exploration by layman users. One of the key 

challenges in supporting exploration over data graphs is ensuring 

that the interaction brings some benefit (utility) for the user [12, 

19]. Our work focuses on knowledge expansion. 

 
1 The term “basic level objects” has been used in Cognitive Science. Other 

developments, e.g. Formal Concept Analysts, call them “concepts. 
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Earlier research on exploration through data graphs examines 

different ways to provide intelligent support for users� navigation. 

Personalized exploration based on user interests has been 

presented in [23]. Extracting semantic patterns from linked data 

sources to improve diversity in recommendation results to users 

has been proposed in [18, 24]. The concept of utility of statement 

has been presented in [13] to rank RDF statements. A related 

strand of research focuses on improving search efficiency by 

considering user interests [8, 9, 17] or diversifying user's 

exploration paths with recommendations based on the navigation 

history [10]. There is also a wealth of research in developing 

semantic data browsers, that lay out exploration paths using 

relationships in the underpinning ontologies [3, 4, 21, 34].  

A survey of semantic data browsers is provided in [12].  

We add to this research stream by opening a new avenue with the 

introduction of the concept of �knowledge utility� of exploration 

paths. Our work has broad implication for maximizing the 

learning effect for the users navigating through data graphs that 

often come from heterogeneous sources. We follow the 

subsumption theory for meaningful learning [6], according to 

which to incorporate new knowledge, the most familiar and 

inclusive entities in the user�s cognition can be used as knowledge 

anchors for introducing new knowledge. Anchors in data graphs 

are similar to notion of basic level objects in domain taxonomies. 

It states that category objects in a taxonomy are structured such 

that there is a level of abstraction at which most basic level 

categories selections are made. We operationalize this notion for 

automating the search for knowledge anchors in data graphs.    

The technical approaches that are most relevant to the research 

presented in this paper refer to the adoption of basic level objects 

in ontology summarization [11, 24, 27] and in Formal Concept 

Analysis (FCA) [14, 25, and 26]. Ontology summarization has 

been seen as an important technology to help ontology engineers 

quickly make sense of an ontology, in order to understand, reuse 

and build new ontologies [28]. Measures for ranking and re-

ranking using centrality, distance, similarity and coherence have 

been used to generate good explanations. The notion of relevance 

has been used in [27] to produce graph summaries. The closest 

work to the context in this paper is the summarization approach 

presented in [11], which highlighted the value of cognitive 

science (natural categories) for identifying key concepts in an 

ontology to aid ontology engineers to better understand the 

ontology and quickly judge it suitability. 

Formal Concept Analysis is a method for analysis of object-

attribute data tables [14]. The psychological approaches to basic 

level objects have been formally defined for selecting important 

formal concepts in a concept lattice by considering the cohesion 

of a formal concept [25]. More recently, the work in [26] has 

reviewed and formalized the main existing psychological 

approaches to basic level concepts. The approaches utilized the 

validity of formal concepts to produce informative concepts 

capable of reducing the user�s overload. 

These works on ontology summarization and FCA utilize basic 

level objects with the aim of identifying key concepts in an 

ontology to help experts to examine and reengineer the ontology. 

In our work, we apply the notion of basic level objects in a data 

graph to identify concepts which are likely to be familiar to users 

who are not domain experts. Further, we are unique in our use for 

these concepts to support users� exploration in order to expand her 

domain knowledge. This brings forth various research challenges, 

including: dealing with larger number of entities, from 100s of 

entities in a typical ontology versus millions of entities in a 

typical data graph, and the need to exploit large number of data 

instances available in the data graphs compared to schematic 

ontologies. Our work is the first of its kind in utilizing Rosch�s 

seminal cognitive science work [7] in the context of data 

exploration of data graphs. The formal framework that maps 

Rosch�s definition of basic level objects and cue validity to data 

graphs is the key contribution of the work presented in this paper.  

3. BASIC LEVEL OBJECTS IN 

COGNITIVE SCIENCE 
The notion of basic level objects was introduced in Cognitive 

Science research illustrating that domain taxonomies include 

category objects which are at the basic level of abstraction [7, 20]. 

These category objects are commonly used in our daily life and 

people are usually able to recognize them quickly. For example, 

considering the Music domain, most people are likely to 

recognize objects in the category Guitar (basic level). 

However, layman users who are not experts in the music domain 

are unlikely to be able to recognize objects from the category 

Resonator Guitar (subordinate level) and may consider 

such objects as equivalent to their parent Guitar (closest basic 

level) rather than String Instrument (superordinate level).  

Basic level categories �carry the most information, possess the 

highest category cue validity, and are, thus, the most 

differentiated from one another� [7]. Crucial for identifying basic 

level categories is calculating cue validity: �the validity of a given 

cue x as a predictor of a given category y (the conditional 

probability of y/x) increases as the frequency with which cue x is 

associated with category y increases and decreases as the 

frequency with which cue x is associated with categories other 

than y increases� [7]. Consequently, to identify basic level 

categories in a domain taxonomy, we will explore two avenues: 

Distinctiveness (highest cue validity) identifies most 

differentiated category objects. A differentiated category object 

has most (or all) of its cues (i.e. attributes) linked to the category 

members (i.e. subclasses) only, and not linked to other category 

objects in the taxonomy. Each entity that is linked through a 

relationship to members of the category will have a single validity 

value used as a predictor of the distinctiveness of the category 

object. The aggregation of all validity values will indicate the 

distinctiveness of the category object.  

Homogeneity (highest commonality between category 

members) identifies category objects whose members have high 

similarity values. The higher the similarity between category 

members, the more likely it is that the category object is at the 

basic level of abstraction. This is complementary to the 

distinctiveness feature. A category object with high cue validity 

will usually have high number of entities common to its members.  

4. ALGORITHMS FOR IDENTIFYING 

KNOWLEDGE ANCHORS 

4.1 Preliminaries 
Linked Data graphs are built using traditional Web standards (e.g. 

Uniform Resource Identifiers (URIs) and HTTP) and use a 

common data graph model - the Resource Descriptive Framework 

(RDF). RDF describes entities (vertices) and attributes (edges) in 

the data graph, represented as RDF statements. Each statement is 

a triple of the form <Subject - Predicate - Object> [22]. The 



Subject and Predicate denote entities in the graph. An Object is 

either a URI or a string. Each Predicate URI denotes a directed 

attribute which has a Subject as a source and an Object as a target. 

Formally, we define a data graph as: 

Definition 1 [Data graph] A Data Graph DG
 

is a labeled 

directed graph  PEVDG ,, , depicting a set of RDF triples where:  

- },...,,{ 21 nvvvV  is a finite set of vertices. 

- },...,,{ 21 meeeE  is a finite set of edge types, where  

1e = rdfs:subClassOf is the subsumption relationship, and 

mee ,...,2  can correspond to any other semantic relationships.  

- },...,,{ 21 kpppP 
 
where each 

ip  is a proposition in the form 

of a triple ois vev ,, with Vvv os , , where sv  is the Subject 

(source) and ov is the Object(target); and Eei   is the edge type.  

Using the subsumption relationship rdfs:subClassOf and 

following its transitivity, for each entity Vv   we can derive the 

entities v  that are subclasses of v , we denote this as vv  . 

The entities set V in the data graph is divided into the following: 

Category entities: VC  is the set of all entities that have at 

least one subclass and at least one superclass, other than the 

abstract domain entity d  which is the superclass for all entities. 

Leaf entities: VL  is a set of entities that have no subclasses.  

Figure 1 shows entities extracted from a data graph in the Music 

domain starting from the abstract domain entity Instrument.  

 

Figure 1. Extract from the MusicPinta data graph [5] showing 

category and leaf entities (in shaded shapes) and relationships. 

Hierarchical relationships are subsumption rdfs:subClassOf 

and dcterms:subject that links an entity to its DBpedia 

category. MusicOntology:instrument a the domain-specific 

relationship that links a musical instrument to a performance. 

Definition 2 [Normal Graph] A normal graph is a data graph 

where no entity is both a category entity and a leaf entity (in other 

words, every category entity has at least one subclass). We 

assume that we are always dealing with normal graphs. Our 

algorithms may not give sensible results for non-normal graphs. 

Definition 3 [Hierarchical relationships 
HE ] Hierarchical 

relationships are the edge types 
HEee ,..},{ 21

 of the data 

graph that denote category membership between the Subject and 

Object entities in the corresponding triples. 
HE always includes 

the subsumption relationship rdfs:subclassOf but may also 

contain other relationships showing membership inclusion (e.g., 

dcterms:subject as shown in Figure 1).   

Definition 4 [Domain-specific relationships 
DE ] Domain 

specific relationships are the edge types other than the 

hierarchical relationships, i.e. 
DH EEE  (e.g., Figure 1 

shows the relationship MusicOntology:instrument). 

4.2 Algorithms for Identifying KADG 
Any entity Vv  in a data graph DG, except the abstract domain 

entity d  and the set of leaf entities L , i.e. }{Cv , could 

potentially
 
be identified as a knowledge anchor in DG. The set of 

all knowledge anchors in DG is denoted as KADG. We follow the 

distinctiveness and homogeneity approaches described in Section 

3 to define metrics and corresponding algorithms for discovering 

KADG in a given data graph DG. The definitions follow the formal 

concept analysis approach in [26], and adapt the suggested 

metrics in the context of finding knowledge anchors in a data 

graph. In addition, we describe algorithms for identifying KADG.   

4.2.1 Distinctiveness Metrics 
This group of algorithms aims to identify the most differentiated 

basic categories whose attributes are shared amongst the category 

members but are not associated to members of other categories.  

Attribute Validity (AV) 

The attribute validity definition here corresponds to the cue 

validity definition in [7] and adapts the formula from [26]. We use 

�attribute validity� to indicate the association with data graphs - 

�cues� in data graphs are attributes of the entities and are 

represented as relationships in terms of triples.  

The attribute validity value of an entity }{Cv  is calculated 

with regard to a relationship type e, as the aggregation of the 

attribute validity values for all entities 
ev  linked to 

subclasses v : vv  . In other words, the validity of each ev  acts 

as a predictor for the validity of v . The attribute validity value of 

ev  increases, as the number of relationships of type e  between 

ev  and the subclasses v : vv  increases; whereas the attribute 

validity value of 
ev  decreases as the number of relationships of 

type e  between
ev  and all entities in the data graph increases.  

We define the set of vertices ),( evW  related as Subjects to the 

subclasses v : vv  , via relationship of type e : 

                },,:{),( PvevvvvvevW ee               (1)         

The following formula defines the attribute validity metric for a 

given entity v  with regard to a relationship type e .  

             
 




),( |}:,,{|

|}:,,{|
),(

evWv aae

e

e
Vvvev

vvvev
evAV                           (2) 

For example (see Figure 1), the attribute validity value for 

Guitar will aggregate attribute validity values of its members, 

one of which is Dobro. The attribute validity value for Dobro 

with regard to the rdfs:subclassOf relationship type and the 

given category entity Guitar equals the number of 

rdfs:subclassOf relationships between Dobro and the 

subclasses of Guitar (2 relationships), divided by the 

number of rdfs:subclassOf relationships between Dobro 

and all entities in the data graph (3 relationships).  



Category-Attribute Collocation (CAC):  

This approach was used in [33] to improve the cue validity metric 

by adding the so called category-feature collocation measure 

which takes into account the frequency of the attribute within the 

members of the category. This gives preference to �good� 

categories that have many attributes shared by their members. In 

our case, a good category will be an entity }{Cv with high 

number of relationships of type e between 
ev  and the 

subclasses v : vv  , relative to the number of its subclasses. 

The following formula defines the category-attribute collocation 

metric for a given entity v with regard to a relationship type e .  

    

||

|}:,,{|

|}:,,{|

|}:,,{|
),(

),( V

vvvev

Vvvev

vvvev
evCAC

e

evWv aae

e

e








 


      (3) 

For example (see Figure 1), the category entity Violin has three 

performances (attributes) linked to its subclasses Fiddle and 

Alto Violin via MusicOntology:instrument. This 

will add a weight of 2/3 to the AV of Violin. 

Category Utility (CU):  

This approach was presented in [30] as an alternative metric for 

obtaining categories at the basic level. The metric takes into 

account that a category is useful if it can improve the ability to 

predict the attributes for members of the category, i.e. a good 

category will have many attributes shared by its members (as 

mentioned in the category-attribute collocation metric). At the 

same time, it should possess �unique� attributes that are not 

related to many other categories (efficiency of category 

recognition). We adapt the formula in [26] for a data graph: 

    22

),(

)
||

|}:,,{|
()

||

|}:,,{|
(

||

||
),(

V

Vvvev

V

vvvev

V

V
evCU aae

evWv

e

e







 


(4) 

For example (see Figure 1), considering again Violin. In addition 

to the proportion of performances divided by number of 

subclasses for Violin, the category utility will also include the 

proportion of all performances linking Violin (3 in this case) over 

the total number of entities in the graph (12).  

The algorithm for calculating the metrics is given in Algorithm I. 

Algorithm I: Distinctiveness Metrics 

Input:
 

EePEVDG  ,,,   

1.    for all                 do 

2.       V   := the set of all vvv  :                 

3.        for all                               do              

4.                    := set of all                               

5.                    := set of all                      

6.                           :=     

7.                           := 

8.                           := 

9.                           :=             +      

10.                           :=             +      

11.                           :=             +      

12.        end for 

13.                :=  

14.    end for 

Output:         ,          ,         for all                  

 

The algorithm takes a data graph and a relationship type 

(hierarchical or domain-specific relationship) as input and returns 

values for the three distinctiveness metrics for each entity }{Cv . 

For an entity v, all subclasses are retrieved using the subsumption 

relationship (line 2). Then, for each entity 
ev  linked to one or 

more subclass entities vガ via triples veve
 ,, (line 3), several steps 

are conducted: retrieving all triples with Subject 
ev   and Object 

any subclass vガ (line 4); retrieving all triples with Subject 
ev   and 

Object any graph entity v (line 5); applying the formulas for 

calculating the AV, CAC, and CU metrics for 
ev (lines 6-8); and 

aggregating values for 
ev  to the overall values for v (lines 9-11).   

4.2.2 Homogeneity Metrics 

As outlined in Section 3, knowledge anchors will be more 

homogeneous because their members will be similar to each other. 

We utilize three set-based similarity metrics: Common 

Neighbours (CN), Jaccard (Jac), and Cosine (Cos) [31, 32].      

For example (see Figure 1), consider the entity Guitar and the 

hierarchical relationship rdfs:subClassOf. Guitar has two 

subclasses which share one common entity (Dobro) and have all 

together two entities (Dobro and Lap Steal Guitar). The 

Jaccard similarity for Guitar will be 1/2. 

The algorithm for calculating the metrics is given in Algorithm II.  

Algorithm II: Homogeneity Metrics 

Input: EePEVDG  ,,,  

1.    for all                   do 

2.       V   := the set of all vvv  :                 

3.        for all                                                       do              

4.                             

5.  

6.              

7.  

8.                              

9.              

10.                               

11.                                    

12.    

13.        

14.        end for 

15.  

16.        

17.  

18.     end for 

Output:         ,         ,           for all                      

The algorithm takes a data graph and a relationship type 

(hierarchical or domain-specific relationship) as input and returns 

values for the three homogeneity metrics for each entity }{Cv . 

For an entity v, all subclasses are retrieved using the subsumption 

relationship (line 2). For each pair of subclass entities vガ and vギ  

(line 3), several steps are conducted: retrieving all entities linked 

via triples with vガ and vギ (lines 4-5); calculating their intersection 

and union (lines 6-7); applying the formulas for calculating the 

similarity metrics CN, Jac, and Cos (lines 8-10); and aggregating 

vevv ee
 ,,:

eN

eM
||/|| ee MN

|)|/|(||)|/|(| VNMN eee


22 |)|/|(||)|/|(| VMVN ee 

evAV 

evCAC 

vAV

vCAC
evCAC 

vCU

evCU 

evCU 

vAV

vCAC

vAV vCAC vCU

}{Cv

vvvv CNCNCN  ,

vCN vJac vCos

Vvveve
 :,,

evAV 

vCU

Vvvev aae  :,,

}{Cv

VvVvvv  :),(

}{Cv

},,:{: vevvV eee


},,:{: vevvV eee


ee VVI :
ee VVU :
||:, ICN vv 

||/||:, UIJac vv 

|)|||/(||:, eevv VVICos 

vvvv JacJacJac  ,

vvvv CosCosCos  ,

)2/)1|.(||/(|  VVCNCN vv

)2/)1|.(||/(|  VVCosCos vv

)2/)1|.(||/(|  VVJacJac vv

}{Cv

vCU vCU
V

V



||

||



these values to the overall values for v (lines 11-13); and 

normalizing the aggregated values (lines 15-17). 

Each KADG metric was implemented by running SPARQL queries 

over the MusicPinta data graph [5] stored in a triple store. This 

implementation allowed examining the performance of the KADG 

metrics over a specific data graph, as presented next.   

5. EXPERIMENTAL STUDY 
In order to evaluate the KADG metrics, we compared the outputs of 

the implementation of the two algorithms over the MusicPinta 

data graph versus a benchmarking set of basic level objects from 

the categories in the data graph, as identified by humans.   
Ten online surveys2 were run adopting two strategies. 

 Strategy1 � leaf instruments. Eight surveys presented the 

256 leaf entities: each survey showed 32 MusicPinta leaf 

entities and 8 additional images minimizing bias. 

 Strategy2 � category instruments. Two surveys presented 

the 108 category entities: each survey showed 54 category 

entities plus 14 images minimizing bias. 

The image allocation in surveys was random. Every survey had 

four respondents from the study participants. Each participant was 

allocated only to one survey. Each image was shown for 10 

seconds on the participant's screen and he/she was asked to type 

the name of the given object (for Strategty1) or the category of 

objects (in Strategy2) as quickly as possible. Following Cognitive 

Science studies to identify basic objects, we extracted the 

benchmarking lists of knowledge anchors using accuracy and 

frequency [16]. Two benchmarking sets of KADG were obtained: 

Set1 [resulting from Strategy1]. We consider accurate naming 

of a category entity (parent) when a leaf entity is seen.  

Set2 [resulting from Strategy 2]. We consider naming a 

category entity with its exact name, or its superclass (parent), or 

its subclass (member). Entities with frequency equal or above two 

(i.e. named by two different users) were identified as KADG. From 

the two strategies, two groups of benchmarking sets are identified: 

StrongAnchors [intersection of Set1 and Set2] = {Accordion, 
Bell, Bouzouki, Clarinet, Drum, Flute, Guitar, 

Harmonica, Harp, Saxophone, String instrument, 

Trumpet, Violin, Xylophone}. 

WeakAnchors [union of Set1 and Set2] = {Accordion, Banjo, 
Bell, Bouzouki, Cello, Clarinet, Drum, Electric 

piano, Flute, Gong, Guitar, Harmonica, Harp, Lute, 

Lyre,Organ,Recorder, Saxophone, String Instrument, 

Trombone, Trumpet, Tuba, Violin, Xylophone}.  

6. EXPERIMENTAL RESULTS 
The two benchmarking sets � StrongAnchors and WeakAnchors - 

are used to examine the performance of the KADG metrics. For 

each KADG metric, we aggregate (using union) the KADG entities 

identified using the two hierarchical relationships 

(rdfs:subclassOf and dcterms:subject). Since the three 

homogeneity metrics returned the same values, we choose one 

metric when reporting the results, namely Jaccard similarity3. A 

cut-off threshold point for the result lists with potential KADG 

entities was identified by normalizing the output values from each 

metric and taking the mean value for the 60th percentile of the 

                                                                 

2 The study was conducted with Qualtrics (www.qualtrics.com). 

3 The Jaccard similarity metric is widely used, and was used in identifying 

basic formal concepts in the context of formal concept analysis [25].   

lists. Each KADG metric (the three distinctiveness metrics and the 

Jaccard metric), was applied over both families of relationships � 

hierarchical and domain-specific. Precision and Recall values 

were calculated using the two benchmarking sets.  

The precision values were poor (ranging from 0.16 to 0.26 for 

StrongAnchors and from 0.21 to 0.35 for the WeakAnchors). 

Recall values for the StrongAnchors were better (ranging from 

0.46 to 0.77), while for the WeakAnchors recall values were very 

mixed (ranging from 0.18 to 0.73). Inspecting the False Positive 

(FP) entities, we noticed two main reasons for the poor precision. 

Firstly, the algorithms were selecting entities with a low number 

of subclasses (e.g. Zurna). To take into account the number of 

subclasses for the entities, we multiply the metrics values by SNv:  

                            |)}:{|/1(1 vvvSN v                             (5) 

Secondly, the algorithms returned FP entities which had long 

label names (e.g. Plucked string-instrument). We adopt 

a name simplicity approach which is based on the data graph: it 

filters out all entities whose name length is higher than the 

weighted median for the length of labels of all entities. For the 

MusicPinta data graph, the weighted median is 1.2. Precision 

results were improved noticeably (lowest value 0.36 to highest 

value 0.62), especially for the WeakAnchors set. Our baseline is 

calculated using all entities whose name length is less than 

weighted median (0.25 for WeakAnchors and 0.41 for 

StrogAnchors). Further analysis of FP and FN indicated that the 

algorithms had different performance on the different taxonomical 

levels, which is formulated in two heuristics for hybridization: 

Heuristic 1: Use hierarchical Jaccard metric for the most 

specific categories in the graph.  

Heuristic 2: Take majority voting for other taxonomical levels.  

Applying these heuristics improved precision values (lowest value 

0.48 to highest value 0.65), especially for the WeakAnchors set.  

7. CONCLUSION 
Exploration of data is becoming a key daily life activity. The 

success of data graphs to support exploration brings forth the 

challenge of building systematic approaches to aid user 

exploration with the aim of knowledge expansion. We build on 

research acknowledging that data exploration should take into 

account knowledge utility of the exploration paths. This 

emphasizes the importance of identifying anchoring entities in a 

data graph that serve as knowledge bridges to learn new concepts.   

In this paper, we utilize Rosch�s seminal work in cognitive 

science, which defines basic level objects in domain taxonomies, 

adapting it for data graph exploration. We present a formal 

framework that maps Rosch�s definitions of basic level objects 

and cue validity to data graphs. We develop two groups of metrics 

for identifying knowledge anchors in a data graph together with 

algorithms for applying these metrics. The performance of the 

metrics is examined using two benchmarking sets, and a 

hybridization approach is proposed. The results shown that using 

the hierarchical Jaccard metric for the most specific categories in 

the graph and considering majority voting of results for all 

taxonomical levels, brings out the best results in the algorithms.  

The presented research has many potential applications to support 

users data exploration. Our approach can be also applied to 

ontology summarization where the knowledge anchors from the 

data graph allows capturing a lay person�s view of the domain. 



The knowledge anchors can be also used to solve the key problem 

of �cold start' in personalization and adaptation. The immediate 

future work is to apply the metrics in another domain (e.g. data 

graph with career options which will be used to generate career 

paths). In the long run, we aim to utilize the metrics to generate 

navigation paths using subsumption strategies for meaningful 

learning while taking into account user's domain familiarity. 
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