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Abstract

This paper presents a novel machine-hearing system that ex-

ploits deep neural networks (DNNs) and head movements for

binaural localisation of multiple speakers in reverberant con-

ditions. DNNs are used to map binaural features, consisting

of the complete cross-correlation function (CCF) and interaural

level differences (ILDs), to the source azimuth. Our approach

was evaluated using a localisation task in which sources were

located in a full 360-degree azimuth range. As a result, front-

back confusions often occurred due to the similarity of binaural

features in the front and rear hemifields. To address this, a head

movement strategy was incorporated in the DNN-based model

to help reduce the front-back errors. Our experiments show

that, compared to a system based on a Gaussian mixture model

(GMM) classifier, the proposed DNN system substantially re-

duces localisation errors under challenging acoustic scenarios

in which multiple speakers and room reverberation are present.

Index Terms: Binaural source localisation, deep neural net-

works, head movements, machine hearing, reverberation

1. Introduction

Human listeners usually have little difficulty in localising mul-

tiple sound sources in reverberant environments, even though

they must decode a complex acoustic mixture arriving at each

ear [1]. In contrast, such adverse acoustic environments remain

a challenging task for many machine localisation systems, even

those employing more than two sensors, such as a microphone

array [2].

The auditory system is able to exploit two main cues to de-

termine the azimuth of a sound source in the horizontal plane:

interaural time differences (ITDs) and interaural level differ-

ences (ILDs). Based on similar principles, binaural sound local-

isation systems using the ear signals of an artificial head have

shown promising localisation performance [3, 4, 5, 6]. Such

machine systems typically localise sounds by estimating the

ITD and ILD in a number of frequency bands, and employing

statistical models such as Gaussian mixture models (GMMs) to

map binaural cues to corresponding sound source azimuths. In

order to increase the robustness of binaural localisation systems

in adverse conditions, multi-conditional training (MCT) can be

performed. This introduces uncertainty of binaural cues into the

statistical models, allowing them to accommodate to the influ-

ence of multiple sound sources and reverberation [4, 5, 6, 7].

Many previous binaural hearing systems have restricted lo-

calisation of sound sources to the frontal hemifield. However,

if this constraint is relaxed then ITD and ILD cues are often

not sufficient to uniquely determine the location of a sound [8].

Due to similarity of these cues in the front and rear hemifields,

front-back confusions often occur if sound localisation is per-

formed in the full 360◦ azimuth range. This problem has been

noted in previous machine listening studies, such as [6]. Hu-

man listeners, however, rarely make front-back confusions be-

cause they also use information gleaned from head movements

to resolve ambiguities [9, 8, 10]. This has inspired a few ma-

chine localisation systems to incorporate head movement. In

[11] cross-correlation patterns were averaged across different

head orientations in an attempt to remove front-back ambigu-

ity when localising sounds in anechoic conditions. In [6], head

movements were combined with MCT to achieve robust perfor-

mance of sound localisation in reverberant conditions. The in-

formation gleaned from head movements was combined at the

statistical model level. In [12], the effectiveness of different

head movements was evaluated in a realistic acoustic environ-

ment that included multiple speakers and room reverberation.

Rotating the head towards the target sound source was found to

be the best strategy for minimising localisation errors, an obser-

vation that was also found in human sound localisation [13].

This paper presents a novel machine-hearing system that

exploits deep neural networks (DNNs) and head movements for

robust localisation of multiple speakers in reverberant condi-

tions. DNNs [14] have recently been shown to be very effec-

tive classifiers, leading to superior performance in a number of

speech recognition and acoustic signal processing tasks. Here,

DNNs are used to map binaural features (obtained from a cross-

correlogram) to the source azimuth. More specifically, entire

cross-correlation functions are used as features (rather than just

the time lag of the largest peak) since they provide rich informa-

tion that can be exploited by the classifier. A similar approach

was recently used by [15] for a binaural segregation task. How-

ever, their approach assumed that the target source was fixed at

zero degrees azimuth, and therefore did not specifically address

source localisation.

A binaural sound localisation model that exploits DNNs

and head rotations is described in detail in Section 2. Section 3

describes the evaluation framework and presents a number of

source localisation experiments. Section 4 presents localisation

results and compares our DNN-based approach to a baseline

method. Section 5 concludes the paper.

2. System

2.1. Binaural feature extraction

An auditory front-end was employed to analyse binaural ear sig-

nals with a bank of 32 overlapping Gammatone filters, with

centre frequencies uniformly spaced on the equivalent rectan-

gular bandwidth (ERB) scale between 80Hz and 8 kHz [16].

Inner-hair-cell processing was approximated by half-wave rec-
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tification. Afterwards, cross-correlation between the right and

left ears was computed independently for each frequency chan-

nel using overlapping frames of 20ms duration with a shift of

10ms. The cross-correlation function was further normalised

by an auto-correlation function at lag zero and evaluated for

time lags in the range of ±1.1ms.

Two features, ITDs and ILDs, are typically used in binau-

ral localisation systems [1]. ITD is estimated as the lag cor-

responding to the maximum in the cross-correlation function.

ILD corresponds to the energy ratio between the left and right

ears within the analysis window, expressed in dB. In this study,

instead of estimating the ITDs, the entire cross-correlation func-

tion was used as localisation features. This approach was moti-

vated by two observations. First, computation of the ITD in-

volves a peak-picking operation which may not be robust in

the presence of noise. Second, there are systematic changes

in the cross-correlation function with source azimuth (in par-

ticular, changes in the main peak with respect to its side peaks).

Even in multi-source scenarios, these can be exploited by a suit-

able classifier (see also [17]).

When sampled at 16 kHz, the cross-correlation function

with a lag range of ±1.1ms produced a 37-dimensional bin-

aural feature space for each frequency channel. This was sup-

plemented by the ILD, forming a final 38-dimensional (38D)

feature vector. Similar feature sets were also used in [15] for

binaural speech segregation.

2.2. DNN-based localisation

DNNs were used to map the 38D binaural feature set to cor-

responding azimuth angles. A separate DNN was trained for

each frequency channel. The DNN consists of an input layer,

8 hidden layers, and an output layer. The input layer contained

38 nodes and each node was assumed to be a Gaussian ran-

dom variable with zero mean and unit variance. Therefore the

38D binaural feature input for each frequency channel was first

Gaussian normalised, before being fed into the DNN. The hid-

den layers had sigmoid activation functions, and each layer con-

tained 128 hidden nodes. The number of hidden nodes was

heuristically selected as more hidden nodes add more compu-

tation and did not improve localisation accuracy in this study.

The output layer contained 72 nodes corresponding to the 72

azimuth angles in the full 360◦ azimuth range (5◦ steps) con-

sidered in this study. The “softmax” activation function was

applied at the output layer.

The neural net was initialised with a single hidden layer,

and the number of hidden layers was gradually increased in later

training phases. In each training phase, mini-batch gradient de-

scent with a batch size of 256 was used, including a momentum

term with the momentum rate set to 0.5. The initial learning

rate was set to 0.05, which gradually decreased to 0.001 after

10 epochs. After the learning rate decreased to 0.001, it was

held constant for a further 5 epochs. At the end of each training

phase, an extra hidden layer was added before the output layer,

and this training phase was repeated until the desired number of

hidden layers was reached (8 hidden layers in this study).

Given the observed feature set xt,f at time frame t and

frequency channel f , the 72 “softmax” output values from

the DNN for frequency channel f were considered as poste-

rior probabilities P(k|xt,f ), where k is the azimuth angle and∑
k
P(k|xt,f ) = 1. The posteriors were then integrated across

frequency to yield the probability of azimuth k, given features

of the entire frequency range at time t

P(k|xt) =

∏
f
P(k|xt,f )∑

k

∏
f
P(k|xt,f )

. (1)

Sound localisation was performed for a signal chunk consisting

of T time frames. Therefore the frame posteriors were further

averaged across time to produce a posterior distribution P(k)
of sound source activity

P(k) =
1

T

t+T−1∑

t

P(k|xt). (2)

The target location was given by the azimuth k that maximises

P(k)

k̂ = argmax
k

P(k) (3)

Previous studies [6, 5, 7] have shown that MCT features

can increase the robustness of localisation systems in reverber-

ant multi-source conditions. Here, the DNNs were trained on

binaural MCT features created by mixing a target signal at a

specified azimuth with diffuse noise at three different signal-to-

noise ratios (SNRs) (20 dB, 10 dB and 0 dB). The diffuse noise

consisted of 72 uncorrelated, white Gaussian noise sources that

were placed across the full azimuth range (360◦) in steps of 5◦.

Both the target signals and the diffuse noise were spatialised

by using an anechoic head related impulse response (HRIR)

measured with a Knowles Electronic Manikin for Acoustic Re-

search (KEMAR) dummy head [18]. This approach was used

in preference to adding reverberation during training, since pre-

vious studies (e.g., [5]) suggested that it was likely to give a

classifier that performed well across a wide range of reverber-

ant conditions.

2.3. Localisation with head movements

In order to reduce the number of front-back confusions, the

DNN localisation model employs a hypothesis-driven feedback

stage that triggers a head movement if the source location can-

not be unambiguously estimated [12, 6]. A signal chunk is used

to compute an initial posterior distribution of the source azimuth

using the trained DNNs. In an ideal situation, the local peaks

in the posterior distribution correspond to the azimuth of true

sources. However, due to early reflections and the similarity

of binaural features in the front and rear hemifields, phantom

sources may also be apparent as peaks in the azimuth posterior

distribution. In this case, a random head movement within the

range of [−30◦, 30◦] is triggered to solve the localisation confu-

sion. Other possible strategies for head movement are discussed

in [12].

A second posterior distribution is computed for the signal

chunk after the completion of the head movement. Assuming

that sources are stationary before and after the head movement,

if a peak in the first posterior distribution corresponds to a true

source position, then it will appear in the second posterior dis-

tribution and will be shifted by an amount corresponding to the

angle of head rotation. On the other hand, if a peak is due

to a phantom source, it will not occur in the second posterior

distribution. By exploiting this relationship, potential phantom

source peaks are identified and eliminated from both posterior

distributions. After the phantom sources have been removed,

the two posterior distributions were averaged to further empha-

sise the local peaks corresponding to true sources. The most

prominent peaks in the averaged posterior distribution were as-

sumed to correspond to active source positions. Here the num-

ber of active sources was assumed to be known a priori.
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Figure 1: Schematic diagram of the virtual listener configura-

tion. Actual source positions were always between −60◦ and

60◦, but the system could report a source azimuth at any of 72

possible azimuths around the head (open circles). Black circles

indicate actual source azimuths in a typical three-talker mixture

(in this example, at −50◦, −30◦ and 15◦). All azimuths were

used for training. During testing, head movements were limited

to the range [−30◦, 30◦] as shown by the shaded area.

3. Evaluation

3.1. Binaural simulation

Binaural audio signals were created by convolving monau-

ral sounds with HRIRs or binaural room impulse responses

(BRIRs). An HRIR catalog based on the KEMAR dummy

head [18] was used for simulating the anechoic training sig-

nals. The evaluation stage used the Surrey BRIR database [19]

to simulate reverberant room conditions. The Surrey database

was captured using a Cortex head and torso simulator (HATS)

and includes four room conditions with various amounts of re-

verberation. Table 1 lists the reverberation time (T60) and the

direct-to-reverberant ratio (DRR) of each room. Binaural mix-

tures of multiple competing sources were created by spatialis-

ing each source signal separately before adding them together

in each of the two binaural channels.

Table 1: Details about the room characteristics of the Surrey

BRIR database [19] used in this study.

Room A Room B Room C Room D

T60 (s) 0.32 0.47 0.68 0.89

DRR (dB) 6.09 5.31 8.82 6.12

Head movements were simulated by computing source az-

imuths relative to the head orientation, and loading correspond-

ing BRIRs for the relative source azimuths. Such simulation is

only approximate for the reverberant room conditions because

the Surrey BRIR database was measured by moving loudspeak-

ers around a fixed dummy head.

3.2. Experimental setup

During evaluation, the sound source azimuth was varied in

5 ◦ steps within the range of [−60◦, 60◦], as shown in Fig. 1.

Source locations were limited to this azimuth range because the

Surrey database only includes azimuths in the frontal hemifield.

However, the system was not provided with information that the

azimuth of the source lay within this range, and was free to re-

port the azimuth within the full range of [−180◦, 180◦]. Hence,

front-back confusions could occur if the system incorrectly re-

ported that a source originated from the rear hemifield.

The GRID corpus [20] was used in this study 1 to form

one-talker, two-talker, and three-talker acoustic mixtures. Each

GRID sentence is approximately 1.5 s long and of the form

“lay red at G9 now” spoken by one of 34 native British-English

talkers. The sentences were normalised to the same root mean

square (RMS) value prior to spatialisation. For the two-talker

and three-talker mixtures, the additional azimuth directions

were randomly selected from the same azimuth range while en-

suring an angular distance of at least 10 ◦ between all sources

in a mixture. Each talker was simulated by randomly selecting

sentences from the GRID corpus, which were different from the

ones used for training. Each evaluation set included 100 acous-

tic mixtures.

Three localisation systems were evaluated: i) a baseline

system based on GMMs as proposed in [6], which employed

both ITDs and ILDs; ii) the proposed DNN system trained with-

out the ILDs (i.e. with only the cross-correlation features); iii)

the full DNN system trained with both cross-correlation fea-

tures and ILDs. The GMM baseline system was trained using

the same MCT features. The second system was included in or-

der to determine the role of interaural timing vs. interaural level

features in the proposed DNNs.

All three localisation models were tested with and without

head movement as described in Section 2.3. When no head

movement was used, the source azimuths were estimated from

the entire duration of GRID sentences. When head movement

was used, a signal chunk of 0.75 s long was taken to compute

the first posterior distribution. The rest of the signal from each

sentence was taken to compute the second posterior distribution

after completion of the head movement.

The localisation performance was evaluated by comparing

true source azimuths with the estimated azimuths. The number

of active speech sources was assumed to be known a priori.

For each binaural mixture, the gross accuracy was measured

for each sentence by counting the number of sources for which

the azimuth estimate was within a predefined grace boundary of

±5◦.

4. Results and discussions

Table 2 lists gross localisation accuracy rates of all the sys-

tems evaluated for various sets of BRIRs in the Surrey database.

When no head movement was exploited, the full DNN sys-

tem produced substantial improvement over the GMM baseline

across all test conditions. The improvement was particularly

pronounced in the single-speaker localisation task, with the

DNN localisation accuracy approaching 100% in both Room

A and Room C. Across all speaker conditions the largest bene-

fits were observed in Room B, where the direct-to-reverberant

ratio is the lowest.

When ILDs were not included, however, localisation per-

formance of the DNN system suffered greatly without head

movement. The performance drop was particularly pronounced

in Room A and B, where even the single-speaker localisation

accuracy was below 80% (compared to +90% accuracy for all

other systems). Analysis of the types of produced errors sug-

1Note our previous studies used the TIMIT corpus [21]. The choice
of the corpus, however, did not have much effect on the performance of
the binaural localisation systems.
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Table 2: Gross accuracy in % for various sets of BRIRs when localising one, two and three competing speakers.

Surrey Room A Surrey Room B Surrey Room C Surrey Room D
System

1-spk 2-spk 3-spk 1-spk 2-spk 3-spk 1-spk 2-spk 3-spk 1-spk 2-spk 3-spk
Mean

GMM 92.6 86.3 72.3 87.5 77.6 66.5 92.5 90.5 81.9 92.5 83.4 72.3 83.0

+ Head Movement 99.9 92.1 76.4 99.5 86.4 71.4 99.9 97.8 87.8 99.8 90.0 76.0 89.8

DNN – No ILD 77.0 67.6 63.9 75.2 65.2 62.4 93.8 74.5 69.1 81.6 66.6 61.5 71.5

+ Head Movement 98.6 87.8 73.5 97.7 85.8 71.8 99.8 94.7 81.5 97.5 80.9 67.2 86.4

DNN – Full 99.9 88.7 78.5 94.1 81.5 74.1 100.0 92.2 82.7 97.8 84.9 75.5 87.5

+ Head Movement 99.8 97.1 86.0 99.9 94.9 83.8 100.0 98.4 90.3 99.8 93.7 81.8 93.8

gests that this was largely due to an increased number of front-

back errors made by the DNN system when ILDs were not in-

cluded. Fig. 2 shows the front-back error rates produced by each

system with and without head movements in the single-speaker

localisation task. It is clear that without head movements, the

“DNN – No ILD” system made substantially more front-back

errors than the other two systems, especially in Rooms A, B,

and D where reverberation was strongest. This suggests the

importance of ILDs in resolving front-back confusions in re-

verberant conditions for the DNN system. Similar observations

were also reported for GMM-based localisation systems [4], but

the effect was not as detrimental as for the DNN-based system.

When the ILDs were included, the front-back errors produced

by the DNN system were substantially reduced even without

head movements. As Fig. 2 shows, the front-back errors made

by the “DNN – Full” system without head movements was close

to 0% in all room conditions except Room B.

Room A Room B Room C Room D
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Figure 2: Front-back error rates produced by different systems

without head movements (shaded bars) and with head move-

ments (white bars) in different room conditions. The error rate

numbers for the white bars (with head movements) are dis-

played at the top of the bars. The task was single-speaker lo-

calisation.

When the head movement strategy was used, the perfor-

mance of all the systems was considerably improved. As the

white bars in Fig. 2 clearly show, the front-back error rates were

substantially reduced for all systems. Most systems now made

less than 1% front-back errors. The improvement was particu-

larly pronounced for the “DNN – No ILD” system, which re-

duced the front-back error rates to less than 1.4% in all room

reverberations for the single-speaker task. The benefit is clearly

translated into overall localisation performance improvement,

with the average accuracies for the “DNN – No ILD” system

increased from 72% to 86%.

For the “DNN – Full” system the front-back errors were al-

ready low for the single-speaker task, and the benefit of head

movements was more apparent in the two-speaker and three-

speaker localisation conditions. Table 2 shows that in such con-

ditions the improvement due to exploitation of head movements

was larger for the DNN-based system than the GMM-based

baseline system.

The overall localisation accuracy of the full DNN system is

close to 94%, and it consistently outperformed the GMM-based

system across all the testing conditions.

5. Conclusions

This paper presented a computational framework that combines

deep neural networks and head movements for robust localisa-

tion of multiple sources. The DNNs were able to exploit the

rich information provided by entire cross-correlation functions.

It was also found that including ILDs features produced sig-

nificantly fewer front-back confusion errors when evaluated in

a full 360◦ azimuth range under challenging acoustic scenar-

ios, in which multiple speakers and room reverberation were

present. The use of head rotation further increased the robust-

ness of the proposed DNN-based system, which substantially

outperformed a GMM-based baseline system.

In the current study, the use of DNNs allowed higher-

dimensional feature vectors to be exploited for localisation, in

comparison with previous studies [4, 5, 6]. This could be car-

ried further, by exploiting additional context within the DNN

either in the time or frequency dimension. The current study

only employed the cross-correlation and ILD features. It is pos-

sible to complement the features used here with other binaural

features, e.g. a measure of interaural coherence [22], as well as

monaural localisation cues, which are known to be important for

judgment of elevation angle [23, 24]. Visual features might also

be combined with acoustic features in order to achieve audio-

visual source localisation.

Finally, a limitation of the current study is that sources

were assumed to be static. Future studies will relax this con-

straint and address the localisation and tracking of moving

sound sources within the DNN framework.
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