

This is a repository copy of *Extreme differences in 87Sr/86Sr between Samoan lavas and the magmatic olivines they host: Evidence for highly heterogeneous 87Sr/86Sr in the magmatic plumbing system sourcing a single lava.*

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/102467/

Version: Accepted Version

Article:

Reinhard, AA, Jackson, MG, Harvey, J et al. (2 more authors) (2016) Extreme differences in 87Sr/86Sr between Samoan lavas and the magmatic olivines they host: Evidence for highly heterogeneous 87Sr/86Sr in the magmatic plumbing system sourcing a single lava. Chemical Geology, 439. pp. 120-131. ISSN 0009-2541

https://doi.org/10.1016/j.chemgeo.2016.05.017

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/ 1 Extreme differences in ⁸⁷Sr/⁸⁶Sr between Samoan lavas and the magmatic olivines they

host: Evidence for highly heterogeneous ⁸⁷Sr/⁸⁶Sr in the magmatic plumbing system
sourcing a single lava.

4 A.A. Reinhard¹, M.G. Jackson¹, J. Harvey², C. Brown³, J.M. Koornneef⁴

¹ University of Calfornia Santa Barbara, Department of Earth Science, Santa Barbara, CA,
 93109-9630, USA (reinhard@umail.ucsb.edu)

² University of Leeds, School of Earth and Environment, Leeds, UK

³Stony Brook University, Department of Geosciences, Stony Brook, NY

⁹ ⁴Vrije Universiteit Amsterdam, Faculty of Earth and Life Sciences, Amsterdam, NL.

10 ABSTRACT

11 Investigations of mantle heterogeneity in ocean island basalts (OIB) frequently compare heavy

12 radiogenic isotopes (i.e. ⁸⁷Sr/⁸⁶Sr), often measured in whole rock powders, with ³He/⁴He and

13 δ^{18} O, commonly measured in olivines. However, the 87 Sr/ 86 Sr in the olivines, which is dominated

14 by Sr in melt inclusions, may not be in equilibrium with the ⁸⁷Sr/⁸⁶Sr in the whole rock. Here we

15 present new ⁸⁷Sr/⁸⁶Sr measurements made on Samoan magmatic olivines, where multiple olivine

16 crystals are aggregated for a single isotopic measurement. The olivines host abundant melt

17 inclusions, and yielded relatively large quantities of Sr (13.0 to 100.6 ng) in 19 to 185 mg

18 aliquots of fresh olivine, yielding high Sr_{sample}/Sr_{blank} ratios (≥ 427). These new data on olivines

19 show that samples can exhibit significant ⁸⁷Sr/⁸⁶Sr disequilibrium: in one extreme sample, where

20 the basaltic whole rock 87 Sr/ 86 Sr (0.708901) is higher than several different aliquots of aggregate

21 magmatic olivines (0.707385 to 0.707773), the whole rock-olivine 87 Sr/ 86 Sr disequilibrium is

22 >1590 ppm. The 87 Sr/ 86 Sr disequilibrium observed between whole rocks and bulk olivines relates

to the isotopic disequilibrium between whole rocks and the average ⁸⁷Sr/⁸⁶Sr of the population of

24 melt inclusions hosted in the olivines. Therefore, a population of olivines in a Samoan lava must

- 25 have crystallized from (and trapped melts of) a different ⁸⁷Sr/⁸⁶Sr composition than the final
- 26 erupted lava hosting the olivines. A primary question is how melts with different ⁸⁷Sr/⁸⁶Sr can

exist in the same magmatic plumbing system and contribute heterogeneous ⁸⁷Sr/⁸⁶Sr to a lava and 27 28 the magmatic olivines it hosts. We explore potential mechanisms for generating heterogeneous 29 melts in magma chambers. The reliance, in part, of chemical geodynamic models of the relationships between isotopic systems measured in whole rocks $({}^{87}Sr/{}^{86}Sr)$ and systems 30 measured in olivines (³He/⁴He and δ^{18} O) means that whole rock-olivine Sr-isotopic 31 32 disequilibrium will be important for evaluating relationship among these key isotopic tracer 33 systems. Moving forward, it will be important to evaluate whether whole rock-olivine Sr-isotopic 34 disequilibrium is a pervasive issue in OIB globally.

35 **Keywords:** Melt inclusions, Samoa, hotspot, 87 Sr/ 86 Sr, 3 He/ 4 He, δ^{18} O, Mantle Geochemistry

36 1. INTRODUCTION

37 The composition of the Earth's mantle, as sampled by ocean island basalts (OIB) erupted 38 at intraplate volcanic hotspots, is highly heterogeneous (Gast et al., 1964; White, 1985, 2015; 39 Zindler and Hart, 1986; Hofmann, 1997). The origin of the heterogeneity in the mantle has been 40 attributed to subduction of oceanic and continental crust (and associated sediments) into the 41 mantle over geologic time (White and Hofmann, 1982; Hofmann and White, 1982). The 42 geochemical diversity of the mantle has been subdivided into several broad endmember 43 compositions including depleted mantle (DM) compositions (characterized by unradiogenic Sr and Pb isotopic compositions and radiogenic ${}^{143}Nd/{}^{144}Nd$), HIMU ("high μ ", or ${}^{238}U/{}^{204}Pb$, 44 45 characterized by highly radiogenic Pb isotopic compositions), EM1 (or enriched mantle I, characterized by unradiogenic Pb and geochemically enriched ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd) and 46 47 EM2 (enriched mantle II, characterized by intermediate Pb isotopic compositions and geochemically enriched ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd). However, the distribution and lengthscales of 48 49 geochemical heterogeneity in the mantle, as sampled by oceanic basalts, are still poorly 50 constrained.

51	Lavas from the Samoan hotspot—an age-progressive volcanic chain (Hart et al., 2000;
52	Staudigel et al., 2006; Sims et al., 2008; Koppers et al., 2008, 2011) located in the southwest
53	Pacific—exhibit a remarkable range of geochemical compositions, including the most
54	geochemically enriched EM2 signatures globally (Fig. 1; supplementary Table 1). Lavas dredged
55	from the deep submarine flanks of Savai'i Island, the westernmost island in Samoa, have whole
56	rock ⁸⁷ Sr/ ⁸⁶ Sr ratios that extend up to 0.720469 (Jackson et al., 2007a). This represents the
57	highest ⁸⁷ Sr/ ⁸⁶ Sr observed in a lava erupted in the world's ocean basins (Fig. 1). This
58	geochemically enriched ⁸⁷ Sr/ ⁸⁶ Sr is characteristic of the EM2 signature and is the result of
59	recycled ancient terrigenous sediment sampled by the Samoan plume (Jackson et al., 2007a;
60	Workman et al., 2008). However, Samoan lavas can host ⁸⁷ Sr/ ⁸⁶ Sr ratios as low as 0.7044, and a
61	subset of these lavas exhibit primitive, high ³ He/ ⁴ He ratios (Farley et al., 1992; Workman et al.,
62	2004; Jackson et al., 2007, 2010, 2014). For example, lavas from the Samoan island of Ofu
63	exhibit ${}^{3}\text{He}/{}^{4}\text{He}$ ratios up to 33.8 Ra (ratio to atmosphere), consistent with elevated ${}^{3}\text{He}/{}^{4}\text{He}$
64	identified in Samoan lavas from earlier studies (Farley et al., 1992; Workman et al., 2004,
65	Jackson et al., 2007b).

66 Radiogenic isotopic analysis of whole rock lavas can obscure the geochemical diversity 67 that may exist within in a single lava. For example, individual olivine-hosted melt inclusions from Samoan basalts can have dramatically different ⁸⁷Sr/⁸⁶Sr than the host whole rock, which 68 69 provides an important clue that magmatic olivines can trap melts of diverse mantle sources 70 (Jackson and Hart, 2006). Jackson and Hart (2006) were the first to measure Sr isotopes in 71 individual olivine-hosted melt inclusions, and they targeted Samoan lavas in their study. Using 72 laser ablation multi collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS), they found that the ⁸⁷Sr/⁸⁶Sr ratios in melt inclusions recovered from a single Samoan basalt can 73 vary by up to 0.34% (3,400 ppm), and the ⁸⁷Sr/⁸⁶Sr variability in Samoan melt inclusions greatly 74

75 exceeds the external precision (± 320 ppm, 2σ) of the melt inclusion measurements. The 76 observation that olivine-hosted melt inclusions in OIB can host different ⁸⁷Sr/⁸⁶Sr than the whole 77 rock was supported by later work: Harlou et al. (2009) micro-milled olivine-hosted melt 78 inclusions from Icelandic basalts, and Sr was separated from the milled inclusion powders by 79 standard column chemistry and analyzed by thermal ionization mass spectrometry (TIMS). Their results also show that ⁸⁷Sr/⁸⁶Sr in olivine-hosted melt inclusions can be significantly different 80 81 from the whole rock (by >6000 ppm). In a recent LA-ICP-MS study focusing on Hawaiian lavas, Sobolev et al. (2011) further demonstrated that the ⁸⁷Sr/⁸⁶Sr of olivine hosted melt inclusions can 82 vary dramatically (from 0.7021 to 0.7081) within a single lava. In summary, ⁸⁷Sr/⁸⁶Sr measured 83 84 in olivine-hosted melt inclusions reveal that isotopically heterogeneous components exist in OIB 85 that are not observed in whole rock analyses.

In a parallel effort to evaluate the presence of extreme ⁸⁷Sr/⁸⁶Sr heterogeneity within the 86 87 different components hosted in a single Samoan lava, Jackson et al. (2009) targeted fresh 88 magmatic clinopyroxenes (cpx) separated from lavas that were shown by Jackson and Hart (2006) to have heterogeneous ⁸⁷Sr/⁸⁶Sr in olivine-hosted melt inclusions. Two of the samples 89 (AVON3-78-1 and AVON3-71-2), that exhibit extreme ⁸⁷Sr/⁸⁶Sr variability in olivine-hosted 90 91 melt inclusions (Jackson and Hart, 2006), had two populations of visually-distinct cpx (green and black) separated and analyzed for ⁸⁷Sr/⁸⁶Sr. Similar to the ⁸⁷Sr/⁸⁶Sr of the melt inclusion 92 populations from these lavas, the ⁸⁷Sr/⁸⁶Sr from each cpx population is lower than the respective 93 94 whole rock lava (by as much as ~1700 ppm for AVON3-78-1 and ~650 ppm for AVON3-71-2). 95 The lavas with the most extreme cpx-whole rock Sr-isotopic disequilibrium and the greatest 96 diversity in melt inclusion compositions (AVON3-78-1 and AVON3-71-2) are extremely fresh (Workman et al., 2004) and effectively zero-age (<8 Ka; Sims et al., 2008), and thus the ⁸⁷Sr/⁸⁶Sr 97 98 heterogeneity within these basalts cannot be due to alteration or post-eruptive radiogenic

ingrowth. Jackson et al. (2009) concluded that geochemically-diverse magmas with different
 ⁸⁷Sr/⁸⁶Sr mix at depth, thereby generating the Sr-isotopic disequilibrium observed in the different
 components of the lava, including olivine-hosted melt inclusions and cpx.

This study targets aggregated magmatic olivines for ⁸⁷Sr/⁸⁶Sr measurement (i.e., multiple 102 103 olivine crystals are pooled for a single ⁸⁷Sr/⁸⁶Sr analysis). Strontium is highly incompatible in the olivine lattice (olivine-basaltic melt partition coefficients for Sr are $\sim 10^{-4}$; Beattie, 1994), thus 104 nearly all Sr in olivine is hosted in melt inclusions. Therefore, measurement of ⁸⁷Sr/⁸⁶Sr in 105 106 magmatic olivines provides an average ⁸⁷Sr/⁸⁶Sr for the melt inclusion population hosted in olivines. The pooling of many olivines for a single ⁸⁷Sr/⁸⁶Sr analysis is advantageous because it 107 108 generates larger quantities (up to ~100 ng of Sr in 185 mg of magmatic olivines, see Data section 109 below) of Sr for analysis, thereby overcoming the technical challenges associated with accurate and precise measurement of ⁸⁷Sr/⁸⁶Sr in a single inclusion (Jackson and Hart, 2006; Harlou et al., 110 111 2009; Sobolev et al., 2011). One disadvantage to this approach is that pooling hundreds of 112 olivines for a single ⁸⁷Sr/⁸⁶Sr analysis can "mask" the full variability in the melt inclusion 113 population (Ramos and Reid, 2005; Harlou et al., 2009). Nonetheless, if analysis of aggregated olivines are shown to have different ⁸⁷Sr/⁸⁶Sr than the host whole rock, it would provide 114 115 independent confirmation of the result of the Jackson and Hart (2006) LA-ICP-MS study 116 showing that olivine-hosted melt inclusions have different ⁸⁷Sr/⁸⁶Sr than the whole rock. Here we report extreme ⁸⁷Sr/⁸⁶Sr disequilibrium between Samoan basalts and the olivines 117 118 they host. The discovery of Sr-isotopic disequilibrium between whole rocks and olivines has 119 important implications for magmatic processes operating at depth and impacts the possible interpretations of the relationships between ⁸⁷Sr/⁸⁶Sr (which is frequently measured in the whole 120 rock) and ${}^{3}\text{He}/{}^{4}\text{He}$ and $\delta^{18}\text{O}$ (which are frequently measured in olivines). Critically, the discovery 121

122 that oliving ${}^{87}Sr/{}^{86}Sr$ can be significantly different from whole rock ${}^{87}Sr/{}^{86}Sr$ indicates that

- established relationships between ³He/⁴He and ⁸⁷Sr/⁸⁶Sr will be modified if ³He/⁴He and ⁸⁷Sr/⁸⁶Sr
 are both measured in olivines. This is fundamentally important for chemical geodynamics, which
 seeks to explain how relationships between various isotopic systems—including ⁸⁷Sr/⁸⁶Sr and
- 126 ${}^{3}\text{He}/{}^{4}\text{He}$ —evolved in Earth's dynamic mantle.

127 **2. METHODS**

128 This study focuses on olivine samples from 10 young (<1 Ma; Sims et al., 2008;

McDougall, 2010; Koppers et al., 2011) and fresh (Workman et al., 2004; Jackson et al., 2010;

130 Hart and Jackson, 2014) lavas from the Samoan hotspot track, which helps to minimize ⁸⁷Sr/⁸⁶Sr

131 variability introduced by (1) post-eruptive radiogenic ingrowth of ⁸⁷Sr by decay of ⁸⁷Rb and (2)

132 alteration of the lavas. The samples represent submarine and subaerial shield-stage lavas from 5

133 volcanoes (Ofu, Malumalu, Vailulu'u, Ta'u and Muli; Workman et al., 2004; Jackson et al.,

134 2007b). The analytical campaign sought to characterize ⁸⁷Sr/⁸⁶Sr in aggregated olivine separates

135 from geochemically well-characterized whole rock lavas. For analysis, up to 100 olivines hosting

136 visible (under binocular microscope) melt inclusions from each basalt sample were aggregated,

137 dissolved, and analyzed for 87 Sr/ 86 Sr by TIMS.

138 A subset of the lavas examined here were previously characterized for ${}^{3}\text{He}/{}^{4}\text{He}$ and $\partial^{18}\text{O}$ 139 (both measured in olivines; Table 1), whole rock Sr, Nd, and Pb isotopic ratios, whole rock 140 major and trace element concentrations, and volatile element concentrations measured on glasses 141 (Workman et al., 2004; Jackson et al., 2007a, 2007b, 2010; Workman et al., 2006, 2008; Salters 142 et al., 2011; Jackson and Shirey, 2011). The major element concentrations of a representative 143 suite of olivines from each sample (not the olivines dissolved for analyses) were analyzed by 144 electron microprobe. Whole rock major element concentrations were measured by XRF on 145 whole rock powders prepared from two Samoan lavas, AVON3-63-11 and AVON3-63-2 (see

146 supplementary Table 2). Then XRF analyses were carried out at Washington State University

147 with the other Samoan "AVON3" samples published in Workman et al. (2004).

148 **2.1.** ⁸⁷Sr/⁸⁶Sr analysis in olivines by TIMS:

⁸⁷Sr/⁸⁶Sr measurements were conducted at the Boston University TIMS facility. 69 to 185
mg of the freshest, most pristine olivines were separated from each whole rock sample and
pooled for ⁸⁷Sr/⁸⁶Sr analysis. Two samples (AVON3-71-2 and AVON3-68-11) hosted two
visually distinct olivine populations (green and brown; each with a distinct forsterite
compositions; Fig. 2). For these two samples, an aliquot of each olivine population was analyzed
for ⁸⁷Sr/⁸⁶Sr. Thus, 12 aliquots of olivine separates from 10 basalt samples were analyzed for
⁸⁷Sr/⁸⁶Sr (Table 1).

156 The olivines were leached and sonicated in 25°C 6N HCl to remove all adhering 157 groundmass and surface alteration. Following leaching, the samples were cleaned by sonication 158 in milli-Q water. The olivine samples were then inspected for remaining groundmass or adhering 159 alteration phases using a binocular microscope. If no such material remained, the leached 160 samples were then weighed and dissolved in concentrated HF and 6N nitric acid at 140 °C. (Note 161 that the olivines were not powdered prior to dissolution, as powdering contributes additional Sr blank to the olivines.) An ⁸⁴Sr spike was then added to the solution and Sr was purified from the 162 163 spiked Sr solution by column chemistry using Eichrom Sr spec resin (Harlou et al., 2009). The Sr 164 was then analyzed for ⁸⁷Sr/⁸⁶Sr and Sr concentrations by isotope dilution (ID) TIMS. Total 165 procedural blanks (from sample dissolution to loading on the filament) for the ⁸⁷Sr/⁸⁶Sr analyses 166 varied from 19 to 53 picograms of Sr, and blanks generally improved as the method was refined. 167 Total procedural blanks were insignificant in comparison to the amounts of Sr measured in the 168 bulk olivine separates: 14 to 101 nanograms of Sr were isolated from each batch of olivine 169 separates, and Sr_{sample}/Sr_{blank} varied from 427 to 2905 during analysis of olivines.

170	All Sr/Sr analyses in this study were conducted on a ThermoFinnigan Triton Thermal
171	Ionization Mass Spectrometer (TIMS) outfitted with 10 ¹¹ ohm amplifiers. A static
172	multicollection routine with a standard cup configuration was used. All measured ⁸⁷ Sr/ ⁸⁶ Sr ratios
173	were corrected for mass bias relative to 86 Sr/ 88 Sr of 0.1194 using an exponential law. During the
174	course of this study, the Sr standard (NBS 987) was run during the same analytical sessions as
175	the olivines. The filament loads of the standard runs bracket the range of Sr loads from the
176	olivine separates: 100 nanograms (0.710249 \pm 0.000011, 2 σ , n=8) and 4 nanograms
177	(0.710249±0.000030, 2σ, n=8).
178	Following correction for spike addition and for mass bias, measured olivine sample
179	⁸⁷ Sr/ ⁸⁶ Sr ratios were then normalized to an ⁸⁷ Sr/ ⁸⁶ Sr of 0.710240 for SRM 987. A final blank

1 . 1

T.

m •

A 11 87 a /86 a

4 1 1 0

180 correction was applied to all samples: due to the high sample-to-blank ratios, and the relatively consistent 87 Sr/ 86 Sr value of the blank (0.7099±0.0017, 2 σ , n=6)--which is similar to the 87 Sr/ 86 Sr 181 182 ratios in Samoan olivines--blank corrections to the ⁸⁷Sr/⁸⁶Sr ratio of the olivine separates were small (<16 ppm). The final corrected ⁸⁷Sr/⁸⁶Sr values of the olivines are reported in Table 1. The 183 internal precision on the ⁸⁷Sr/⁸⁶Sr measurements of the olivine separates varied from 11 to 46 184 185 ppm (2σ), similar to the internal precision achieved on the NBS 987 standard runs. In order to evaluate the reproducibility of ⁸⁷Sr/⁸⁶Sr measurements on olivine unknowns, 4 different batches 186 187 of visually-identical olivine separates from Samoan sample T25 were processed separately through all steps of chemistry and mass spectrometry over the course of 1 year, and the ⁸⁷Sr/⁸⁶Sr 188 189 of the four analyses measured during two analytical sessions range from 0.704647 to 0.704662 190 (which represents 22 ppm total variation) (Table 1). The T25 olivines are homogeneous for ⁸⁷Sr/⁸⁶Sr, and replicate analyses of these olivines shows that the method for measuring ⁸⁷Sr/⁸⁶Sr 191 192 in olivine separates generates precise, reproducible data.

193

Additionally, a 77 mg aliquot of olivines from sample AVON3-78-1 was acid leached.

194	Following sample dissolution and Sr separation at the University of Leeds, the sample was
195	analyzed using the ThermoFinnigan TIMS (using 10 ¹¹ ohm amplifiers) hosted at the University
196	of Leeds to provide an additional, replicate analysis in a different lab to evaluate the results
197	presented in Table 1. A 5 ng aliquot of NBS987 run in the same analytical session as the olivine
198	yielded a value of 0.710247 ± 0.000012 (2 σ), and employs the same mass bias correction reported
199	above. The reported ⁸⁷ Sr/ ⁸⁶ Sr of the olivine analysis (Table 1) is corrected for the offset between
200	this value and the preferred value (0.710240). The total procedural blank was 70 picograms, and
201	the sample-to-blank ratio (547) results in a negligible blank correction to the final reported
202	⁸⁷ Sr/ ⁸⁶ Sr ratio. The ⁸⁷ Sr/ ⁸⁶ Sr of the replicate olivine analysis, obtained by ID-TIMS, yielded a
203	value of 0.707773±0.000070 (2 σ), which is 356 ppm higher than the ⁸⁷ Sr/ ⁸⁶ Sr analyses of a
204	different batch of olivines from the sample basaltic sample made at Boston University.
205	A third ⁸⁷ Sr/ ⁸⁶ Sr measurement was made on AVON3-78-1 olivine using the
206	ThermoFinnigan Triton-plus TIMS (using 10 ¹¹ ohm amplifiers) at Vrije Universiteit (VU)
207	Amsterdam (Koornneef et al., 2015). A separate 19 mg aliquot of olivines was prepared from
208	AVON3-78-1 and acid leached. During the same analytical session, a 100 ng load of NBS 987
209	was analyzed and yielded an 87 Sr/ 86 Sr value of 0.710246±0.000005 (2 σ), and follows the mass
210	bias correction employed above. The ⁸⁷ Sr/ ⁸⁶ Sr of the olivine analysis is corrected for the offset
211	between the measure and preferred (0.710240) NBS 987 ratio. The total procedural blank for this
212	analysis was 28 pg, and the high sample to blank ratio (464) resulted in a negligible blank
213	correction. The ⁸⁷ Sr/ ⁸⁶ Sr analysis and Sr concentration determination of the olivine was made by
214	ID-TIMS; following blank correction and standard normalization, the ⁸⁷ Sr/ ⁸⁶ Sr is
215	0.707385 ± 0.00009 (2 σ), which is 192 ppm lower than the BU measurement and 547 ppm lower
216	than the Leeds measurement.
217	All three ⁸⁷ Sr/ ⁸⁶ Sr measurements were made on aliquots of fresh olivines that were

218 carefully leached prior to dissolution. Thus, it is unlikely that material adhering to the surface of 219 the olivines (i.e., alteration phases, basaltic matrix, etc.) contributes to the ⁸⁷Sr/⁸⁶Sr variability observed in different aliquots of olivine from AVON3-78-1. Instead, the variability of ⁸⁷Sr/⁸⁶Sr 220 221 between the three analyses is likely the result of sampling a heterogeneous olivine population: 222 individual melt inclusions from sample AVON3-78-1 have highly variable ⁸⁷Sr/⁸⁶Sr (Jackson and 223 Hart, 2006), and slightly different populations of olivines may have been analyzed during the Boston University, Leeds and the VU analyses. Nonetheless, the Leeds and VU ⁸⁷Sr/⁸⁶Sr 224 225 analyses of AVON3-78-1 olivine are both lower (1591 and 2139 ppm respectively) than the 226 whole rock, which confirms the result of significant olivine-whole rock Sr-isotopic 227 disequilibrium. This contrasts with the four different aliquots of pristine olivine from Samoan 228 sample T25, that give identical ⁸⁷Sr/⁸⁶Sr within measurement uncertainty (Table 1), which 229 suggests a high degree of homogeneity in the melt inclusion population hosted in the olivines 230 from this lava.

New ³He/⁴He measurements are not reported here; all ³He/⁴He measurements were 231 232 obtained by crushing olivines in vacuo (see Kurz et al., 2004) and are reported in Workman et al. (2004) and Jackson et al. (2007b, 2010, 2014). It is possible to measure ⁸⁷Sr/⁸⁶Sr on olivine 233 234 powder following crushing for helium isotopic measurement (thus permitting measurement of Sr 235 and He isotopes on the same aliquot of olivines), but this procedure may result in a higher Sr 236 blank contribution to the olivine powders following crushing. Careful measurements of Sr blank contributions from the crushing apparatus must be performed before ⁸⁷Sr/⁸⁶Sr and ³He/⁴He can 237 238 be measured on a single olivine aliquot. Therefore, the ⁸⁷Sr/⁸⁶Sr measurements reported here were made on different aliquots of olivines than the ${}^{3}\text{He}/{}^{4}\text{He}$ measurements. 239

240 **2.2. Major element analyses of olivines by electron probe.**

241 Olivine major element analyses for 5 of the lavas examined here are reported in Jackson 242 and Shirey (2011). Major element analyses for olivines from the remaining 5 lavas are reported 243 here for the first time (supplementary Table 3). Representative olivine grains from each of these 244 5 lavas were separated. For two samples (AVON3-71-2 and AVON3-68-11), two visually-245 distinct olivine populations (green and brown) were identified in each lava, and representative 246 olivines from each population were characterized. Therefore, in total, major element analyses of 247 these 7 olivine populations from 5 different basalt samples (AVON3-68-11, AVON3-71-2, 248 AVON3-73-2, ALIA104-04, Ofu 04-03) were completed on the Cameca SX-100 electron 249 microprobe housed at UC Santa Barbara. Between 10 to 13 grains were analyzed for each of the 250 7 olivine populations, and one major element analysis was made on the core of each olivine. For 251 these analyses, a 4 µm beam with a 45 nA current and a 20 kV accelerating voltage was used. A 252 counting time of 40 seconds per element was used. The following standards were utilized for 253 major element analysis: synthetic forsterite for Mg and Si, synthetic faylite for Fe, synthetic 254 MnO for Mn, orthoclase (MAD-10) for Al, diopside (Chesterman) for Ca, a chromite (UC 523-255 9) for Cr, and synthetic Ni₂SiO₄ for Ni. A single olivine grain from AVON3-68-11 was analyzed 256 throughout the analytical session to monitor instrument drift.

257

258 3. DATA AND OBSERVATIONS

The major element compositions of the magmatic olivines examined in this study are presented in Fig. 2. The data are compared with major element compositions in olivines from Samoan peridotite mantle xenoliths (Fig 2a; Hauri and Hart, 1994). As shown in Jackson and Shirey (2011), the olivine compositions in Samoan basalts exhibit no evidence for being xenocrystic mantle olivines. The high CaO at a given forsterite content observed in the olivines examined in this study are evidence of a magmatic origin, and the olivines are clearly not related

265	to peridotite mantle xenolith compositions. Samples OFU-04-03 and ALIA104-04 show large
266	variations in olivine forsterite content (olivine forsterite values of 77.6-85.1 [7.5% total
267	variability] and 83.1-87.5 [4.4%], respectively) while other samples, like AVON3-78-1 and T25,
268	show very little variation (83.8-84.1 [0.3%] and 84.2-85.2 [1%], respectively). Fig. 2b shows that
269	the olivines and their host whole rocks from this study are not in Mg-Fe equilibrium. The
270	Samoan lavas examined here generally fall below the equilibrium olivine-melt field (Roeder and
271	Emslie, 1970), indicating that the olivines are likely cumulate in origin.
272	The ⁸⁷ Sr/ ⁸⁶ Sr data collected on olivines are presented in Table 1, along with previously
273	published whole rock 87 Sr/ 86 Sr values for these samples. In Fig. 3, the new 87 Sr/ 86 Sr data are
274	shown in order of increasing whole rock ⁸⁷ Sr/ ⁸⁶ Sr. The four whole rocks with the lowest ⁸⁷ Sr/ ⁸⁶ Sr
275	(i.e., <0.705)—samples T25, T33, OFU-04-03, ALIA-104-04 (from Ta'u, Ofu, and Muli
276	seamount, respectively)—have olivine ⁸⁷ Sr/ ⁸⁶ Sr compositions that are similar to the whole rock.
277	Using a delta notation (Δ^{87} Sr/ ⁸⁶ Sr _{wholerock-olivine} ; see equation in the caption to Fig. 4), the ⁸⁷ Sr/ ⁸⁶ Sr
278	of these olivines are <80 ppm different from the whole rock (Fig. 4). The six lavas with whole
279	rock ⁸⁷ Sr/ ⁸⁶ Sr >0.705 exhibit greater whole rock-olivine ⁸⁷ Sr/ ⁸⁶ Sr disequilibrium, and the
280	87 Sr/ 86 Sr of the olivines in these lavas have 87 Sr/ 86 Sr that is >100 ppm different than the whole
281	rock. With the exception of two lavas from the same dredge of Vailulu'u seamount (AVON3-63-
282	2 and AVON3-63-11), which exhibit olivine 87 Sr/ 86 Sr ratios that are 185 and 103 ppm higher
283	than the whole rock, the remaining lavas with 87 Sr/ 86 Sr > 0.705 (all from Vailulu'u [AVON3-73-
284	2, AVON3-68-11, AVON3-71-2] or Malumalu [AVON3-78-1] seamounts) have olivine ⁸⁷ Sr/ ⁸⁶ Sr
285	ratios that are 184 to 1947 ppm lower than the whole rock. A key observation is that the three
286	whole rock lavas with the highest ⁸⁷ Sr/ ⁸⁶ Sr (AVON3-68-11, AVON3-71-2, AVON3-78-1) have
287	the greatest wholerock-olivine ⁸⁷ Sr/ ⁸⁶ Sr disequilibrium. Sample AVON3-78-1, which has the

highest whole rock ⁸⁷Sr/⁸⁶Sr, shows the greatest ⁸⁷Sr/⁸⁶Sr disequilibrium, 1947 ppm (with
replicate analyses showing 1591 and 2139 ppm).

290 Two Vailulu'u seamount samples (AVON3-68-11 and AVON3-71-2) have two visually 291 distinct populations of olivines, green and brown. For both basalt samples, the green olivines 292 have more primitive (higher) forsterite compositions and lower CaO than the brown olivines, and 293 with no compositional (i.e., forsterite number and CaO) overlap between the two populations 294 (Fig. 2a; supplementary Table 3). Olivine populations isolated from sample AVON3-68-11 have 295 ⁸⁷Sr/⁸⁶Sr ratios that are 229 ppm (green olivines) and 489 ppm (brown olivines) lower than the 296 whole rock. Critically, the two olivine populations from this lava—green (0.705433±0.000014, 2σ) and brown (0.705249±0.000013)—show a ⁸⁷Sr/⁸⁶Sr difference of 260 ppm. While the two 297 populations of olivines separated from sample AVON3-71-2 also have lower ⁸⁷Sr/⁸⁶Sr—718 ppm 298 299 lower (brown olivines) and 763 ppm lower (green olivines)—than the whole rock, there is only a small difference (44 ppm) between the ⁸⁷Sr/⁸⁶Sr of the two olivine populations from this lava. 300 301 Additionally, there is no clear pattern of one population (green or brown) exhibiting greater 302 disequilibrium.

303 There are no obvious covariations between whole rock-olivine 87 Sr/ 86 Sr disequilibrium 304 and average olivine compositions for each sample (supplementary Fig. 1a). Additionally, there is 305 no relationship between whole rock-olivine 87 Sr/ 86 Sr disequilibrium and variability (given as the 306 1 σ standard deviation of the olivine compositions in each sample) in olivine compositions 307 within each sample (supplementary Fig. 1b).

The available ⁸⁷Sr/⁸⁶Sr data for olivine-hosted melt inclusions (Jackson and Hart, 2006) and magmatic clinopyroxenes (Jackson et al., 2009) from two Samoan lavas (AVON3-78-1 and AVON3-71-2) that were analyzed for ⁸⁷Sr/⁸⁶Sr on aggregate olivine separates in this study are plotted in Fig. 5. Data from sample AVON3-63-2 are also shown in Fig. 6, but there are no cpx

312 data for this lava. The olivine-hosted melt inclusions in the two Samoan lavas that exhibit the 313 greatest whole rock-olivine ⁸⁷Sr/⁸⁶Sr disequilibrium (AVON3-78-1 and AVON3-71-2) tend to have lower melt inclusion ⁸⁷Sr/⁸⁶Sr ratios than the whole rock (Jackson and Hart, 2006). 314 Therefore, it is not surprising that the aggregate olivine 87 Sr/ 86 Sr ratios in these two lavas are also 315 316 shifted to lower ⁸⁷Sr/⁸⁶Sr than the whole rock. Similarly, ⁸⁷Sr/⁸⁶Sr ratios measured on two 317 populations of visually distinct magmatic clinopyroxenes from both lavas are lower than the 318 respective whole rock (Fig. 5; Jackson et al., 2009). This observation is notable, as it indicates that the two lavas with the highest ⁸⁷Sr/⁸⁶Sr examined in this study host a component (seen only 319 320 in olivine hosted melt inclusions, aggregated olivines, and clinopyroxenes) that is less 321 geochemically-enriched than the whole rock lava. However, in sample AVON3-63-2, the olivine has slightly higher ⁸⁷Sr/⁸⁶Sr than the whole rock as does the average ⁸⁷Sr/⁸⁶Sr of the melt 322 323 inclusions.

In Fig. 6, the unweighted average ⁸⁷Sr/⁸⁶Sr of individual olivine-hosted melt inclusions 324 (from Jackson and Hart, 2006) is used to calculate the ⁸⁷Sr/⁸⁶Sr disequilibrium between the 325 326 whole rock and the melt inclusions (i.e., Δ^{87} Sr/ 86 Sr(wholerock-melt inclusion average); see caption of Fig. 6). The Δ^{87} Sr/ 86 Sr_(whole rock - melt inclusion average) disequilibrium is then compared with the whole rock-327 olivine 87 Sr/ 86 Sr disequilibrium (i.e., Δ^{87} Sr/ 86 Sr(wholerock-olivine). Fig. 6 shows that the 87 Sr/ 86 Sr 328 disequilibrium between whole rocks and average ⁸⁷Sr/⁸⁶Sr of the olivine-hosted melt inclusions 329 relates positively with the ⁸⁷Sr/⁸⁶Sr disequilibrium between whole rocks and the aggregate 330 331 olivine measurements. However, the relationship is imperfect, as AVON3-78-1 deviates from the 332 one-to-one line. The discrepancy between the average melt inclusion ⁸⁷Sr/⁸⁶Sr and the aggregate olivine ⁸⁷Sr/⁸⁶Sr may be attributed to the limited number of individual melt inclusions ⁸⁷Sr/⁸⁶Sr 333 334 measurements available (only 11 melt inclusions were analyzed from sample AVON3-78-1; 335 Jackson and Hart, 2006), which is dwarfed by the large number of inclusions that were analyzed

336	(likely 100's) in the aggregate olivine measurement. It is possible that a larger number of
337	individual melt inclusion ⁸⁷ Sr/ ⁸⁶ Sr analyses would provide an average composition that better
338	approximates the ⁸⁷ Sr/ ⁸⁶ Sr in the aggregate olivine analysis. Nonetheless, the rough positive
339	relationship observed in Fig. 6 is consistent with the hypothesis that the 87 Sr/ 86 Sr ratios of
340	aggregate olivine measurements are controlled by the Sr in the olivine-hosted melt inclusions.
341	Disequilibrium between ⁸⁷ Sr/ ⁸⁶ Sr in the whole rock and the ⁸⁷ Sr/ ⁸⁶ Sr in olivines varies
342	with Cl/K measured on pillow rim glasses (Fig 7). It is necessary to analyze deeply erupted
343	submarine glass in order to capture Cl concentrations that are relatively unaffected by degassing.
344	Unfortunately, only three samples analyzed for whole rock and olivine ⁸⁷ Sr/ ⁸⁶ Sr have coexisting
345	submarine glass. The Cl/K ratios in these samples provide important insights into the origins of
346	the whole rock-olivine 87 Sr/ 86 Sr disequilibrium. Cl/K varies from 0.042 to 0.18 in glasses from
347	three lavas, where relatively high Cl/K (> 0.08) in submarine volcanic glass is considered to be
348	an indicator of the assimilation of seawater-derived materials (Michael and Schilling, 1989;
349	Workman et al., 2006; Kendrick et al., 2013, 2015). The lava (sample AVON3-78-1) with the
350	greatest whole rock-olivine ⁸⁷ Sr/ ⁸⁶ Sr disequilibrium (1947 ppm) has the lowest Cl/K ratio
351	(0.042), which is similar to that of pristine, uncontaminated mantle melts (Stroncik and Haase,
352	2004). In contrast, the lava (ALIA-104-04) with the smallest magnitude whole rock-olivine
353	⁸⁷ Sr/ ⁸⁶ Sr disequilibrium (11 ppm) has the highest Cl/K (0.18). Sample AVON3-71-2 has
354	intermediate whole rock ⁸⁷ Sr/ ⁸⁶ Sr disequilibrium has an intermediate Cl/K ratio (0.17). The
355	important observation is that increased whole rock-olivine ⁸⁷ Sr/ ⁸⁶ Sr disequilibrium is not
356	associated with enhanced signatures for assimilation of seawater-derived materials (i.e., higher
357	Cl/K).

 3 He/⁴He previously measured on Samoan olivines are plotted against 87 Sr/⁸⁶Sr measured in 359 the respective whole rock (Fig 8a). In Fig. 8b, δ^{18} O previously measured on Samoan olivines are

plotted against whole rock ⁸⁷Sr/⁸⁶Sr. In both panels of Fig. 8, the effects of comparing ⁸⁷Sr/⁸⁶Sr 360 361 measured in olivines with olivine ${}^{3}\text{He}/{}^{4}\text{He}$ and olivine $\delta^{18}\text{O}$ are also shown. In a plot of olivine 3 He/ 4 He versus olivine 87 Sr/ 86 Sr, the 87 Sr/ 86 Sr of the olivines in lavas with the highest whole rock 362 87 Sr/ 86 Sr tend to be shifted to lower 87 Sr/ 86 Sr (than the respective whole rock) at the same 3 He/ 4 He 363 364 value. When olivine 87 Sr/ 86 Sr is compared to δ^{18} O measured on olivines (Fig 8b), the slope of the correlation in olivine 87 Sr/ 86 Sr versus δ^{18} O space steepens compared to the array formed when 365 plotting whole rock 87 Sr/ 86 Sr versus δ^{18} O. In summary, the relationships between 87 Sr/ 86 Sr and 366 ${}^{3}\text{He}/{}^{4}\text{He}$ and between ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ and $\delta^{18}\text{O}$ are significantly modified when ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ measurements 367 of olivines are compared with ${}^{3}\text{He}/{}^{4}\text{He}$ and $\delta^{18}\text{O}$ measured on olivines. 368

369

370 4. DISCUSSION

4.1. What is the mechanism responsible for generating the whole rock-olivine ⁸⁷Sr/⁸⁶Sr

372 disequilibrium: Mantle source heterogeneity versus processes operating in magma chambers?

Samoan magmatic olivines can record significantly different ⁸⁷Sr/⁸⁶Sr than the whole 373 374 rock lava in which they are hosted, but the mechanism producing this disequilibrium is uncertain. The ⁸⁷Sr/⁸⁶Sr disequilibrium observed between whole rocks and bulk olivines relates to the 375 376 isotopic disequilibrium between whole rocks and the average ⁸⁷Sr/⁸⁶Sr of the population of melt 377 inclusions hosted in the olivines (Fig. 6). Therefore, a population of olivines in a Samoan lava must have crystallized from, and trapped, melts of different ⁸⁷Sr/⁸⁶Sr composition than the final 378 erupted lava that hosts the olivines. A primary question is how melts with different ⁸⁷Sr/⁸⁶Sr can 379 380 exist in the same magmatic plumbing system and contribute heterogeneous ⁸⁷Sr/⁸⁶Sr to a lava and 381 the magmatic olivines it hosts. Here we explore two potential mechanisms for generating heterogeneous melts in magma chambers, which ultimately drive the whole rock-olivine ⁸⁷Sr/⁸⁶Sr 382

383	disequilibrium in the Samoan samples: 1) variable assimilation of seawater-derived materials
384	(including altered oceanic crust) and 2.) mixing of isotopically-diverse magmas sampling
385	heterogeneous mantle sources that did not experience assimilation of seawater-derived materials
386	First, however, it is important to be clear that olivines serve as capsules that preserve the
387	Sr isotopic composition of trapped melts. For elements that have high diffusivities in olivines
388	(e.g., Fe), diffusive exchange between the melt inclusion and the host olivine can be rapid
389	(Gaetani and Watson, 2000). However, diffusion of Sr in olivines (log of the Sr diffusivity is 10 ⁻
390	$^{18.7}$ m ² /s at 1275°C) is quite slow (Remmert et al., 2008). The low diffusivity of Sr in olivine,
391	together with the incompatibility of Sr in olivine (Beattie, 1994), aid the preservation of Sr-
392	isotopic differences in olivine-hosted melt inclusions relative to the host melt. Thus, the olivine
393	acts as a vessel effectively limiting diffusive exchange with the host melt.
394	4.1.1 Assimilation. The Samoan volcanoes examined here have ages of <1 Ma (Sims et al.,
395	2008; Koppers et al., 2011). However, these young volcanoes were constructed on top of old
396	oceanic lithosphere that has an age of ~100 Ma (Taylor, 2006). Ancient oceanic crustal
397	lithosphere may be extensively altered by interaction with seawater. If a mantle melt assimilates
398	altered oceanic crust and/or seawater-derived components that host radiogenic ⁸⁷ Sr/ ⁸⁶ Sr (e.g.,
399	Hart et al., 1999; Hauff et al., 2003), the ⁸⁷ Sr/ ⁸⁶ Sr of the melt will be modified. This is because
400	seawater has higher ⁸⁷ Sr/ ⁸⁶ Sr (0.709179; Mokadem et al., 2015) than all Samoan lavas from the
401	eastern region of the hotspot where the samples in this study were collected—a subset of lavas
402	from the western region of the Samoan hotspot have ⁸⁷ Sr/ ⁸⁶ Sr higher than seawater, but these
403	lavas are not examined here (Jackson et al., 2007a).
404	Where whole rock – olivine 87 Sr/ 86 Sr disequilibrium is observed in this study, the whole
405	rocks tend to have higher ⁸⁷ Sr/ ⁸⁶ Sr than the olivine. This observation might be explained by the

406 following assimilation scenario, which assumes that the assimilated materials have ⁸⁷Sr/⁸⁶Sr that

407	is higher than identified in whole rocks in this study. If assimilation of seawater derived
408	materials is responsible for increasing the whole rock 87 Sr/ 86 Sr relative to the olivines, then the
409	growth of olivines must have occurred early in the evolution of a magma chamber, prior to
410	significant assimilation of altered oceanic crust or seawater derived material. In this model,
411	pristine melts with low ⁸⁷ Sr/ ⁸⁶ Sr are trapped as melt inclusions in growing olivines prior to
412	significant assimilation. Subsequently, the remaining melt assimilates material with high
413	⁸⁷ Sr/ ⁸⁶ Sr—including altered oceanic crust, seawater and/or brines—that increases the ⁸⁷ Sr/ ⁸⁶ Sr of
414	the magmas. Indeed, there are indications that a small mass fraction of altered oceanic crustal
415	sections extend to extremely radiogenic 87 Sr/ 86 Sr (up to 0.7257; Hauff et al., 2003). Melt
416	inclusions would preserve the lower ⁸⁷ Sr/ ⁸⁶ Sr of the pristine (i.e., pre-assimilation) melt even as
417	the host magma assimilates material with higher ⁸⁷ Sr/ ⁸⁶ Sr. Olivines are an early-crystallizing
418	phase and it is reasonable to assume that olivines will tend to trap melts very early in the history
419	of a magma. Thus, in this simple model, magmas that have assimilated altered crustal material
420	have high ⁸⁷ Sr/ ⁸⁶ Sr that is generally higher than the olivines they host. Similarly, magmas that
421	did not experience assimilation have low 87 Sr/ 86 Sr that is similar to the olivines they host. This
422	conceptual model provides a mechanism for generating the higher ⁸⁷ Sr/ ⁸⁶ Sr in whole rocks
423	relative to their host olivines, particularly in lavas that have the highest ⁸⁷ Sr/ ⁸⁶ Sr (Fig. 3 and 4).
424	One prediction of this model is that the erupted melt (which quenches to glass or
425	crystallizes as basaltic matrix) should have strong signatures for seawater-derived components.
426	However, this assimilation model is inconsistent with independent indicators of assimilation,
427	including Cl/K. Globally, Cl/K ratios are higher in oceanic lavas that have assimilated altered
428	oceanic crust, seawater and/or brines (e.g., Michael and Schilling, 1989; Jambon et al., 1995;
429	Kent et al., 1999a, 1999b; Lassiter et al., 2002; Stroncik and Haase, 2004; Kendrick et al., 2013).
430	If whole rock-olivine ⁸⁷ Sr/ ⁸⁶ Sr disequilibrium is generated through the assimilation of seawater-

431	derived material, increasing magnitude of whole rock-olivine ⁸⁷ Sr/ ⁸⁶ Sr disequilibrium should
432	correlate with increasing Cl/K ratio. However, the Samoan lava (sample AVON3-78-1) with the
433	largest magnitude olivine-whole rock ⁸⁷ Sr/ ⁸⁶ Sr disequilibrium in this study has among the lowest
434	Cl/K (0.042, measured on a submarine pillow glass) in the Samoan suite (Fig. 7). This Cl/K is
435	similar to that of uncontaminated primary mantle melts (Stroncik and Haase, 2004). A subset of
436	Samoan lavas do exhibit elevated Cl/K, which is indicative of the assimilation of seawater-
437	derived materials (Workman et al., 2006; Kendrick et al., 2015). However, the lava with the
438	highest Cl/K (~0.18) examined in this study (sample ALIA-104-04), which is associated with
439	higher degrees of assimilation of seawater-derived materials, shows the smallest magnitude
440	whole rock-olivine 87 Sr/ 86 Sr disequilibrium (i.e., < 11 ppm) (Fig. 7). In summary, the
441	relationship between Cl/K and whole rock-olivine ⁸⁷ Sr/ ⁸⁶ Sr disequilibrium is inconsistent with
442	assimilation as the mechanism causing the ⁸⁷ Sr/ ⁸⁶ Sr disequilibrium in this sample suite.
443	However, the Cl/K of the pillow rim glass may not be representative of (and may record a
444	different history than) the Cl/K in the olivine-hosted melt inclusions. In order to fully assess
445	assimilation of seawater derived material as a mechanism for generating whole rock-olivine
446	⁸⁷ Sr/ ⁸⁶ Sr disequilibrium, both ⁸⁷ Sr/ ⁸⁶ Sr and an independent indicator of assimilation (i.e., Cl/K)
447	must be measured in individual melt inclusions. It is possible that magmatic phenocrysts are
448	more likely to crystallize near the magma chamber walls-where the magma is in contact with
449	the cooler wall rocks of the magma chamber (Kamenetsky et al., 1998; Danyushevsky et
450	al.,2004). Thus, compared to the bulk of an erupted lava (including liquids represented by pillow
451	rim glass), melt inclusions may preferentially trap melts that have assimilated altered oceanic
452	crust at the margins of a magma chamber, a process that may impart compositional and isotopic
452 453	crust at the margins of a magma chamber, a process that may impart compositional and isotopic variability on melt inclusions hosted in a single erupted lava. Altered oceanic crust may not have

455	study. Instead, altered oceanic crust typically has ⁸⁷ Sr/ ⁸⁶ Sr ratios (<0.7050) that is at the low end
456	of the range of ⁸⁷ Sr/ ⁸⁶ Sr observed in Samoan lavas (i.e., 0.7044). For example, Hauff et al.
457	(2003) report average values of 0.7048 to 0.7049 in drill cores of old (130 to 167 Ma) western
458	Pacific crust. If melt inclusions assimilated altered oceanic crust of this composition, the
459	⁸⁷ Sr/ ⁸⁶ Sr of Samoan melt inclusions will actually be reduced compared to most pristine Samoan
460	melts, and the reduction in ⁸⁷ Sr/ ⁸⁶ Sr due to assimilation will be associated with higher Cl/K in the
461	same melt inclusions. Therefore, if olivine hosted melt inclusions preferentially trap a melt (at
462	the margins of the magma chamber) with high proportions of assimilated seawater-derived
463	material with 87 Sr/ 86 Sr < 0.7050, then the melt inclusions will tend to have higher Cl/K and lower
464	⁸⁷ Sr/ ⁸⁶ Sr than the bulk lava. In this model, however, pillow rim glasses measured in this study
465	(which are representative of the basaltic groundmass) may not have a Cl/K ratio that is
466	representative of the melt inclusions, because the melt inclusions may be more prone to
467	assimilation than pillow rim glass. It is conceivable that the pillow rim glass could be pristine
468	(e.g., AVON3-78-1 whole rock), and have low Cl/K and high ⁸⁷ Sr/ ⁸⁶ Sr, while the melt inclusion
469	population could inherit higher Cl/K and lower ⁸⁷ Sr/ ⁸⁶ Sr by assimilation. This model may be
470	consistent with the data from, for example, AVON3-78-1, where the olivines have lower
471	87 Sr/ 86 Sr than the whole rock and the pillow rim glass has low Cl/K (see Fig. 7): If the melt
472	inclusions from AVON3-78-1 have elevated Cl/K, the whole rock – olivine 87 Sr/ 86 Sr
473	disequilibrium in this lava would be best explained by a crustal assimilation mechanism.
474	Unfortunately, Cl/K data on olivine-hosted melt inclusions in the samples examined in this study
475	are not yet available to evaluate this hypothesis.
476	4.1.2. Magma mixing of pristine melts that sample different mantle sources.
477	Magma mixing of isotopically heterogeneous melts that reflect the ⁸⁷ Sr/ ⁸⁶ Sr of their

477 Magma mixing of isotopically heterogeneous melts that reflect the ⁸⁷Sr/⁸⁶Sr of their
478 respective mantle sources also can generate whole rock–olivine ⁸⁷Sr/⁸⁶Sr disequilibrium in the

479 Samoan lavas examined in this study. A simple magma mixing scenario provides one possible 480 mechanism for generating magmas that have higher ⁸⁷Sr/⁸⁶Sr than the olivines they host. If olivine crystallizes from a magma with low ⁸⁷Sr/⁸⁶Sr, then melt with the same (low) ⁸⁷Sr/⁸⁶Sr will 481 be trapped in the olivines as melt inclusions. If this low ⁸⁷Sr/⁸⁶Sr magma later mixes with an 482 483 olivine-free (or olivine-poor) magma of a higher ⁸⁷Sr/⁸⁶Sr composition, and no further olivine is crystallized, the ⁸⁷Sr/⁸⁶Sr of the olivine hosted melt inclusions (and therefore, the aggregated 484 olivines) in the final lava will be lower than the ⁸⁷Sr/⁸⁶Sr of the whole rock lava. Samoan lavas 485 with high ⁸⁷Sr/⁸⁶Sr tend to have higher SiO₂ (and less olivine) than low ⁸⁷Sr/⁸⁶Sr melts (which 486 487 host more olivine; Jackson et al., 2007a; see supplementary Fig. 2). Therefore, a magma that forms by mixing a high ⁸⁷Sr/⁸⁶Sr magma with low ⁸⁷Sr/⁸⁶Sr magma is likely to host an olivine 488 cargo that originated in (and has ⁸⁷Sr/⁸⁶Sr that matches) the low ⁸⁷Sr/⁸⁶Sr magma. However, the 489 490 liquid of the magma mixture will be a mixture of liquids from both magmas, and will be shifted 491 toward the higher ⁸⁷Sr/⁸⁶Sr magma. While this is a simple conceptual model, it illuminates a primary observation of this study: Samoan whole rocks with the highest ⁸⁷Sr/⁸⁶Sr tend to host 492 olivine with significantly lower ⁸⁷Sr/⁸⁶Sr than the whole rock (Fig. 3). 493

High SiO₂ melts with low ⁸⁷Sr/⁸⁶Sr do exist in the Samoan lava suite, but are relatively
uncommon and they are poor in olivine. If a magma of this composition were to mix with a
mafic, olivine-rich magma with higher ⁸⁷Sr/⁸⁶Sr, then olivines in the mixed magma will host
higher ⁸⁷Sr/⁸⁶Sr than final erupted lava. This may explain the observation that 3 out of the 10
lavas in this study host aggregate olivines with higher ⁸⁷Sr/⁸⁶Sr than the whole rock.

We employ a simple binary mixing model to show how mixing between mafic, low
⁸⁷Sr/⁸⁶Sr melts and high SiO₂, high ⁸⁷Sr/⁸⁶Sr melts can generate the whole rock – olivine ⁸⁷Sr/⁸⁶Sr
disequilibrium observed here. The whole rock and olivine ⁸⁷Sr/⁸⁶Sr data from Samoan sample
AVON3-71-2 are used as an example to illustrate this process. In the model we assume that the

503	AVON3-71-2 whole rock ⁸⁷ Sr/ ⁸⁶ Sr composition is the result of mixing a melt with low ⁸⁷ Sr/ ⁸⁶ Sr
504	(represented by the average ⁸⁷ Sr/ ⁸⁶ Sr of the bulk olivines from this lava) and a silicic, olivine-free
505	melt with high ⁸⁷ Sr/ ⁸⁶ Sr (represented by Samoan sample ALIA-115-21). The low average
506	⁸⁷ Sr/ ⁸⁶ Sr of the melts trapped in the bulk olivines from AVON3-71-2 (i.e., 0.705420) is used in
507	the mixing calculation, and the Sr concentration of the endmember melt trapped in the olivines is
508	given by the average Sr concentration of the olivine-hosted melt inclusions from this sample
509	(484 ppm; Jackson and Hart, 2006). The high 87 Sr/ 86 Sr (0.720469) of the SiO ₂ -rich (and olivine
510	free) Samoan lava ALIA-115-21 is used for the enriched endmember in the mixing calculation,
511	which has [Sr] of 478 ppm (Jackson et al. 2007a). Given these model input parameters, the
512	⁸⁷ Sr/ ⁸⁶ Sr of AVON3-71-2 is generated by adding 3.5% of ALIA115-21 melt to 96.5% of a melt
513	like that sample by AVON3-71-2 olivines. If the olivines crystalized from the mafic endmember
514	prior to mixing, thereby trapping the ⁸⁷ Sr/ ⁸⁶ Sr ratio measured in the AVON3-71-2 olivines, then
515	the melt in the final mixture will have 87 Sr/ 86 Sr that is higher (0.705943) than the olivines.
516	However, it is important to recognize that magma mixing scenarios can be more
517	complex, and olivine likely crystallizes over a longer portion of the magma's evolution. For
518	example, if olivine crystallizes from a magma before and after mixing with other, isotopically
519	heterogeneous magmas, the individual olivine hosted melt inclusions will record the history of
520	mixing in the system. If a mafic magma with relatively high ⁸⁷ Sr/ ⁸⁶ Sr is mixed into a magma
521	system while olivine is being crystallized, the melt inclusions will record the increasing ⁸⁷ Sr/ ⁸⁶ Sr
522	composition of the melt. If a low ⁸⁷ Sr/ ⁸⁶ Sr mafic melt is later mixed into the system, newly-
523	crystallizing olivine can trap melt inclusions that record the subsequent decrease in the 87 Sr/ 86 Sr
524	of the bulk melt. The final olivine population would include melt inclusions with both higher and
525	lower ⁸⁷ Sr/ ⁸⁶ Sr than the final erupted lava, while the measurements of ⁸⁷ Sr/ ⁸⁶ Sr in pooled olivines
526	provide an average ⁸⁷ Sr/ ⁸⁶ Sr composition of the melt for the period during which olivines were

527 crystallizing. This scenario may help explain the distribution of ⁸⁷Sr/⁸⁶Sr in melt inclusions from
528 Samoan sample AVON3-68-3 (see Jackson and Hart, 2006), which has melt inclusions that are
529 both higher and lower ⁸⁷Sr/⁸⁶Sr than the whole rock, while the unweighted average melt
530 inclusion ⁸⁷Sr/⁸⁶Sr and the aggregate olivine ⁸⁷Sr/⁸⁶Sr compositions are lower than the whole
531 rock.

532

533

3 4.1.3. A hybrid model: magma mixing and assimilation.

An important question is how magmas with different ⁸⁷Sr/⁸⁶Sr occupy the same magma 534 535 plumbing system so that they can mix. One possibility is that the two pristine magmas sample 536 two different mantle sources with different ⁸⁷Sr/⁸⁶Sr. Alternatively, the magmas may inherit heterogeneous ⁸⁷Sr/⁸⁶Sr by assimilation of altered oceanic crust, and these heterogeneous 537 magmas then mix to generate the diversity of ⁸⁷Sr/⁸⁶Sr recorded in erupted lavas and the olivine 538 they host. Again, measurements pairing ⁸⁷Sr/⁸⁶Sr and Cl/K in individual melt inclusions will 539 540 provide important insights into the mechanism driving the whole rock – olivine 87 Sr/ 86 Sr 541 disequilibrium observed in this study. If the melt inclusions have low, mantle-like Cl/K that is unrelated to ⁸⁷Sr/⁸⁶Sr, then mixing of pristine melts with heterogeneous ⁸⁷Sr/⁸⁶Sr is likely to be 542 generating the intra-lava ⁸⁷Sr/⁸⁶Sr disequilibrium. Alternatively, if melt inclusions Cl/K is 543 544 variable and correlates with melt inclusions ⁸⁷Sr/⁸⁶Sr in the same lava, then crustal assimilation is likely influencing the whole rock olivine ⁸⁷Sr/⁸⁶Sr disequilibrium. Future studies targeting 545 individual melt inclusions for paired Cl/K and ⁸⁷Sr/⁸⁶Sr measurements will be critical for 546 547 determining the origin of the whole rock-olivine ⁸⁷Sr/⁸⁶Sr disequilibrium. 548 Finally, it is important to note that, if the conceptual magma mixing model for the origin of whole rock-olivine ⁸⁷Sr/⁸⁶Sr disequilibrium in Samoan lavas is correct, olivines with different 549

550 ⁸⁷Sr/⁸⁶Sr than the host lavas are not phenocrysts, as the olivines with different ⁸⁷Sr/⁸⁶Sr could not

551 have crystallized from the same lava. However, these olivines are not xenocrysts either, because 552 they crystallized from melts that mixed to generate the final erupted lava. The term antecrysts 553 (Hildreth, 2001; Charlier et al., 2005; Gill et al., 2006; Davidson et al., 2007) may best describe the olivines in the Samoan lavas that exhibit ⁸⁷Sr/⁸⁶Sr disequilibrium with the whole rock. 554 555 Antecrysts differ from phenocrysts in that, instead of crystallizing from the erupted lava, they 556 crystallized from progenitors of the final erupted melt. Antecrysts are also not xenocrysts as they 557 are derived directly from the active plumbing system, possibly after multiple magma 558 replenishment events (Jerram and Martin, 2008).

559

560 **4.2. Mass balance for the** ⁸⁷Sr/⁸⁶Sr in the olivines and the whole rock.

The majority of the magmatic olivines in this study have lower ⁸⁷Sr/⁸⁶Sr than the whole 561 rock host (Fig. 3). Therefore, in these lavas, there must exist a component with higher ⁸⁷Sr/⁸⁶Sr 562 563 than the whole rock in order to mass balance the elevated ⁸⁷Sr/⁸⁶Sr measured within the lava. The 564 simplest explanation is that basalt matrix has slightly higher ⁸⁷Sr/⁸⁶Sr than the whole rock, thus balancing the lower ⁸⁷Sr/⁸⁶Sr in the olivine separates (where the "whole rock" represents all the 565 566 constituents in a lava, including magmatic phases [i.e., olivine and cpx] and basaltic matrix). We use Samoan sample AVON3-78-1 (Fig. 5) to illustrate the magnitude of elevation of ⁸⁷Sr/⁸⁶Sr 567 required in the basalt matrix to balance the low ⁸⁷Sr/⁸⁶Sr of the olivines. In this calculation, the 568 whole rock ⁸⁷Sr/⁸⁶Sr and Sr concentration is a mixture of basalt matrix, cpx, and olivine, and thus 569 the whole rock composition must have an ⁸⁷Sr/⁸⁶Sr and Sr concentration that is between the 570 571 endmembers. The ⁸⁷Sr/⁸⁶Sr (0.708901) and Sr concentration (333ppm) of the whole rock are known (Workman et al., 2004). Similarly, the ⁸⁷Sr/⁸⁶Sr (0.707521; this study), Sr concentration 572 573 (0.26 ppm; this study) and modal abundance of the olivine (25%; Workman et al., 2004) are known. Additionally, the ⁸⁷Sr/⁸⁶Sr (0.707985, average two cpx populations from Jackson et al., 574

575 2009), Sr concentration (44 ppm, calculated by averaging measured concentrations from Jackson 576 et al., 2009) and modal abundance of the cpx (5%; Workman et al., 2004) are known. Thus, only 577 0.02% of the whole rock Sr is hosted in the olivines. The modal abundance of matrix (i.e., 100% - 25% - 5% = 70%) is also known, leaving the basalt matrix 87 Sr/ 86 Sr and Sr concentration as the 578 579 only remaining unknowns. The Sr concentration of the whole rock is the sum of the products of 580 the Sr concentrations and modal abundances of the phases present (i.e. cpx, olivine, and matrix), which allows calculation of the Sr concentration of the matrix, which is 472 ppm. The ⁸⁷Sr/⁸⁶Sr 581 of the whole rock is the sum of the matrix, cpx, and olivine ⁸⁷Sr/⁸⁶Sr, weighted by the fraction of 582 583 the whole rock Sr that is hosted in each component, matrix, cpx, and olivine. Given these constraints, an 87 Sr/ 86 Sr ratio in the matrix that is only 9 ppm greater than that of the whole rock 584 is required to balance the lower ⁸⁷Sr/⁸⁶Sr of the olivine and cpx cargo. This mass balance 585 calculation demonstrates that the lower olivine ⁸⁷Sr/⁸⁶Sr does not strongly influence the ⁸⁷Sr/⁸⁶Sr 586 587 of the whole rock owing to the much higher concentration of Sr in the matrix compared to the 588 olivines.

589

590 **4.3.** Sr-isotopes in olivines: implications for redefining relationships between isotopes 591 traditionally measured in olivines (e.g., ${}^{3}\text{He}/{}^{4}\text{He}$ and $\partial^{18}\text{O}$) and isotopes measured in whole 592 rocks (e.g. ${}^{87}\text{Sr}/{}^{86}\text{Sr}$).

593

594 **4.3.1.** Olivine ³He/⁴He versus olivine ⁸⁷Sr/⁸⁶Sr.

Relationships between helium isotope and heavy radiogenic isotopes, like ⁸⁷Sr/⁸⁶Sr, have
long been used to constrain the evolution and structure of the mantle (e.g, Kurz et al., 1982;
Zindler and Hart, 1986; Hart et al., 1992; Graham, 2002; Allègre and Moreira, 2004; Class and
Goldstein, 2005). However, measurements of heavy radiogenic isotopes, including ⁸⁷Sr/⁸⁶Sr, are

599 often carried out on whole rock basalt powders (e.g., Hofmann, 1997; Stracke et al., 2005; 600 White, 2010, 2015). Whole rocks are unsuitable for measuring helium isotopes, so ${}^{3}\text{He}/{}^{4}\text{He}$ is 601 often measured on magmatic olivines separated from the lava (olivine-hosted melt inclusions contain less degassed melts suitable for helium isotopic measurement). Olivine ³He/⁴He data are 602 603 then compared with the isotopic ratios of other elements (e.g., ⁸⁷Sr/⁸⁶Sr) measured in a whole rock. This approach is robust provided the ⁸⁷Sr/⁸⁶Sr measured in the whole rock powder is the 604 same as the ⁸⁷Sr/⁸⁶Sr in the olivine. However, the results of this study show that olivines can 605 have different ⁸⁷Sr/⁸⁶Sr than the whole rock. 606

607 In olivines, incompatible elements like He (Parman et al., 2005; Heber et al., 2007; 608 Jackson et al., 2013) and Sr are hosted primarily in melt inclusions. Therefore, pooling olivines 609 for ⁸⁷Sr/⁸⁶Sr analysis is advantageous as it permits direct comparison of the two isotopic systems 610 in the same material (i.e, the population of melt inclusions hosted in the olivines). Unfortunately, measuring both ³He/⁴He and ⁸⁷Sr/⁸⁶Sr within a single olivine-hosted melt inclusion is beyond 611 current analytical capabilities. Nonetheless, the different ⁸⁷Sr/⁸⁶Sr between Samoan whole rocks 612 613 and the olivines they host has the potential to modify established relationships between ${}^{3}\text{He}/{}^{4}\text{He}$ and ⁸⁷Sr/⁸⁶Sr. 614

When olivine ³He/⁴He is compared with whole rock ⁸⁷Sr/⁸⁶Sr, the Samoan lava suite 615 forms a "wedge shape" (Fig. 8a): high ³He/⁴He appears only in lavas with low ⁸⁷Sr/⁸⁶Sr, and low 616 ³He/⁴He appears in lavas with both high ⁸⁷Sr/⁸⁶Sr and low ⁸⁷Sr/⁸⁶Sr. However, samples with the 617 highest whole rock ⁸⁷Sr/⁸⁶Sr tend to have olivines with significantly lower ⁸⁷Sr/⁸⁶Sr (Figs 3 and 618 619 4). Therefore, when olivine ${}^{3}\text{He}/{}^{4}\text{He}$ is compared with olivine ${}^{87}\text{Sr}/{}^{86}\text{Sr}$, a somewhat different 620 relationship between these two isotopic systems emerges. For example, for the three lavas that exhibit the largest whole rock-olivine ⁸⁷Sr/⁸⁶Sr disequilibrium (AVON3-78-1, AVON3-71-2, and 621 AVON3-68-11), the ⁸⁷Sr/⁸⁶Sr data are effectively shifted to lower values when olivine data are 622

623	used (Fig. 8). This shift in the olivine ⁸⁷ Sr/ ⁸⁶ Sr data can be described by simple binary mixing
624	between a low ³ He/ ⁴ He melt that is helium rich and a high ³ He/ ⁴ He melt that is helium poor (Fig.
625	8a). If a melt with the Sr and He isotopic compositions of Ofu-04-06 (0.704584; 33.8 Ra) is
626	mixed with a melt with the isotopic compositions of AVON3-78-1(0.708901; 8.22 Ra), and if (at
627	the time of mixing) the AVON3-78-1 melt had a helium concentration thirty times that of the
628	Ofu 04-06, then the mixing line between the two endmembers describes how olivines hosted in
629	the whole rocks with the highest 87 Sr/ 86 Sr can be shifted to lower 87 Sr/ 86 Sr than the whole rock
630	(while preserving a similar ³ He/ ⁴ He). However, this requires that the olivines tend to sample a
631	larger fraction of the low ⁸⁷ Sr/ ⁸⁶ Sr component than the whole rock (Fig. 8a).
632	Over the past several decades, a significant body of work has systematically related noble
633	gas and lithophile radiogenic isotopic systems (e.g., Kurz et al., 1982; Farley et al., 1992; Hart et
634	al., 1992; Hanan and Graham, 1996; Graham, 2002; Class and Goldstein, 2005; Caro and
635	Bourdon, 2010). This is critical, as "chemical geodynamics" (e.g., Zindler and Hart, 1986) is
636	built upon hypotheses that attempt to relate different isotopic systems—including ³ He/ ⁴ He,
637	⁸⁷ Sr/ ⁸⁶ Sr—measured in mantle-derived lavas. Thus, determining relationships between ³ He/ ⁴ He
638	and ⁸⁷ Sr/ ⁸⁶ Sr in the source magma is essential for developing a more complete understanding of
639	the geodynamic evolution of the mantle. We argue that analysis of He and Sr in olivines
640	provides a direct comparison of the two systems that have important implications for global OIB
641	systematics between ${}^{3}\text{He}/{}^{4}\text{He}$ and ${}^{87}\text{Sr}/{}^{86}\text{Sr}$.
642	Analysis of ³ He/ ⁴ He and ⁸⁷ Sr/ ⁸⁶ Sr in deeply-dredged submarine volcanic glasses—which
643	represent less degassed magma compositions-can circumvent the issue posed by whole rock-
644	olivine ⁸⁷ Sr/ ⁸⁶ Sr disequilibrium, as He and Sr are measured in the same homogeneous, glassy
645	material. Unfortunately, deeply dredged submarine glasses are not available for most OIB
646	localities, including many Samoan volcanoes, and the community has relied on ³ He/ ⁴ He analyses

647 of olivines hosted in basalts at many OIB localities for decades (e.g., Kurz et al., 1982).

While whole rock-olivine ⁸⁷Sr/⁸⁶Sr disequilibrium can modify relationships between 648 ³He/⁴He and ⁸⁷Sr/⁸⁶Sr in Samoan lavas, there are additional mechanisms that may decouple these 649 650 two radiogenic isotopic systems. For example, post-eruptive radiogenic ingrowth of ⁴He can 651 rapidly and dramatically reduce the 3 He/ 4 He in erupted lavas (particularly highly degassed lavas) 652 compared to the mantle source ³He/⁴He (e.g., Zindler and Hart, 1986), thereby decoupling the relationship between ³He/⁴He from ⁸⁷Sr/⁸⁶Sr measured in lavas from the relationship in the 653 654 mantle source. Additionally, highly degassed lavas with low ⁴He concentrations are susceptible to atmospheric contamination, which can decouple ${}^{3}\text{He}/{}^{4}\text{He}$ from ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ (Hilton et al., 1995). 655 656 Furthermore, helium has a much higher diffusivity in olivines (e.g., Hart, 1984; Trull et al., 657 1991) than heavy radiogenic isotopes (like Sr), and this can potentially result in diffusive decoupling of ³He/⁴He from ⁸⁷Sr/⁸⁶Sr in the mantle (e.g., Hart et al., 2008; Albarède, 2008) and 658 659 in olivine hosted melt inclusions in magma chambers (Kurz et al., 2004). Whole rock-olivine 660 ⁸⁷Sr/⁸⁶Sr disequilibrium identified in this study provides an additional novel mechanism for modifying relationships between ³He/⁴He and ⁸⁷Sr/⁸⁶Sr. 661

662

663 *4.3.2. Olivine* ∂^{18} O versus olivine ⁸⁷Sr/⁸⁶Sr. ∂^{18} O is commonly measured in olivine in OIB 664 samples, including Samoan lavas (Eiler, 2001; Widom and Farquhar, 2003; Bindeman, 2008). 665 Therefore, whole rock-olivine ⁸⁷Sr/⁸⁶Sr disequilibrium in Samoan lavas also has the potential to 666 modify established relationships between ∂^{18} O and ⁸⁷Sr/⁸⁶Sr. The published correlation between 667 Samoan olivine ∂^{18} O and whole rock ⁸⁷Sr/⁸⁶Sr (Workman et al., 2008) is strongly influenced by 668 lavas with the highest ⁸⁷Sr/⁸⁶Sr and the highest olivine ∂^{18} O (Fig. 8b), but we find that Samoan 669 lavas with the highest whole rock ⁸⁷Sr/⁸⁶Sr also have the most extreme whole rock-olivine

⁸⁷Sr/⁸⁶Sr disequilibrium. Thus, when the new olivine ⁸⁷Sr/⁸⁶Sr data are compared with olivine 670 671 ∂^{18} O, the linear regressions through the data have a steeper slope than the Workman et al. (2008) 672 correlation (Fig. 8b). This is important, as the slope defining the relationship between ∂^{18} O and ⁸⁷Sr/⁸⁶Sr in Samoan lavas is critical for determining the origin of the enriched protolith 673 674 contributing to the Samoan mantle. Workman et al. (2008) indicated that steeper slopes in ∂^{18} O-⁸⁷Sr/⁸⁶Sr space are more easily fit by a recycled continental crust protolith, while shallower 675 slopes are better fit with recycled marine sediment with a terrigenous origin. Thus, ⁸⁷Sr/⁸⁶Sr 676 677 measurements in olivine not only have the potential to inform on relationships between isotopes measured in olivines (e.g., ∂^{18} O) and whole rocks (87 Sr/ 86 Sr), but also to impact existing 678 679 interpretations regarding the origin of isotopic variability in the Samoan mantle. The significance of comparing whole rock 87 Sr/ 86 Sr with olivine 3 He/ 4 He and olivine 518 O has to be reconsidered 680 if whole rocks lavas and the olivines they host have different ⁸⁷Sr/⁸⁶Sr. However, additional data 681 682 pairing olivine 87 Sr/ 86 Sr with olivine 3 He/ 4 He and 518 O on a larger number of samples will be 683 important for evaluating whether the whole rock-olivine disequilibria observed in this study are 684 representative of the Samoan suite.

685 **4.3.3. Looking ahead: Additional radiogenic isotopic systems in olivines.** In an earlier study (Jackson and Shirey, 2011), a subset of the Samoan lavas characterized for olivine ³He/⁴He (T25, 686 687 T33, AVON3-63-11, AVON3-63-2, AVON3-78-1) were also characterized for both whole rock and olivine ¹⁸⁷Os/¹⁸⁸Os. In addition to Sr and Os isotopes, it may be possible to measure other 688 689 radiogenic isotopic systems in magmatic olivines. For example, Nd concentrations in olivines 690 tend to be 10 to 20 times lower than Sr concentrations in Samoan lavas, and given the Sr 691 measured in the olivine separates in this study (14 to 100 ng), we would expect 0.7 to 10 ng of 692 Nd in the same aliquots of Samoan olivine (assuming that Samoan basalts and olivine hosted 693 melt inclusions have similar Sr/Nd ratios). Thus, the potential exists to routinely measure

¹⁴³Nd/¹⁴⁴Nd precisely in olivine separates from most Samoan samples (Koornneef et al. 2015; 694 695 Harvey and Baxter, 2009). However, low abundances of certain trace elements, including Pb, 696 may prove to be an obstacle for isotopic measurement in olivines by TIMS, but the potential 697 exists for high precision Pb isotope measurements by SIMS (Saal et al., 1998, 2005; Maclennan, 698 2008) prior to destructive Sr and Nd isotopic measurements by TIMS. Nd/Pb is a canonical ratio 699 in oceanic lavas (Hofmann, 2003), and the average Nd/Pb ($15.1\pm4.7 \ 1\sigma$) ratio in basaltic lavas 700 from the volcanoes considered in this study indicate that Pb concentrations are likely to be 10 to 701 20 times lower than Nd concentrations in melt inclusions. Thus, Pb abundances are estimated to 702 be only 0.033 to 1.0 ng in the olivine samples examined here, and procedural blanks may present 703 a hurdle for routine Pb-isotopic analyses of most olivines.

704 Figure captions.

705

Figure 1. Map of Samoan volcanoes and ¹⁴³Nd/¹⁴⁴Nd versus ⁸⁷Sr/⁸⁶Sr in Samoan whole-rock

lavas. Samoan whole rock ⁸⁷Sr/⁸⁶Sr and ¹⁴³Nd/¹⁴⁴Nd data are from White and Wright (1987);

708 Farley et al. (1992), Workman et al. (2004), Jackson et al. (2007a, 2007b, 2010). Data for the

- global MORB and OIB data compiled from the GEOROC database (http://georoc.mpch-
- 710 <u>mainz.gwdg.de</u>)."
- 711
- 712

713	Figure 2. (a) Major element compositions of the Samoan magmatic olivines examined in this
714	study are different from the compositions of olivines analyzed in Samoan peridotite mantle
715	xenoliths. Samoan magmatic olivine data are from this study and from Jackson and Shirey
716	(2011). The Samoan peridotite mantle xenolith olivines are from Hauri and Hart (1994). (b)
717	Olivine forsterite compositions are compared to the Mg number of their host whole rocks (after
718	Garcia et al., 1995). The equilibrium field is from Roeder and Emslie (1970; Mg# = molar ratio
719	of $[Mg/(Mg + 0.9 * FeO)*100]$) Whole rock major element data used for Mg-number calculation
720	are from Workman et al. (2004).

721

722 Figure 3. Comparison of olivine and whole rock ⁸⁷Sr/⁸⁶Sr for 12 olivine separates from 10 Samoan basalts. The ⁸⁷Sr/⁸⁶Sr of the olivines (green symbols) can have different ⁸⁷Sr/⁸⁶Sr from 723 724 the whole rock (grey symbols): In general, the difference is greatest in whole rocks with the 725 highest ⁸⁷Sr/⁸⁶Sr. Two visually-distinct populations of olivine were separated from two whole rocks (AVON3-71-2 and AVON3-68-11) for ⁸⁷Sr/⁸⁶Sr analyses. The bracket links the two 726 727 replicate measurements for AVON3-78-1. Individual volcano names are provided in parentheses. 728

Figure 4. The relative difference in ⁸⁷Sr/⁸⁶Sr between the whole rock and olivine is expressed in 729 730 ppm as Δ^{87} Sr/⁸⁶Sr (wholerock - olivine) and is plotted as a function of whole rock 87 Sr/⁸⁶Sr. Error bars are smaller than data points. $\Delta^{87} Sr/^{86} Sr_{(wholerock - olivine)} = 10^6 * ({}^{87} Sr/^{86} Sr_{wholerock} - {}^{87} Sr/^{86} Sr_{olivine})/$ 731 ⁸⁷Sr/⁸⁶Sr_{wholerock}. The bracket links the two replicate measurements for AVON3-78-1 732

733

Figure 5. Pervasive ⁸⁷Sr/⁸⁶Sr disequilibrium in three Samoan lavas. Whole rock ⁸⁷Sr/⁸⁶Sr 734

(Workman et al., 2004) is compared with ⁸⁷Sr/⁸⁶Sr in olivine-hosted melt inclusions (Jackson and 735

736 Hart, 2006), magmatic clinopyroxenes (Jackson et al., 2009a) and aggregated olivine separates (this study). Excluding melt inclusions, error bars are smaller than the symbols. The bracket links
the two replicate measurements for AVON3-78-1. The red circle represents the unweighted
average ⁸⁷Sr/⁸⁶Sr of the olivine hosted melt inclusions.

740

741 Figure 6. Whole rock - olivine ⁸⁷Sr/⁸⁶Sr disequilibrium is compared with the ⁸⁷Sr/⁸⁶Sr 742 disequilibrium between whole rocks and the unweighted average melt inclusions in the three 743 Samoan basalts. Only three Samoan basalts (AVON3-78-1, AVON3-71-2, AVON3-63-2) have 744 ⁸⁷Sr/⁸⁶Sr measured on both the aggregate olivine (this study) and on individual olivine melt inclusions (Jackson and Hart, 2006). The values for Δ^{87} Sr/ 86 Sr(wholerock – olivine) and Δ^{87} Sr/ 86 Sr(whole 745 746 rock – melt inclusion average) are expressed in ppm. The "melt inclusion average" is the unweighted mean 747 of the ⁸⁷Sr/⁸⁶Sr measured in olivine-hosted melt inclusions in a single basalt sample (see Jackson and Hart, 2006). The ⁸⁷Sr/⁸⁶Sr disequilibrium between the whole rock and the melt inclusion 748 average is calculated in the following way: Δ^{87} Sr/ 86 Sr(wholerock – melt inclusion average) = 10⁶ * 749 (⁸⁷Sr/⁸⁶Sr_{wholerock} - ⁸⁷Sr/⁸⁶Sr_{melt} inclusion average)/ ⁸⁷Sr/⁸⁶Sr_{wholerock}. 750 751 **Figure 7.** Cl/K versus Δ^{87} Sr/⁸⁶Sr_(wholerock - olivine). Cl/K is available on only a small subset of 752 samples with paired whole rock-olivine ⁸⁷Sr/⁸⁶Sr data in this study (ALIA-104-04, AVON3-71-2, 753 754 AVON3-78-1). The grey field encompasses data from this study. 755

Figure 8. ⁸⁷Sr/⁸⁶Sr (in whole rocks and olivines) versus olivine ³He/⁴He (a) and olivine ∂^{18} O (b). Data are for Samoan lavas only. All ³He/⁴He and ∂^{18} O are measured in olivines. Green symbols represent samples where ⁸⁷Sr/⁸⁶Sr is measured in olivines, and a red line links these measurements with the corresponding whole rock ⁸⁷Sr/⁸⁶Sr measurement (represented by grey symbols with black lines). Grey symbols with grey lines represent Samoan samples for which

- olivine ⁸⁷Sr/⁸⁶Sr has not yet been measured. ⁸⁷Sr/⁸⁶Sr error bars are smaller than the symbols.
- 762 The bracket links the two replicate measurements for AVON3-78-1. The blue line in (a) is the
- 763 mixing model described in section 4.3.1. Each tick mark represents a 10% fraction. The linear
- regressions in (b) are calculated using only data that has paired whole rock-olivine ⁸⁷Sr/⁸⁶Sr.
- 765
- 766 Acknowledgements. We acknowledge discussion with Forrest Horton, Alison Price, Rick
- 767 Carlson, and Frank Ramos. Bob Cliff's analytical assistance with Sr-isotopic measurements
- made at Leeds is also greatly appreciated. We acknowledge inspiration from a colleague who
- posited that whole rock analyses provide all the information necessary to understand the
- geochemistry of hotspot volcanoes. We thank Stan Hart for providing us with whole rock major
- element compositions for two lavas examined in this study. We acknowledge reviews from Bill
- White and two anonymous referees. We thank Ethan Baxter for use of the TIMS facility and
- clean labs at Boston University. We acknowledge support from NSF grants EAR-1348082,
- 774 EAR-1347377, OCE-1153894, EAR-1145202.
- 775 **References**
- Albarède, F., 2008. Rogue mantle helium and neon, Science 319, 943–945.
- Allègre, C.J., Moreira, M., 2004. Rare gas systematics and the origin of oceanic islands: the key
- role of entrainment at the 670 km boundary layer. Earth Planet. Sci. Lett. 228, 85-92.
- Bindeman, I. (2008). Oxygen isotopes in mantle and crustal magmas as revealed by single
- 781 crystal analysis. Rev. Mineral. Geochem. 69:445-478
- 782

- Beattie, P., 1994. Systematics and energetics of trace-element partitioning between olivine and
 silicate melts: implications for the nature of mineral/melt partitioning. Chem. Geol. 117: 57-71
- 786 Caro, G., Bourdon, B., 2010. Non-chondritic Sm/Nd ratio in the terrestrial planets:
- 787 consequences for the geochemical evolution of the mantle–crust system. Geochim.
- 788 Cosmochim. Acta 74, 3333–3349.
- 789

790	Charlier, B.L.A., Wilson, C.J.N., Lowenstern, J.B., Blake, S., Van Calsteren, P.W., Davidson,
791	J.P., 2005. Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand)
792	revealed by U – Th and U – Pb systematics in zircons. J. Petrol. 46, $3-32$.
793	
794	Class, C., Goldstein, S.L., 2005. Evolution of helium isotopes in the Earth's mantle. Nature, 436,
795	1107–1112.
796	
797	Danyushevsky, L.V., Leslie, R.A.J., Crawford, A.J., Durance, P., 2004. Melt inclusions in
798	primitive olivine phenocrysts: the role of localized reaction processes in the origin of
799	anomalous compositions, J. Pet., 45, 2531–2553.
800	
801	
802	Davidson, J.P., Morgan, D.J., Charlier, B.L.A., Harlou, R., Hora, J., 2007, Tracing magmatic
803	processes and timescales through mineral-scale iso- topic data. An Rev Earth and Plan Sci. 35
804	273–311
805	
806	Filer I.M. 2001 Oxygen isotone variations of basaltic layas and upper mantle rocks. In: Valley
807	IW Cole D.R. (eds) Stable isotope geochemistry Rev. Mineral Geochem 43, 319–364
808	J.W., Cole D.R. (cus) Stable Isotope geochemistry, Rev. Mineral. Geochem. 45, 517-504
809	Earley K A Natland I.H. Craig H 1992 Binary mixing of enriched and underassed
810	(primitive?) mantle components (He Sr Nd Ph) in Samoan lavas Earth Planet Sci Lett 111
811	183_100
812	105 177.
813	Gaetani G A Watson F B 2000 Open system behavior of olivine bosted melt inclusions
81 <i>1</i>	Earth Planet Sci Lett 183 $27 - 41$
01 1 815	Earth Flahet. Sel. Lett. $103, 27 = 41$.
01J 816	Garcia M.O. Foss, D.I.P. West, H.B. & Mahoney, J. 1005, Geochemical and isotonic
817	evolution of Loibi Volcano, Hawaii, L of Petrol, 36, 1647, 1674
818	1047-1074.
010 810	Gast P.W. Tilton G.P. Hedge C. 1964 Isotopic composition of lead and strontium from
820	Ascension and Gough Islands, Science 142, 1181, 1185
020	Ascension and Gough Islands. Science 142, 1101–1105.
821	
822	Gill, J., Reagan, M., Tepley, F., Malavassi, E., 2006. Introduction to Arenal volcano, Costa Rica.
823	Magma Genesis and Volcanological Processes. J. Volcanol. Geothermal Res. 157, 1–8.
824	
825	Graham, D.W., 2002. Noble gas isotope geochemistry of mid-ocean ridge and ocean island
826	basalts; characterization of mantle source reservoirs. In: Porcelli, D., Ballentine, C.J., Wieler, R.
827	(Eds.), Noble Gases in Geochemistry and Cosmochemistry, Rev. in Min. Geochem., 47, 247–
828	318.
829	
830	Hanan, B.B., Graham, D.W., 1996. Lead and helium isotope evidence from oceanic basalts for a
831	common deep source of mantle plumes. Science. 272, 991–995.
832	r
833	Harlou, R., Pearson, D.G., Nowell, G.M., Ottley, C.J., Davidson, J.P., 2009, Combined Sr
834	isotope and trace element analysis of melt inclusions at sub-ng levels using micro-milling TIMS
835	and ICPMS. Chem. Geol. 260, 254–268.

- 836
- Hart, S. R., 1984. Helium diffusion in olivine. Earth Planet. Sci. Lett. 70, 297-302
- Hart, S.R., Hauri, E.H., Oschmann, L.A., Whitehead, J.A., 1992. Mantle plumes and entrainment:
 isotopic evidence. Science 256, 517–520.
- 841
- Hart, S.R., Blusztajn, J., Dick, H.J.B., Meyer, P.S., Muehlenbachs, K., 1999. The fingerprint of
 seawater circulation in a 500-meter section of ocean crust gabbros. Geochim. Cosmochim. Acta,
 63, 4059–4080.
- 845
- Hart, S.R., Staudigel, H., Koppers, A.A.P., Blusztajn, J., Baker, E.T., Workman, R., Jackson, M.,
 Hauri, E., Kurz, M., Sims, K., Fornari, D., Saal, A., Lyons, S., 2000. Vailulu'u Undersea
 Volcano: The New Samoa, Geochem, Geophys. Geosys GC000108, 1-13. DOI:
- 849 10.1029/2000GC000108
- 850
- Hart, S.R., Kurz, M.D., Wang, Z., 2008. Scale length of mantle heterogeneities: constraints from
 helium diffusion. Earth Planet. Sci. Lett. 269, 508–517.
- 853
- Hart, S. R., Jackson, M.G., 2014. Ta'u and Ofu/Olosega volcanoes: The ''twin sisters'' of
 Samoa, their P, T, X melting regime, and global implications, Geochem. Geophys. Geosyst 15,
 2301–2318. DOI: 10.1002/2013GC005221
- 857
 858 Harvey, J., Baxter, E.F., 2009. An improved method for TIMS high precision neodymium
 859 isotope analysis of very small aliquots (1–10 ng). Chem. Geol. 258, 251–257.
 860
- Hauff, F., Hoernle, K., Schmidt, A., 2003. Sr-Nd-Pb composition of Mesozoic Pacific oceanic
 crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input
 into the Izu-Bonin-Mariana subduction system. Geochem. Geophys. Geosyst. 4, 8913
 DOI:10.1029/2002GC000421
- 865
- Hauri E. H., Hart S. R., 1994. Constraints on melt migration from mantle plumes: A trace
 element study of peridotite xenoliths from Savai'i, Western Samoa. J. Geophys. Res. 99, 24301–
 24321.
- Heber, V.S., Brooker, R.A., Kelley, S.P., Wood, B.J., 2007. Crystal melt partitioning of noble
 gases (helium, neon, argon, krypton, and xenon) for olivine and clinopyroxene. Geochim.
 Cosmochim. Acta 71, 1041–1061.
- 873
- Hildreth, W., 2001. Longevity and Dynamics of Rhyolitic Magma Systems. Penrose Conference.
- Hilton D. R., Barling J., and Wheller G. E., 1995. Effect of shallow level contamination on the
 helium isotope systematics of ocean island lavas. Nature 373, 330-333.
- 878
- 879 Hofmann, A.W., 1997. Mantle geochemistry: The message from oceanic volcanism.
- 880 Nature, 385, 219–229.
- 881

- Hofmann, A.W., 2003. Sampling mantle heterogeneity through oceanic basalts: Isotopes and
- trace elements, in Treatise on Geochemistry: The Mantle and Core, edited by R.W. Carlson, H.
- D. Holland, and K.K. Turekian, pp. 61–101, Elsevier, New York
- Jackson, C.R.M., Parman, S.W., Kelley, S.P., Kelley, R.F., 2013. Constraints on light noble gas
 partitioning at the conditions of spinel-peridotite melting. Earth Planet. Sci. Lett. 384, 178-187.
- 888
- Jackson, M.G., Hart, S.R., 2006. Strontium isotopes in melt inclusions from Samoan
- basalts: Implications for heterogeneity in the Samoan plume. Earth Planet. Sci. Lett. 245, 260-277.
- 892
- Jackson, M.G., Hart, S.R., Koppers, A.A.P., Staudigel, H., Konter, J., Blusztajn, J., Kurz, M.D.,
 Russell, J.A., 2007a. The return of subducted continental crust in Samoan lavas. Nature, 448,
 684-687.
- 896
- Jackson, M.G., Kurz, M.D., Hart, S.R., Workman, R.K., 2007b. New Samoan lavas from Ofu
 Island reveal a hemispherically heterogeneous high ³He/⁴He mantle. Earth Planet. Sci. Lett. 264,
 360–374.
- 900
- Jackson, M.G., Hart, S.R., Saal, A.E., Shimizu, N., Kurz, M.D., Blusztajn, J., Skovgaard, A.,
- 2008. Globally elevated titanium, tantalum, and niobium (TITAN) in ocean island basalts with
 high ³He/⁴He. Geochem. Geophys. Geosyst. 9. doi:10.1029/2007GC001876.
- 904
- Jackson, M.G., Hart, S.R., Shimizu, N., Blusztajn, J., 2009. Pervasive cpx-whole rock isotopic
 disequilibrium in Polynesian hotspot lavas: Evidence supporting isotopic variability in olivine
 and clinopyroxene-hosted melt inclusions. Geochem. Geophys. Geosys. 10, Q03006,
- 908 doi:10.1029/2008GC002324
- 909

Jackson, M.G., Kurz, M.D., Hart, S.R., 2009. Helium and neon isotopes in phenocrysts from
Samoan lavas: evidence for heterogeneity in the terrestrial high 3He/4He mantle. Earth Planet.
Sci. Lett. 287, 519–528

- 913
- 914 Jackson, M.G., Hart, S.R., Konter, J.P., Koppers, A.A.P., Staudigel, H., Kurz, M.D., Blusztajn,
- J., Sinton, J.M., 2010. The Samoan hotspot track on a "hotspot highway": Implications for
 mantle plumes and a deep Samoan mantle source. Geochem. Geophys. Geosyst. 11, Q12009,
- 917 doi:10.1029/2010GC003232
- 918
- Jackson, M.G., Shirey, S., 2011. Re-Os systematics in Samoan shield lavas and the use of Os isotopes in olivine phenocrysts to determine primary magmatic compositions. Earth Planet. Sci.
- 920 isotopes in olivine 921 Lett. 312, 91-101.
- 922
- Jambon, A., Deruelle, B., Dreibus, G., Pineau, F., 1995. Chlorine and bromine abundance in
- 924 MORB: The contrasting behaviour of the Mid-Atlantic Ridge and East Pacific Rise and
- 925 implications for chlorine geodynamic cycle. Chem. Geol., 126, 101–117.
- 926
- 927 Jerram, D.A., Martin, V.M., 2008. Understanding crystal populations and their significance 928 through the magma plumbing population. Appen. C. and Zellmer, C.E. (eds) Dyapamics of

- 929 Crustal Magma Transfer, Storage and Differentiation. Geol. Soc., London, Special Publications,
- 930 304, 133-148. doi: 10.1144/SP304.7
- 931
- 932 Kamenetsky, V.S., Eggins, S.M., Crawford, A.J., Green, D.H., Gasparon, M., Falloon, T.J.,
- 933 1998. Calcic melt inclusions in primitive olivine at 43° N MAR: evidence for melt–rock
- reaction/melting involving clinopyroxene-rich lithologies during MORB generation. Earth
 Planet. Sci. Lett., 160, 115–132.
- 936
- Kendrick, M.A., Arculus, R., Burnard, P., Honda, M., 2013. Quantifying brine assimilation by
 submarine magmas: Examples from the Galapagos Spreading Centre and Lau Basin. Geochim.
- 939 Cosmochim. Acta, 123, 150–165. doi:10.1016/j.gca.2013.09.012.
- 940
- Kendrick, M.A., Jackson, M.G., Hauri, E.H., Phillips, D., 2015. The halogen (F, Cl, Br, I) and
 H₂O systematics of Samoan lavas: assimilated-seawater, EM2 and high-³He/⁴He components.
- 942 H₂O systematics of Samoan lavas: assimilated-seawater, EM2 and hi
 943 Earth Planet. Sci. Lett., 410, 197-209.
- 944
- Kent, A.J., Norman, M.D., Hutcheon, I.D., Stolper, E.M., 1999a. Assimilation of seawater-
- derived components in an oceanic volcano: Evidence from matrix glasses and glass inclusions
 from Loihi seamount, Hawaii. Chem. Geol., 156, 299–319.
- 948
- Kent, A.J., Clague, D.A., Honda, M., Stolper, E.M., Hutcheon, I.D., Norman, M.D., 1999b.
 Widespread assimilation of a seawater-derived component at Loihi Seamount, Hawaii. Geochim.
- 951 Cosmochim. Acta, 63, 2749–2761.
- 952
 953 Koornneef, J.M., Nikogosian, I., van Bergen, M.J., Smeets, R., Bouman, C., Davies, G.R., 2015.
 954 TIMS analysis of Sr and Nd isotopes in melt inclusions from Italian potassium-rich lavas using
 955 prototype 10¹³ Ω amplifiers. Chem. Geol. 397, 14-23.
- 956
- Koppers, A.A.P., Russell, J.A., Jackson, M.G., Konter, J., Staudigel, H., Hart, S.R., 2008. Samoa
 reinstated as a primary hotspot trail. Geology, 36, 435–438. doi:10.1130/G24630A.1.
- 960 Koppers, A. A. P., Russell, J.A., Roberts, J., Jackson, M.G., Konter, J., Wright, D.J., Staudigel,
- 961 H., Hart, S.R., 2011. Age systematics of two young en echelon Samoan volcanic trails.
- 962 Geochem. Geophys. Geosyst. 12, Q07025. doi:10.1029/2010GC003438.
- 963
 964 Kurz, M.D., Jenkins, W.J., Hart, S.R., 1982. Helium isotopic systematics of oceanic islands and
 965 mantle heterogeneity. Nature, 297, 43–47.
- 966
- Kurz, M.D., Geist, D., 1999. Dynamics and evolution of the Galapagos hotspot from helium
 isotope geochemistry. Geochim. Cosmochim. Acta, 63, 4139-4156
- 969
- Kurz, M.D., Curtice, J.C., Lott III, D.E., Solow, A., 2004. Rapid helium isotopic variability in
 Mauna Kea shield lavas from the Hawaiian Scientific Drilling Project. Geochem. Geophys.
- 972 Geosyst. 4, Q04G14. doi:10.1029/2002GC000439.
- 973
- 274 Lassiter, J.C., Hauri, E.H., Nikogosian, I.K., Barsczus, H.G., 2002. Chlorine–potassium
- 975 variations in melt inclusions from Raivavae and Rapa, Austral Islands: Constraints on chlorine

976 recycling in the mantle and evidence for brine-induced melting of oceanic crust. Earth Planet. 977 Sci. Lett., 202, 525–540. 978 979 Maclennan, J., 2008. Lead isotope variability in olivine-hosted melt inclusions from Iceland, 980 Geochim. Cosmochim. Acta 72, 4159-4176. 981 982 McDougall, I., 2010. Age of volcanism and its migration in the Samoa Islands, Geol. Mag., 983 147(5), 705–717 984 985 Michael, P.J., Schilling, J.G., 1989. Chlorine in mid-ocean ridge magmas: Evidence for 986 assimilation of seawater-influenced components. Geochim. Cosmochim. Acta, 53, 3131-3143. 987 988 Mokadem F., Parkinson, I.J., Hathorne, E.C., Anand, P., Allen, J.T., Burton, K.W., 2015. High-989 precision radiogenic strontium isotope measurements of the modern and glacial ocean: limits on 990 glacial-interglacial variations in continental weathering. Earth Planet. Sci. Lett. 415, 111–120. 991 992 Parman, S.W., Kurz, M.D., Hart, S.R., Grove, T.L., 2005. Helium solubility in olivine and 993 implications for high ${}^{3}\text{He}/{}^{4}\text{He}$ in ocean island basalts. Nature 437, 1140–1143. 994 995 Ramos, F.C., Reid, M.R., 2005. Distinguishing melting of heterogeneous mantle sources from 996 crustal contamination: insights from Sr isotopes at the Phenocryst Scale, Pisgah Crater, 997 California J. Petrol. 46:999–1012. 998 999 Remmert P., Dohmen R., Chakraborty S., 2008. Diffusion of REE, Hf and Sr in olivine. Eos 1000 Trans. AGU, 89(53) Fall Meet. Suppl. MR33A-1844 (abstr.) 1001 1002 Roeder, P.L., Emslie, R.F., 1970. Olivine–liquid equilibrium. Contribution to Mineralogy and 1003 Petrology 29, 275-289. 1004 1005 Saal, A.E., Hart, S.R., Shimizu, N., Hauri, E.H., Layne, G.D., 1998. Pb isotopic variability in 1006 melt inclusions from oceanic island basalts, Polynesia. Science 282:1481-1484. 1007 1008 Saal, A.E., Hart, S.R., Shimizu, N., Hauri, E.H., Layne, G.D., Eiler, J.M., 2005. Pb isotopic 1009 variability in melt inclusions from the EMI-EMII-HIMU mantle end-members and the role of 1010 oceanic lithosphere. Earth Planet. Sci. Lett. 240:605-20. 1011 1012 Salters, V.J.M., Mallick, S., Hart, S.R., Langmuir, C.E., Stracke, A., 2011. Domains of depleted 1013 mantle: New evidence from hafnium and neodymium isotopes. Geochem. Geophys. Geosyst., 1014 12, Q08001, doi:10.1029/2011GC003617. 1015 Sims, K.W.W., Hart, S.R., Reagan, M.K., Blusztajn, J., Staudigel, H., Sohn, R.A., Layne, G.D., 1016 Ball, L.A., 2008. ²³⁸U-²³⁰Th-²²⁶Ra-²¹⁰Pb-²¹⁰Po, ²³²Th-²²⁸Ra, and ²³⁵U-²³¹Pa constraints on the 1017 1018 ages and petrogenesis of Vailulu'u and Malumalu Lavas, Samoa. Geochem. Geophys. Geosyst., 1019 9. Q04003, doi:10.1029/2007GC001651. 1020 1021 Sobolev, A.V., Hofmann, A.W., Jochum, K.P., Kuzmin, D.V., Stoll, B., 2011. A young source 1022 for the Hawaiian plume. Nature, 476, 434–437.

- 1023
- 1024 Stracke, A., Hofmann, A.W., Hart, S.R., 2005. FOZO, HIMU, and the rest of the mantle zoo.
- 1025 Geochem., Geophys., Geosyst., 6. doi:10.1029/2004GC000824. 1026
- 1027 Staudigel, H., Hart, S.R., Pile, A., Bailey, B.E., Baker, E.T., Brooke, S., Connelly, D.P., Haucke,
- 1028 L., German, C.R., Hudson, I., Jones, D., Koppers, A.A.P., Konter, J., Lee, R., Pietsch, T.W.,
- 1029 Tebo, B.M., Templeton, A.S., Zierenberg, R., Young, C.M., 2006. Vailulu'u seamount, Samoa:
- 1030 Life and death on an active submarine volcano. Proc. Nat. Acad. Sci. U.S.A. 103:6448-6453. 1031
- 1032 Stroncik, N.A., Haase, K.M., 2004. Chlorine in oceanic intraplate basalts: Constraints on mantle 1033 sources and recycling processes. Geology 32, 945. doi:10.1130/G21027.1.
- 1034

- 1035 Taylor, B., 2006. The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi, Earth 1036 Planet. Sci. Lett., 241, 372-380. 1037
- 1038 Trull, T.W., Kurz, M.D., Jenkins, W.J., 1991. Diffusion of cosmogenic 3He in olivine and 1039 quartz; implications for surface exposure dating. Earth Planet. Sci. Lett. 103, 241–256. 1040
- 1041 Valbracht, P., Staudacher, T., Malahoff, A., Moreira, M., Allegre, C., 1997. Noble gas 1042 systematics of deep rift zone glasses from Loihi Seamount, Hawaii. Earth Planet. Sci. Lett. 150, 1043 399-412.
- 1045 White, W. M., 1985. Source of oceanic basalts: Radiogenic isotopic evidence, Geology 13, 115– 1046 118. 1047
- 1048 White, W. M., 2010) Oceanic Island Basalts and mantle plumes: The geochemical perspective. 1049 Annu. Rev. Earth Planet. Sci. Lett. 38, 133-160. 1050
- 1051 White, W.M., 2015. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chem. Geol. 419, 10-28. 1052
- 1053 Widom, E., Farquhar, J., 2003. Oxygen isotope signatures in olivines from Sa^o Miguel (Azores) 1054 basalts: implications for crustal and mantle processes. Chem. Geol. 193, 237-255.
- 1055 1056 Workman, R.K., Hart, S.R., Jackson, M.G., Regelous, M., Farley, K.A., Blusztajn, J., Kurz, 1057 M.D., 2004. Recycled metasomatised lithosphere as the origin of the Enriched Mantle II (EM2) 1058 end-member: Evidence from the Samoan Volcanic Chain. Geochem. Geophys. Geosys., 5, doi:10.1029/2003GC000623.
- 1059
- 1060
- 1061 Workman, R.K., Hauri, E., Hart, S.R., Wang, J., Blusztajn, J., 2006. Volatile and trace elements 1062 in basaltic glasses from Samoa: Implications for water distribution in the mantle. Earth Planet. 1063 Sci. Lett., 241, 932–951.
- 1064
- 1065 Workman, R.K., Hart, S.R., Eiler, J.M., Jackson, M.G., 2008. Oxygen isotopes in Samoan lavas: 1066 confirmation of continent recycling. Geology, 36, 551-554.
- 1067 1068 Wright, E., White, W.M., 1987. The origin of Samoa: New evidence from Sr, Nd, and Pb 1069 isotopes, Earth Planet. Sci. Lett., 81, 151–162, doi:10.1016/0012-821X(87)90152-X.

1070 1071 1072 Zindler, A., Hart, S.R., 1986. Chemical geodynamics. Annu. Rev. Earth Planet. Sci., 14, 493-

571.

Sample	Olivine color	Volcano	Olivine mass (g)	Total Sr (ng)	Olivine Sr conc. (ppm)	Sr blank (ng)	Sample/Blank	⁸⁷ Sr/ ⁸⁶ Sr olivines ¹	2 σ (std. err)	⁸⁷ Sr/ ⁸⁶ Sr whole rock ²	Δ ⁸⁷ Sr/ ⁸⁶ Sr _{wr-oliv}	CI/K ³	³ He/ ⁴ He ⁴	$\delta^{18}O^{5}$
T25		Ta'u	0.069	31.9	0.461	0.019	1661	0.704647	0.000008	0.704708	87		13.3	5.3
T-25 rep 1		Ta'u	0.094	34.4	0.364	0.047	735	0.704652	0.000009	0.704708	79			
T-25 rep 2		Ta'u	0.092	38.3	0.417	0.047	819	0.704653	0.000009	0.704708	78			
T-25 rep 3		Ta'u	0.092	44.0	0.476	0.047	942	0.704662	0.000005	0.704708	65			
Т33		Ta'u	0.073	18.0	0.248	0.019	935	0.704777	0.000025	0.704736	-58		16.6	5.24
OFU 04-03		Ofu	0.095	55.8	0.590	0.019	2905	0.704722	0.000012	0.704756	49		24.0	
ALIA-104-04		Muli	0.068	14.4	0.212	0.031	459	0.704823	0.000021	0.704831	11	0.176	18.6	
AVON3-63-2	brown	Vailulu'u	0.097	25.9	0.266	0.031	825	0.705516	0.000015	0.705385	-185		10.1	5.34
AVON3-63-11	brown	Vailulu'u	0.185	100.6	0.543	0.053	1914	0.705467	0.000017	0.705394	-103		10.2	5.35
AVON3-73-2		Vailulu'u	0.096	59.9	0.622	0.019	3120	0.705294	0.000008	0.705424	184		9.3	5.11
AVON3-68-11	brown	Vailulu'u	0.091	18.0	0.198	0.038	481	0.705249	0.000013	0.705594	489			
AVON3-68-11	green	Vailulu'u	0.099	16.0	0.161	0.038	427	0.705433	0.000014	0.705594	229			
AVON3-71-2	brown	Vailulu'u	0.174	68.5	0.393	0.053	1304	0.705436	0.000013	0.705943	718	0.169	9.5	5.42
AVON3-71-2	green	Vailulu'u	0.153	61.8	0.404	0.025	2487	0.705404	0.000015	0.705943	763		9.5	5.42
AVON3-78-1		Malumalu	0.077	19.9	0.258	0.031	633	0.707521	0.000032	0.708901	1947	0.042	8.1	5.53
AVON3-78-1	Leeds Rep ⁶	Malumalu	0.077	38.3	0.496	0.070	547	0.707773	0.000070	0.708901	1591			
AVON3-78-1	VU Rep ⁶	Malumalu	0.019	13.0	0.667	0.028	464	0.707385	0.000009	0.708901	2139			

Table 1. Olivine ⁸⁷Sr/⁸⁶Sr and Sr concentrations for Samoan samples examined in this study.

1. Following spike deconvolution and correction for mass bias, all data are corrected for the offset between the accepted (0.710240) and measured ⁸⁷Sr/⁸⁶Sr of NBS987 runs made on the same date of analysis. ⁸⁷Sr/⁸⁶Sr ratios are also corrected for blank.

2. Whole rock ⁸⁷Sr/⁸⁶Sr data are from Workman et al. (2004, 2008) and Jackson et al. (2007, 2010, 2011, 2014).

3. Cl/K data are measured on submarine pillow glasses, and are from Workman et al. (2006) and Kendrick et al. (2015). Only 3 samples examined in this study have associated submarine glass that can be used for Cl/K analysis.

4. ³He/⁴He data are from the following sources: Workman et al. (2004), Jackson et al. (2007), Jackson et al. (2010, 2014).

5. All δ^{18} O measurements were made on olivines, and are published in Workman et al. (2008).

6. Replicate analyses on a different subset of olivines from AVON3-78-1 underwent separate leaching, chemical separation and mass spectrometery at VU and University of Leeds.

Fig. 4

Figure 6

Figure 8.

Supplementary Material

Supplementary Figure 1. (a) Δ⁸⁷Sr/⁸⁶Sr whole rock-olivine is compared with average olivine forsterite
 compositions and variability in forsterite compositions in each sample. (b) The forsterite compositional
 variability is described using the 1 σ standard deviation of forsterite values for olivines in each basalt (see
 Supplementary Table 3). For samples AVON3-71-2 and AVON3-68-11, where two populations of

olivines were separated (green and brown), the variability in olivine compositions (1σ) and average
forsterite contents were calculated for the entire olivine population of the lava (i.e. the green and brown
populations are combined). Additionally, where two populations of olivines were separated the average
whole rock- olivine ⁸⁷Sr/⁸⁶Sr disequilibrium for the populations is used.

Supplementary Figure 2. Whole rock ⁸⁷Sr/⁸⁶Sr and SiO₂ data are compared for all lavas from the 5 9 10 volcanoes (Ta'u, Malumalu, Ofu, Muli and Vailulu'u) from which the samples examined in this study 11 were collected. Additionally, all available fresh shield lavas from Savai'i (from dredges 114, 115 and 128 in Jackson et al., 2007) are shown to illustrate the observation that high ⁸⁷Sr/⁸⁶Sr lavas have high SiO₂. 12 These high ⁸⁷Sr/⁸⁶Sr, high SiO₂ lavas host little to no olivine. Major element data are not corrected for 13 fractionation. There are lavas from other Samoan volcanoes that have low ⁸⁷Sr/⁸⁶Sr and high SiO₂ (e.g., 14 15 Tutuila) that fall of the trend show in this figure, but lavas from these volcanoes were not examined in this study. The larger symbols represent the samples examined in this study. The whole rock major element 16 data for samples examined in this study are available in supplementary table 2. Whole rock major element 17 and ⁸⁷Sr/⁸⁶Sr data used in this plot are from Workman et al. (2004), Jackson et al. (2007, 2010) and Hart 18 19 and Jackson (2014).

20 Supplementary References

- 21 Hart, S. R., Jackson, M.G. (2014). Ta'u and Ofu/Olosega volcanoes: The "twin sisters" of Samoa, their
- P, T, X melting regime, and global implications, Geochem. Geophys. Geosyst 15, 2301–2318
- 23
- 24 Jackson, M.G., Hart, S.R., Koppers, A.A.P., Staudigel, H., Konter, J., Blusztajn, J., Kurz, M.D., Russell,
- J.A. (2007a). The return of subducted continental crust in Samoan lavas. Nature, 448, 684-687.
- 26
- 27 Jackson, M.G., Hart, S.R., Konter, J.P., Koppers, A.A.P., Staudigel, H., Kurz, M.D., Blusztajn, J., Sinton,
- 28 J.M., (2010), The Samoan hotspot track on a "hotspot highway": Implications for mantle plumes and a
- deep Samoan mantle source. Geochem. Geophys. Geosyst. doi:10.1029/2010GC003232
- 30
- 31 Workman, R.K., Hart, S.R., Jackson, M.G., Regelous, M., Farley, K.A., Blusztajn, J., Kurz, M.D. (2004).
- 32 Recycled metasomatised lithosphere as the origin of the Enriched Mantle II (EM2) end-member:
- 33 Evidence from the Samoan Volcanic Chain. Geochem. Geophys. Geosys., 5,
- doi:10.1029/2003GC000623.