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Abstract

The dynamic behavior of complex systems with many degrees of freedom is often analyzed by
projection onto one or a few reaction coordinates. The dynamics is then described in a simple and
intuitive way as diffusion on the associated free energy profile. In order to use such a picture for
a quantitative description of the dynamics one needs to select the coordinate in an optimal way
so as to minimize non-Markovian effects due to the projection. For equilibrium dynamics between
two boundary states (e.g., a reaction) the optimal coordinate is known as the committor or the
pfold coordinate in protein folding studies. While the dynamics projected on the committor is not
Markovian, many important quantities of the original multidimensional dynamics on an arbitrarily
complex landscape can be computed exactly. Here we summarize the derivation of this result, discuss
different approaches to determine and validate the committor coordinate and present three illustrative
applications: protein folding, the game of chess, and patient recovery dynamics after kidney transplant.

Introduction

A popular approach to analyze complex multidimensional dynamics is to project it onto a reaction co-
ordinate (collective variable) that captures the essential properties of the dynamics. For simple chemical
reactions the choice of coordinate is often self-evident, e.g., an inter-atomic distance. The reaction is then
described as diffusion on a free energy profile (FEP) as a function of the coordinate, with the dynamics
of the rest of the degrees of freedom modeled as noise. Such a picture provides a simple and intuitive
description of the dynamics. Selection of reaction coordinates for complex reactions, e.g., protein folding,
is far from trivial, especially if one requires a quantitative description of the dynamics. A poorly chosen
coordinate can result in a misleadingly simple free energy landscape1 with lower barriers and incorrect,
faster kinetics2 and generally sub-diffusive dynamics.3–5 In principle, dynamics projected on any coordi-
nate can be accurately described by the generalized Langevin equation, which contains a memory kernel
that accounts for non-Markovian effects.6,7 Determination of the kernel is, however, very difficult.8 More-
over, it complicates the conceptually simple and visually appealing picture of reaction as simple diffusion
on a free energy landscape. Under some conditions (e.g., the separation of time scales) the generalized
Langevin equation can be reduced to the standard memory-less Langevin equation. Often, however, such
conditions are very restrictive, and it is not clear how to test their validity for a practical system of interest
(e.g., barrier-less or fast protein folding).

The framework of optimal reaction coordinates employs an alternative strategy. It selects reaction
coordinates in an optimal way, i.e., to make the projected dynamics more diffusive or to minimize non-
Markovian effects.9 While, in general, the non-Markovian effects can not be eliminated completely, the
projected dynamics could be modeled with good accuracy as diffusive or Markovian. In particular, some
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quantities can be computed exactly for the original dynamics on a multidimensional free energy landscape
of any complexity. For equilibrium dynamics between two boundary states (e.g. unfolded and folded),
such an optimal coordinate is known as the committor, splitting probability or pfold coordinate for protein
folding studies.

The paper is organized as follows. We start by reviewing why the committor can be considered as
an optimal reaction coordinate (RC). Then we consider different approaches to determine and validate
the optimal RC in practice, which is followed by a brief comparison with other popular dimensionality
reduction techniques. The next section presents illustrative examples. We conclude by suggesting unsolved
problems and directions for future research. This review is complementary to two excellent recent reviews
on reaction coordinates.10,11

The committor as an optimal reaction coordinate.

In a description of reaction dynamics the following quantities are of particular interest: the reaction flux,
the mean first passage times, the mean transition path times. While, in principle, one may expect a
different optimal coordinate for each of the quantities, the committor can be used to compute all of them
exactly.

The committor equals the probability for the trajectory to reach one boundary state (e.g., the native
state in the analysis of protein folding) before it reaches another (e.g., the denatured state) starting from
any given configuration. It was first used for the analysis of ion recombination dynamics by Onsager.12

In the protein folding field it was first used by Du et al.13 Its role in the statistics of transition paths has
been investigated in a number of studies.14,15 More details about historical developments can be found in
a recent review.10

For equilibrium dynamics (with detailed balance) described by the overdamped Langevin equation the
associated Fokker-Planck (diffusion) equation for probability density function is

∂P (X, t)/∂t = ∇ · [e−βU(X)D(X)∇(eβU(X)P (X, t))], (1)

where X denotes position in the multidimensional configuration space, U(X) is the potential energy, D
is the diffusion tensor, β = 1/(kT ) and k is the Boltzmann constant and T is temperature. Given two
boundary states A and B, the committor is the solution of the adjoint equation16,17

∇ · [e−βU(X)D(X)∇q(X)] = 0, q(X ∈ ∂A) = 0, q(X ∈ ∂B) = 1. (2)

For equilibrium dynamics described by a Markov chain

Pi(t+∆t) =
∑

j

Pij(∆t)Pj(t), (3)

where Pi(t) is the probability of being in state i at time t and Pij(∆t) is the probability of transition from
state j to i after time interval ∆t, the committor function qi is defined as the solution of

qi =
∑

j

Pji(∆t)qj , qA = 0, qB = 1. (4)

Eq. 4 rewritten as
∑

j

Pji(∆t)(qj − qi) = 0 (5)

illustrates the driftless character of dynamics projected on the committor coordinate: the average dis-
placement from any state (but the boundary states) is zero.

While the dynamics projected on the committor is not Markovian, it can be modeled with fairly
good accuracy as simple diffusion on the associated free energy profile F (q) with a position dependent
diffusion coefficient D(q). In fact, many important quantities of the original multidimensional dynamics
on an arbitrarily complex landscape can be computed exactly: the equilibrium reaction flux,9,16,17 the
mean first passage time (mfpt),16 the mean transition path times (mtpt)18 and the committor itself
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between any two boundary states A and B, as well as between any two associated isocommittor surfaces
q(X) = q0 and q(X) = q1. Also, the equilibrium mean squared displacement grows linearly with time as
for simple diffusion.9,19 Consequently, F (q) and D(q) can be used to define the free energy barrier and
pre-exponential factor - other major descriptors of reaction dynamics.

Below we briefly summarize the derivation of these results following the formalism of Ref. 9 and
highlighting points in common with those of Refs. 17 and 16. The former utilizes the Markov chains
while the latter use the Fokker-Planck equation. We prefer the formalism of Markov chains because it
makes some facts easier to express and to prove (e.g., compare Eq. 4 and 2) and operates with quantities
computable directly from a trajectory, and thus can be straightforwardly tested and used in practice.
Since a Markov chain can be considered as a discrete approximation in solving the Fokker-Plank equation
both descriptions can be used interchangeably.

Given a long equilibrium trajectory X(i∆t0) and RC R(X), the RC time series is computed as
r(i∆t0) = R(X(i∆t0))). Here and below r denotes an arbitrary RC while q is reserved for the committor;
∆t0 denotes the time step of the trajectory. The conventional (histogram) free energy profile is computed
as

FH(r) = −kT lnZH(r), ZH(r) = Nr/∆r (6)

and Nr is the number of trajectory points in histogram bin with boundaries r and r+∆r. ZH approximates
(up to a factor) the partition function

Z(r) =

∫

exp[−U(X)/kT ]δ(r −R(X))dX.

In particular, the equilibrium probability is Peq(r) = ZH(r)/N = Z(r)/Z, where N denotes the total
number of points in the trajectory and Z =

∫

Z(r)dr is the total partition function. A very useful
quantity is the partition function of a cut free energy profile ZC,1.

9 It equals half the total distance the
system moves when it transits through the point r, namely

ZC,1(r,∆t) = 1/2
∑r

i |r(∆t+ i∆t)− r(i∆t)| (7)

where
∑r

i denotes the sum only over such i when r is between r(∆t + i∆t) and r(i∆t). This quantity
can be computed by considering every time step (∆t = ∆t0) of the trajectory, every second time step
(∆t = 2∆t0), third and so forth, which is indicated by the dependence on ∆t. If the original dynamics in
the configuration space is Markovian and equilibrium and the reaction coordinate equals the committor
between any two boundary regions A and B, then ZC,1 is constant with respect to q and ∆t.9 It corresponds
to constants J in Ref. 17 (Eq. 2.6) and ν in Ref. 16 (Eq. 18). The constancy of ZC,1 follows from
the driftless character of projected dynamics (Eq. 5). Since it is violated at the boundaries, a special
counting method using the ensemble of transition path segments is employed for ∆t > ∆t0,

9 which restores
driftlessness at boundaries and makes ZC,1 constant everywhere. Another option is to combine the RC
and its mirror image into a ring and thus eliminate boundaries.19,20 The constant value of ZC,1 computed
for very large ∆t equals the total number of transitions the trajectory makes from one boundary node to
the other9

ZC,1(q,∆t) = NAB . (8)

In the opposite limit of very small ∆t, when ZH(r) can be considered constant on the range of average dis-
placement r(t+∆t)−r(t), by direct computation from Eq. 7 one obtains ZC,1(r,∆t) = 1/2⟨∆r2⟩ZH(r) =
D(r)∆tZH(r), which can be used to determine the position dependent diffusion coefficient along any RC9

and specifically for the committor coordinate

D(q) =
NAB

∆tZH(q)
. (9)

This equation for the diffusion coefficient is analogous to Eq. 3.7 in Ref. 17 and Eq. 16 in Ref. 16 derived
for overdamped Langevin dynamics. The equation can be used to define diffusion coefficient for diffusive
models of Hamiltonian dynamics at times when a stochastic description becomes appropriate, e.g., for
atomistic simulations of protein folding.21

3



Such determined F (q) (Eq. 6) and D(q) (Eq. 9) define a diffusive model for the dynamics projected
on the committor. The corresponding Fokker-Plank equation is obtained by substituting F (q) and D(q)
into one-dimensional Eq. 1

∂P (q, t)

∂t
= JAB

∂2

∂q2
(
P (q, t)

Peq(q)
).

It was first derived by Berezhkovskii and Szabo.17 For the model one has identically NAB = ∆tZH(q)D(q).
The number of transition between the boundary states per unit time JAB = NAB/(N∆t0), the equilib-

rium flux, equals J−1
AB = (ZH(q)D(q)/N)−1 =

∫ 1

0
e−F (q)/kT dq

∫ 1

0
dq

e−F (q)/kTD(q)
. Since both integrands are

reparametrization invariant one obtains the following Kramers-like equation

J−1
AB =

∫ q′(B)

q′(A)

e−F ′(q′)/kT dq′
∫ q′(B)

q′(A)

dq′

e−F ′(q′)/kTD′(q′)
, (10)

where F ′ and D′ are functions of an arbitrary RC q′ related to the committor by a monotonous transfor-
mation. A practically convenient choice is a coordinate with constant diffusion coefficient D′ = 1. In this
case one has to visualize just the free energy profile which completely describes the diffusive dynamics.

The mean first passage time from A to B (here we assume that time spent in A is negligible or that
equilibration in A is fast) equals14

mfpt = 1/JAB

∫ 1

0

Peq(q)(1− q)dq =< 1− q > /JAB , (11)

and thus can be computed exactly since we can compute exactly Peq(q), q and JAB . The same is true for
the mean transition path times between A and B, which can be computed as14

mtpt = 1/JAB

∫ 1

0

Peq(q)q(1− q)dq =< q(1− q) > /JAB . (12)

Integrating Eq. 7 over r one obtains19,22

∫ 1

0

ZC,1(r,∆t)dr = 1/2
∑

i

[r(∆t+ i∆t)− r(i∆t)]2 = 1/2⟨∆r2(∆t)⟩(N∆t0)/∆t

or
⟨∆r2(∆t)⟩ = 2∆t/(N∆t0)⟨ZC,1(∆t)⟩, (13)

which means that if ⟨ZC,1(∆t)⟩ is constant (increases with ∆t, decreases with ∆t) the equilibrium mean
squared displacement grows linearly (faster than linear, slower than linear) with time.9 For the committor
one specifically obtains ⟨∆q2(∆t)⟩ = 2∆tJAB . This suggests that one of the reasons that the dynamics of
various protein degrees of freedom is sub-diffusive3–5 is because these degrees are not optimal RCs.9 Note
that, for large ∆t the averaging should use the transition path segments, so that boundary effects do not
change the diffusive behavior.9

Equation q(X) = q∗ defines the isocommittor surface, which consists of all the configurations that
have the same value of the committor (q∗). Such a surface partitions the configuration state on two parts
and as q∗ changes from 0 to 1 the surface monotonously progresses from state A to state B. The surface
corresponding to q∗ = 0.5 is known as the stochastic separatrix and is often used to define the ensemble
of the transition states. Ref. 23 presents illustrative examples of isocommittor surfaces for a number of
model systems. Two isocommittor surfaces corresponding to q0 and q1, with q0 < q1, can be used to define
two new boundary states A′: q(X) < q0 and B′: q(X) > q1. The committor function between these new
boundary states can be obtained by simple rescaling q′(X) = (q(X)− q0)/(q1 − q0).

16 The above results
are therefor valid not just for two boundary points on the committor (i.e., q0=0 and q1=1) but between
any two points q0 and q1.

It is useful to have a simple example illustrating the non-Markovian character of dynamics projected
on the committor. Consider a system with two boundary states A (x = 0) and B (x = 1) connected by two
narrow parallel pathways along x, where we neglect the dependence on y,22 with F1(x) = F2(x) = 0 and
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constant but different diffusion coefficients D1 and D2. The committor coordinate equals x. Markovian
behavior means that the future dynamics depends only on the current state of the system and not on
previous states, e.g., that there is no correlation between the current and next displacements, in particular
that ⟨[q(0) − q(−∆t)]2[q(∆t) − q(0)]2⟩ = ⟨[q(0) − q(−∆t)]2⟩⟨[q(∆t) − q(0)]2⟩. However, as one can easily
show in this case, these quantities are 2(D2

1 +D2
2)∆t2 and (D1 +D2)

2∆t2, respectively.
We conclude this section by noting that while the committor is often considered synonymous with the

optimal coordinate, it is an optimal coordinate only for the specific, though important, case of equilibrium
dynamics between two boundary states (i.e., a reaction). Here the general driftless character of dynamics
projected on the optimal coordinate is combined with specific boundary conditions (Eq. 4) which allows
interpretation of the coordinate as the committor. Consider diffusion on a ring, e.g., a model for dynamics
of a molecular motor or for a dihedral angle of alanine dipeptide.2 An optimal coordinate for such dynamics
has no boundaries and is a multi-valued function (similar to the angle variable) with dynamics driftless
everywhere.19 It can not be interpreted as a committor. However its analysis using cut profiles becomes
less involved, since one does not need to consider the ensemble of transition path segments.19,20

Validation and determination of optimal RCs

If one intends to use an RC for quantitative analysis of dynamics it is important to validate and demon-
strate that this RC is optimal, especially, if this RC was determined by a generic dimensionality reduction
method rather than a method explicitly focused on determining the optimal RC. Since a criterion for RC
optimality can be often turned into an optimization method, we review them together.

We start with the simplest conceptually - the direct method to determine the committor, where
one starts a number of trajectories (usually around 100) from the point of interest and computes their
evolution until they reach either of the boundary states.13,24–27 The committor is estimated as the fraction
of trajectories that reached state B. A genetic neural network (GNN) method can utilize such obtained
committor values to identify the combination of coordinates that produces the most accurate prediction
of the committor.26 To reduce the computational costs of evaluating the committor for every point of
a reactive trajectory Li and Ma have suggested to model time evolution of committor using a sigmod
function.27

The committor histogram test is a direct method to test the optimality of an RC.13,24,25 If a puta-
tive reaction coordinate r(X) closely approximates the committor, then an ensemble of configurations
corresponding to r(X) = r0 should have similar committor values. Ideally, the distribution of committor
values should be δ-picked around q(r0). In particular, for the transition state ensemble of configurations,
the distribution should be narrowly picked around 1/2. Deviations from the ideal shape indicate that the
putative RC does not include some important degrees of freedom (y) and can be also used to infer a qual-
itative picture of the free energy landscape as a function of the coordinates F (r, y).24,25 The committor
for each of the configurations is determined by the direct method. Peters has suggested how to reduce the
computational cost by using binomial deconvolution.28

For relatively small systems, where an accurate Markov state model (MSM) can be constructed,2,29,30

the committor coordinate between any two states can be easily found by solving Eq. 4. Which, incidentally,
suggests a way to validate an MSM by validating the determined committor.9

For large systems the determination of accurate MSMs (specifically at transiently populated TS re-
gions) is difficult.9,30,31 For such systems a number of variational approaches have been suggested to
determine the coordinate, without explicitly constructing the MSM. To this end, a functional form for the
RC containing many parameters is suggested. For example, for protein folding, one can take a weighted
sum of native and non-native contacts

∑

ij wijqij ,
32 a sum of contacts with varying cutoff distances

∑

ij ±θ(rij − r0ij),
3,33,34 a weighted sum of interatom distances

∑

ij wijrij ,
3 or more complex functions.21

Then, one numerically optimizes the weights wij
32 or the cutoff distances r0ij

3,33,34 for contacts by optimiz-
ing a particular functional, so that in the end, the putative reaction coordinate accurately approximates
the committor. The following optimization functionals have been suggested: the probability of being
on a transition path,32,35 the likelihood functional,36,37 the cut profiles,3,33,34,38 and the total squared
displacement (TSD).22,39

Cut based free energy profiles. The optimality criterion states that ZC,1(r,∆t) computed along
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the optimal coordinate using transition path segments is constant and equal to NAB .
9 In particular, it

implies that the computed reaction flux is exact, the equilibrium mean squared displacement grows linearly
with time, etc. If ZC,1(r,∆t) decreases with increasing ∆t or, correspondingly, FC,1(r,∆t) increases, then
consecutive displacements are negatively correlated and the dynamics is sub-diffusive.9 On the contrary,
ZC,1(r,∆t) increasing with ∆t is an indication of overfitting. The latter, in particular, can be used
to penalize overfitting during RC optimization.9,33,34 Fig. 1 illustrates the criterion on the extensively
sampled model system with two parallel one-dimensional pathways, where now D1 = D2 = 0.0001,
F1(x) = 2 exp[−9(3x− 1)2], F2(x) = 2 exp[−9(3x− 2)2] and x is not the optimal RC.22
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Figure 1: FC,1 criterion applied to a model system. (a) FC,1 increases with increasing ∆t indicating that x
coordinate is sub-optimal. (b) FC,1 is approximately constant, indicating that the putative coordinate Ropt

closely approximates the committor. The plots were prepared with the fep1d.py script.40. Reproduced
with permission from Ref.22

The criterion suggests a general optimization idea - to minimize ZC,1(r) or maximize FC,1(r). Min-
imization of ZC,1(r) makes dynamics less sub-diffusive and thus more Markovian. One option is to
maximize

∫ rB
rA

dr/ZC,1(r), where rA and rB denote positions of free energy minima along r.34 Since the

main contribution to this functional comes from points with low ZC,1(r), the optimization is focused on
the transition state regions. An additional bonus is that this functional is invariant to monotonous trans-
formations of RC, which simplifies the task of approximating the committor.33,34 A different functional
with analogous properties, which was used originally, is

∫ rB
rA

ZH(r)dr/ZC(r).
3,33,38 Another option is to

minimize
∫ rB
rA

ZC,1(r)dr = 1/2
∑

k[r(∆t + k∆t) − r(k∆t)]2, i.e., the TSD under constraints rA = 0 and

rB = 1.9,22,39 The fact that the minimum of the TSD is attained for the committor can be easily verified
using the following expression for the TSD for an MSM

∑

ij nij(ri−rj)
2, where nij = nji = Pij(∆t)Peq,j is

the equilibrium number of transitions between states i and j.22 Differentiating the TSD by rk and equat-
ing to zero one obtains Eq. 4. The main contribution to the TSD functional comes from the points with
high ZC,1(r), i.e., the optimization is focused on free energy minima. An advantage of such a functional
is that its optimum can be found analytically when the RC is a weighted sum of basis functions.22,39 This
feature lead to a new method which optimizes the RC over the entire range, not just around the transition
state regions.22 From Eq. 13 it follows that the TSD of the committor equals 2NAB , i.e., one obtains a
simpler though less stringent optimality criterion.22

An advantage of the approach of using cut profiles ZC,1 is that a single framework is used to derive
theoretical results, to determine and validate optimal coordinates and to determine the diffusion coefficient.
Another advantage is that the approach can be straightforwardly extended to optimal RCs with a ring
topology.

A rather straightforward practical approach to test RC optimality is to compare properties computed
using F (r) and D(r) with those computed directly from an equilibrium multidimensional trajectory. For
example, one may compare the equilibrium reaction flux, the mean first passage times and the committor
probability.33,41,42 This criterion can be related to the criteria above. Assume that the putative RC r has
been transformed to the committor q(r) using F (r) and D(r). This transformation should not change
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optimality. It follows that ZC,1(q(r)) = const. If the flux is reproduced then NAB = ZC,1(q(r)) =
1/2

∑

k[q(r(∆t + k∆t)) − q(r(k∆t))]2. The TSD attains its minimum value of 2NAB only when the RC
q(r(X)) is optimal (we assume there is no overfitting), which means that r is optimal.22

Bayesian criterion p(TP|q). A Bayesian criterion quantifies the quality of an RC by calculating
the probability p(TP |r) of being on the transition path (TP)32,35

p(TP |X) = p(X|TP )p(TP )/peq(X),

where p(X|TP ) is the probability density of X on the TP, p(TP ) is the fraction of time spent on the
TP, and peq(X) is the equilibrium probability density at point X of configuration space. For diffusive
dynamics p(TP |X) = 2q(X)(1 − q(X)), which reaches its maximum of 0.5 exactly at the points of the
stochastic separatrix q(X) = 0.5.35 For a good reaction coordinate r = R(X), p(TP |r) should have a single
sharp and high peak, collapsing the transition states with a high value of p(TP |X) into a single value
of q.32 The stochastic separatrix, is a reasonable definition of the transition state ensemble for systems
with one dominant barrier. However caution should be used for systems with more complex landscapes.
For example, in a system with two approximately equal barriers,33 q(X) = 0.5 describes an intermediate
state, rather than the transition states. Fig. 2 illustrates the criterion on the model system with two
pathways.22
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Figure 2: p(TP |q) criterion applied to a model system (symbols) using a sub-optimal coordinate (a) and
putative optimal coordinate (b). The line shows the theoretical maximum of 2q(1 − q). The plots were
prepared using the fep1d.py script.40

It is straightforward to turn the Bayesian criterion into an optimization method: one optimizes the
parameters of a putative reaction coordinate r to make p(TP |r) maximal.32 Once the optimal RC has
been determined, the associated free energy profile and diffusion coefficient are determined using a different
Bayesian procedure.43

Likelihood maximization. The maximum likelihood method can be used to screen reaction coor-
dinates based on an ensemble of trajectories generated by an aimless shooting variant of transition path
sampling (TPS).36 The likelihood for optimizing a model of the committor q̃ is

L =
∏

k

q̃(Xk)
∏

k′

(1− q̃(Xk′)),

where k and k′ denote trajectories that reached states B and A, respectively. Inspired by the exact result
for a parabolic barrier, the following model is used q̃(X) = 1/2 erfc[−(r(X) − r†)/∆r], where r(X) is
the putative reaction coordinate, r† is the transition state location and ∆r is the width of the barrier.
Parameters r† and ∆r are optimized together with the parameters of RC, which the RC being taken as a
linear combination of various collective variables. The optimization stops when the Bayesian Information
criterion identifies the point of diminishing return. The inertial likelihood maximization method37 which
is more accurate in the regime of inertial barrier crossing dynamics employs the following model for the
committor: q̃(X) = 1/2 erfc[−(r(X)−r†)/∆r+bṙ], where ṙ = Ẋ∇r denotes the velocity along the putative
RC r. For a system with intermediate or metastable states, where the likelihood model may break down or
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the TPS may become inefficient, one may study each barrier separately.44,45 The likelihood methods are
discussed in more detail in two recent reviews.11,46 While the likelihood function can be used to compare
two putative RCs there is no straightforward way to use it as a validation criterion. One drawback of
using a TPS ensemble of trajectories for training an RC is that such an optimized RC is not likely to be
transferable for analysis of trajectories from equilibrium simulations which sample the entire configuration
space.

Dynamical self-consistency test. This test inspects whether averaging during projection on a
putative reaction coordinate does not change the dynamics, or in other words that similar dynamics are
combined. Specifically, the dynamics of short trajectories launched from an ensemble of configurations
(Xi) on isosurfaces of a trial coordinate r(Xi) = r0 are projected back onto the trial coordinate to estimate
numerically the propagator Pi(r, t|Xi). The trial coordinate has a dynamically self-consistent projection
property if the dynamics of individual swarms at each point evolve like swarms initiated from all other
points on the same trial coordinate isosurface Pi(r, t|Xi) ∼ P (r, t|r0), where P (r, t|r0) = ⟨Pi(r, t|Xi)⟩i.

47

The propagators are compared by computing the Kullback-Leibler divergence between the distributions.
Note that while intuitively appealing, this criterion is probably as stringent as the requirement of projected
dynamics to be Markovian. For example, it is violated by the committor coordinate for the model system
with two parallel pathways described in the previous section.

Approximation of the committor by eigenvectors. Berezhkovskii and Szabo have shown that for
a system with two states and a large free energy barrier, the committor can be approximated around the
transition state by a second left eigenvector.48 This can be determined by a number of approaches currently
under active development.22,30,31 Such eigenvectors, in particular, can be useful as seed coordinates to
start RC optimization, especially in cases where the boundary states are not straightforward to define.22

In summary, a number of practically efficient tests for validation of optimal RCs have been devel-
oped. Some of them (ZC,1 = const and p(TP |q)) have been implemented in the fep1d script http:

//sourceforge.net/projects/fep1d/ developed for the analysis of one-dimensional reaction coordinates
and the resulting dynamics along them.40 However, the development of efficient and robust methods to
determine the committor for complex realistic systems which can pass the validation tests is still mostly
work in progress.

Other dimensionality reduction techniques.

It is instructive to compare methods that seek optimal RCs with other popular dimensionality reduction
techniques. The techniques can be divided roughly into two groups: techniques that use dynamical
information during dimensionality reduction and those that do not. Coordinates obtained with the former
are likely to reproduce the dynamics more accurately than those obtained with the latter. The latter
group, in particular, includes all the methods, where results do not change if points in a trajectory are
reshuffled, e.g., PCA and its various modifications,49 multidimensional scaling,50 Laplacian eigenmaps,51

locally linear embedding,52 Isomap,53 and Sketchmap.54

Some methods aim at obtaining accurate Markov models of the dynamics in the projected space. This
is a stronger result than is guaranteed with optimal coordinates. In particular, it means that all quantities
of the projected dynamics could be computed exactly. The methods usually assume either a separation of
times scales or the existence of a low-dimensional manifold to which the dynamics is confined after some
initial lag time.55 In practice, at least in atomistic simulations of protein folding, it is not straightforward
to test the validity of these assumptions.

Another popular set of approaches aim to approximate the transfer operator by computing its eigenvec-
tors and eigenvalues.30,31 In a more general setting one obtains a spectral decomposition of the Koopman
operator using a time-series of observables.56,57 The approach is more general, and more complex than
the framework of optimal reaction coordinates. The advantage of the latter is that the evolution operator
is known in advance (the diffusion operator); one seeks only the optimal coordinate where this operator
provides a sufficiently accurate description of the dynamics. Once the coordinate has been determined, the
dynamics described as diffusion on the associated free energy profile with the position dependent diffusion
coefficient can be used to compute exactly various quantities. For the transfer operator approach it is not
clear how many eigenvectors are required to obtain a similar level of description.
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Interestingly, the related method of diffusion maps designates the eigenfunctions of the backward
Fokker-Planck operator as optimal coordinates.58 They are optimal in a different sense compared to the
committor. They provide the best approximation to the probability distribution in the form P (x, t|x0) =
∑

j αj(x0)vj(x) in a specific diffusion distance metric.58

Illustrative examples

The examples below have been chosen to illustrate the broad applicability of the framework of optimal
coordinates. They show that the free energy as a function of the optimal RC provides a simple, visually
appealing picture of complex dynamics and can be used to accurately determine some quantities of interest.

Protein folding.

In spite of many decades of studying how proteins fold, widely differing opinions exist even for the funda-
mental issues and interpretation of many folding experiments.59 One can argue that we have determined
few (if any) quantitatively accurate protein folding free energy landscapes. In particular, there is no direct
estimation of the folding free energy barrier or the pre-exponential factor. Direct determination of these
quantities from experiment has been hampered by very limited spatial and temporal resolution even with
state of the art techniques. The situation has significantly improved recently, e.g., one can now directly
estimate the transition path times during folding events by counting single photons.60,61 However, inter-
pretation of the experiment still assumes a particular shape of the folding free energy landscape, which
can not be established in a direct manner.

Atomistic simulations have practically unlimited spatial and temporal resolution and thus, in principle,
should allow one to determine these quantities in a rigorous and direct manner. One should just take a
protein, simulate its folding-unfolding dynamics for a sufficiently long time (hundreds of events), deter-
mine the optimal reaction coordinate (here pfold), validate it by the optimality criteria and compute the
associated free energy profile F (pfold) with diffusion coefficient D(pfold). There are, naturally, challenges
associated with this approach: the accuracy of force-fields, sampling problems, and rigorous analysis.62

However, the steady development of theory, analysis and simulation algorithms and hardware make this
approach very promising. In particular, Shaw and coworkers, using the custom build supercomputer An-
ton, have been able to perform direct (brute-force) equilibrium folding simulations of 12 proteins.63 This
means that the force fields are already good enough to fold some of the proteins to their native structures.
Note that reasonably small errors in force-fields can be tolerated if one is interested in generic properties
of protein folding free energy landscapes. Below we show application of optimal RCs to the analysis of
equilibrium simulations of proteins FIP35 and HP35, obtained by Shaw and coworkers.21,64

Fig. 3a shows the free energy as a function of the optimal coordinate for a FIP35 folding simulation.33

The 200 µs trajectory contains 15 folding-unfolding events.21 The complex landscape suggests that FIP35
is not an incipient downhill folder, it folds via a populated on-pathway intermediate separated by high free
energy barriers; the high free energy barriers rather than landscape roughness are a major determinant of
the rates for conformational transitions; the pre-exponential factor for the first transition state (TS1) is k−1

0

∼ 10 ns. Direct detailed comparison of the pre-exponential factor with the experimental estimate of ∼ 1
µs is complicated by the presence of the intermediate state which can not (yet) be detected experimentally.
In particular, an alternative interpretation suggests to describe both the intermediate state and barriers as
a single broad smooth transitions state with some roughness taken into account by an ”effective” diffusion
coefficient.21,65 Multiple free energy barriers on a free energy landscape (roughness) can be described
by an effective diffusion coefficient when ”many fluctuations in roughness take place in the distance of
interest“.66 Whether such a description is preferable for the system with just two barriers is not clear.

In this respect the HP35 Nle/Nle double mutant (Fig 3b) is a better alternative.67 The trajectory
contains many more folding-unfolding events (160) due to faster folding rate and longer length of trajectory.
The profile has a single major transition state with a high broad free energy barrier. The pre-exponential
factor for this barrier, estimated by four different methods, is in the range of 18 - 63 ns.

Note that the coordinates were determined by optimizing cut profiles (with focus on the transition
state regions) and using a penalty term to avoid over-optimization.33,34,67 Regions associated with minima
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may contain additional unresolved complexity, i.e., sub-minima separated by small barriers. The mfpt
determined from the profile by using Kramers equation is about 2 times shorter than that determined
directly from trajectories, which means that the coordinate is close to pfold but not yet equal to it.

More applications of optimal RCs to the analysis of atomistic simulations of biomolecules can be found
elsewhere.3,21,32,44,63,68,69 Applications to the analysis of atomistic simulations of crystallization have been
reviewed in Refs. 11,46.

As mentioned above, obtaining long equilibrium trajectories for systems with complex landscapes (e.g.,
protein folding, large conformation changes in biomolecules) is a very difficult problem. A number of ap-
proaches have been suggested to overcome the sampling problem, for a recent review see Ref. 70. Among
the most popular approaches are the transition path sampling71, umbrella sampling72 and metadynam-
ics73. Here we briefly touch upon the subject of how such approaches can be used to optimize RCs. The
maximum likelihood approach has been suggested to optimize RCs based on transition path sampling
trajectories, as described above. Umbrella sampling and metadynamics improve sampling by biasing it
along collective variables. While it is relatively straightforward to recover equilibrium properties from
biased simulations, the determination of dynamics properties is much more difficult. Using the biased
simulations to optimize RCs is correspondingly difficult. One possibility is to use such an obtained equi-
librium ensemble as starting configurations to run short unbiased MD trajectories, which then are used
to optimize RC. It was used in the spectral gap optimization approach.74 The optimized RC can then be
used, in turn, to bias sampling, suggesting an iterative scheme. A general problem associated with biased
sampling is how to ensure and validate that the biased sampling has covered all the important parts of
configuration space of the original unbiased ensemble. If most of the reactive trajectories are concentrated
in a narrow tube, one can use the finite temperature string method.75 Its application to conformational
transitions in myosin is presented in Ref.76.

The game of chess.

Analysis of the game of chess38 is interesting for several reasons. It is a model for human decision-making.
Its complex dynamics is not generated by a physical system (e.g., Eqs. 1 and 3) and thus the applicability
of the free-energy landscape framework is not evident. Additional complexity comes from the dynamics
being inherently non-equilibrium, i.e., the games proceed from the starting position to a checkmate and
never backward.

A chess program value function was used as a functional form for the RC. It gives a quantitative
estimation of the value of a position as a weighted sum of various factors, with the largest factor being
the difference in material. For example, a pawn has a material value of 100 and a queen of 1100. The
dynamics projected on the value function with parameters used in the chess program was found to be
sub-diffusive, i.e., an indication of a sub-optimal reaction coordinate. The coordinate was optimized using
an ensemble of 10000 games, ending in a victory of black or white, played by the computer against itself.
The equilibrium free energy profile was obtained by re-equilibrating the projected dynamics, assuming
diffusive motion or using a MSM.

Fig. 4a shows the free energy as a function of the optimal RC. The game of chess is described as
diffusion on the free-energy profile. Starting from the middle, the game continues until either the right
(white wins) or the left (black wins) end of the profile has been reached. A lower barrier for white indicates
that white has more chances to win: 59% of analyzed games ended in white’s victory. While the starting
position is symmetric, white has the inherent advantage of the first move. Fig. 4b shows that the winning
probability (for white) for a given position computed using three different approaches are in excellent
agreement.

Knowing the winning probability (the committor) suggests an easy strategy to play chess: select a
move that (after the best answer by the opponent) has the largest committor. In fact, there are many
similarities between the artificial intelligence research on board games and finding an optimal RC, which
suggests that mutual exchange of state of the art ideas could be useful. With that in mind we summarize
below an important recent progress.

For games of perfect information (chess, checkers, Go) an optimal value function ν(s) (similar to an
optimal RC) can be defined, which determines the outcome of the game starting from position s. For
games with relatively small configuration space, ν(s) can be recursively computed going backwards from
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final positions, analogous to computing the committor from an MSM. For games where an exhaustive
search is impossible, one tries to approximate ν(s). For the chess game a good approximation can be
found with relative ease (e.g., the major contributing factor is the material value). For the game of Go,
it is much more difficult since the effect of putting a stone could be seen only much later in the game.
Combined with the much larger search space, this explains why a computer program has defeated the best
human player in Go just very recently, while for chess that happened almost 20 years ago. The progress is
due to mainly two ideas.77 The first idea is to use Monte Carlo approaches to estimate ν(s) by playing a
number of games from the current position. It is analogous to the direct way of estimating the committor.
Second, is to approximate the value function by using deep convolutional neural networks instead of a
linear combination of input features. The associated techniques could be very useful for the determination
of optimal RCs.

Disease dynamics.

The evolution of disease or the progress of recovery of a patient is a complex process, which depends on
many factors. A quantitative description of such a process in real-time by a single, clinically measurable
parameter (biomarker) would be helpful for early, informed and targeted treatment. Conventionally, a
biomarker is sought by finding a difference between two cohorts of patients, the one with the disease and a
control. While undoubtedly useful, such biomarkers provide too coarse-grained a description: a patient is
either healthy or has the disease, e.g., similar to order parameters with similar shortcomings. If something
starts to go wrong, one may need to wait a long time to be certain about the onset of disease: until the
change of a biomarker is sufficiently large, or a biomarker is well inside the abnormal state.

Considering disease dynamics as a Markovian process in the configuration state of an organism (i.e.,
the genome, proteome, metabolome, epigenome, age, environment, and whatever additional information
may be required) it is natural to find an optimal coordinate that provides a description of the transition
dynamics between two boundary states: healthy and abnormal. Interestingly, the optimal coordinate in
this case - the likelihood of a positive outcome can be considered as an ideal biomarker. It can be used
for monitoring purposes and maximization of such a function can serve as a basic guiding principle of
targeted therapeutic intervention.

The possibility of using the framework of optimal RCs to determine such biomarkers has been demon-
strated recently by analyzing the recovery dynamics after kidney transplant.39 Based on NMR spectra
of blood from 18 patients, taken immediately before and in a week-long period after kidney transplant,
an optimal biomarker was determined in an unsupervised way, which allows one to predict the likelihood
of transplant organ success or failure earlier than with standard invasive methods (Fig. 5). The clinical
group to which each patient could be ascribed is apparent from about the second day after surgery. The
likelihood of a positive outcome estimated directly from patient trajectories and by describing the disease
dynamics as diffusion on the free energy profile are in very good agreement.

The functional form of the RC was taken as x =
∑

j αjIj , where Ij is the intensity of the NMR

signal in bin j logarithmically transformed as Ij = log(106Ij + 1). While the cohort contained only 18
patients, the robustness of the analysis was demonstrated by repeating it with different transformations
(e.g., Ij =

√

Ij) or without transformation, with different bin sizes, in a supervised or unsupervised
way, all leading to virtually identical results. The leave-one-out cross validation procedure, where every
trajectory is projected on the optimal reaction coordinate constructed without the trajectory, produced
results virtually identical to those in Fig. 5, indicating that the determined optimal biomarker can be
used to predict the likelihood of a positive outcome for a new patient. To summarize, given the NMR
spectrum of a patient’s blood sample, one can determine where the patient is on the biomarker axis (i.e.,
the position on the x axis on Fig. 5), infer the likelihood of a positive outcome, and decide whether
therapeutic intervention at that moment is necessary. The success of this application gives strong support
to the assumption that disease dynamics is stochastic and thus is best described by an optimal RC.
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Conclusion.

Optimal reaction coordinates can be used to provide simple and intuitive while quantitatively accurate
pictures of complex dynamics as diffusion on a free energy landscape. While systematic research into
optimal RCs has started only recently,10 this review demonstrates significant progress in theory and
method development as well as a broad range of applications. Below we list some questions, which we
believe, deserve to be attacked next.

While one may conclude that a number of practically efficient criteria to validate RC optimality have
been developed, the same can not be said about methods to determine the optimal RC. There is a major
practical need for efficient and robust methods to determine the committor and associated free energy
profile and diffusion coefficient with high accuracy as validated by the optimality criteria. In particular,
these methods are required for the analysis of state of the art atomistic simulations63 and other types
of Big Data (e.g., whole brain neural recordings78) which are becoming increasingly available. A related
question is how to select an appropriate functional form for a putative RC.11 It should provide a good
approximation to the committor using a relatively small number of parameters. The complexity of the
task becomes apparent if one recalls that the function should be able to accurately project a few million
snapshots from a very high dimensional space. It is likely that the best functional forms will be system
specific. However, it could also be useful to borrow from the vast experience in multidimensional function
approximation of the machine learning31,77 and quantum physics79 communities. An alternative could
be to avoid the usage of functional forms altogether. Such a non-parametric approach for variational
optimization of reaction coordinates, has been suggested recently.22 Another pressing practical problem
is how can one obtain an optimal RC from low resolution experimental data? A promising approach is to
consider short term dynamics to lift the degeneracy of the projection and to construct an MSM, which is
used to determine an optimal RC.80

What is the optimal coordinate for the barrier crossing dynamics when the inertial effects are impor-
tant? Peters has shown that using a model for the committor that takes these effects into account improves
the description, and in particular, increases the transmission coefficient.37 Lu and Vanden-Eijnden have
extended the results obtained for the over-damped case to systems with inertia, by considering the com-
mittor as a function of coordinates and momenta (phase space).16 In particular, the equilibrium reaction
flux can be described as driftless diffusion on the committor. Is it possible to combine these results, i.e.,
to find such an optimal RC, depending on coordinates only, where the equilibrium flux is reproduced by
using the Langevin equation with inertia?

A more fundamental question is how to generalize the notion of the optimal RC or committor? The
committor is an optimal RC for equilibrium dynamics between any two boundary states. What are the
optimal coordinates for dynamics without boundaries or non-equilibrium dynamics, which are ubiquitous
in living matter? What quantities should they reproduce? For cyclic dynamics projected on a ring one may
expect the reaction coordinates to be multi-valued. Additive eigenvectors have been suggested as a possible
multi-valued time-dependent generalization of the committor.19 One can show that both the committor
and additive eigenvectors can be used to reconstruct exactly time intervals from untimed trajectories,19

which can serve as a generic defining principle. Another peculiarity of non-equilibrium dynamics, where
the direct and time-reversed processes are statistically different, is that one has two committor functions,
forward (q+) and backward (q−).15,19 How can one describe the dynamics in this case? Should the two
committor functions be combined into a single optimal coordinate, or should both coordinates be used for
the description?
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