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A deformable overset grid method is proposed to simulate the unsteady aerodynamic problems with 

multiple flexible moving bodies. This method uses an unstructured overset grid coupled with local mesh 

deformation to achieve both robustness and efficiency. The overset grid hierarchically organizes the sub-grids 

into CLUSTERs and LAYERs, allowing for overlapping/embedding of different type meshes, in which the 

mesh quality and resolution can be independently controlled. At each time step, mesh deformation is locally 

applied to the sub-grids associated with deforming bodies by an improved Delaunay graph mapping method 

that uses a very coarse Delaunay mesh as the background graph. The graph is moved and deformed by the 

spring analogy method according to the specified motion and then the computational meshes are relocated by 

a simple one-to-one mapping. An efficient implicit hole-cutting and inter-grid boundary definition procedure 

is implemented fully automatically for both cell-centered and cell-vertex schemes based on the wall distance 

and an alternative digital tree (ADT) data search algorithm. This method is successfully applied to several 

complex multi-body unsteady aerodynamic simulations and the results demonstrate the robustness and 

efficiency of the proposed method for complex unsteady flow problems, particularly for those involve 

simultaneous large relative motion and self-deformation.  
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Nomenclature 
c  =  speed of sound 

Cv  =  vertical force coefficient 

d  =  distance 

e  =  area/volume ratio coefficient 

E  = internal energy per unit mass 

f  =  frequency 

F   = convective flux vector 

vF   = viscous flux vector 

J  =  advance ratio 

kij  = spring stiffness 

L  =  characteristic length/chord length 

Ma  = Mach number 

n   = unit normal vector 

Q  = entropy variables 

Re  = Reynolds number 

RES = residual 

S  =  area or entropy 

St  = Strohaul number 

t  = physical time 

T  = periodic time 

Qī
 = preconditioning matrix for entropy variables 

Wī  = preconditioning matrix for conservative variables 

U  = free-stream velocity magnitude 

V  = volume 

 = u, ,V v w
= velocity vector 

W   = conservative variables 

x   = Cartesian coordinate 

   = density 

   = control volume 

   = pseudo-time 
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I. Introduction 

nsteady flow simulation around multiple moving objectives poses numerical challenges for efficient and robust 

meshing strategies. Four methodologies are documented that can simulate the unsteady flow around bodies with 

locomotion, i.e., the re-meshing method, the immersed boundary method (IBM), the mesh deformation method and 

the overset grid.  

Re-meshing during unsteady motion can be carried out to address the change of the solution domain. However 

there are two fundamental problems with such approach. Most importantly, re-meshing during time evolution 

suffers from an accuracy loss due to solution interpolation in the physical conservation laws, where the 

computational accuracy will be reduced because the new grid and the original one at the previous time step are not 

necessarily consistent. Secondly, re-meshing will require some significant additional computational effort for 

complicated geometries. 

The IBM method [1] is extensively used in simulations involving moving bodies, particularly for low Reynolds 

number flows. It discretizes the governing equations entirely on a fixed Cartesian grid, which does not conform to 

the geometry of the boundaries. The presence of solid boundaries is represented by adding appropriate forcing to the 

flow equations. This method therefore avoids the complicated grid movements. Such a feature makes it attractive for 

simulating flows that involve moving bodies. However, imposing the wall boundary condition in IBM is not 

straightforward, and may negatively impact on the accuracy and conservation properties of the numerical scheme. In 

addition, it is noted that for high Reynolds numbers the computation becomes expensive in order to resolve the flow 

behavior in the boundary layer.  

Different from the re-meshing method, mesh deformation methods deform the grid with respect to the specified 

motion where the grid connectivity is preserved. Generally, the mesh deformation techniques offer better 

computational efficiency and numerical accuracy compared with the re-meshing method. Mesh deformation can be 

mainly classified into two categories: physical analogy and interpolation method. 

Physical analogies for mesh deformation, such as the spring analogy method first developed by Batina [2], use 

certain physics processes to propagate the perturbation of boundaries to the field mesh. The spring analogy method 

models the whole mesh as a network of linear springs, in which each grid edge is viewed as a spring with stiffness 

proportional to the reciprocal of the length, and the new position of mesh points are determined by solving a static 

equilibrium equation. The spring analogy method has been successfully applied to a wide range of unsteady and 
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optimization problems. However, the mesh quality will be difficult to be preserved by spring analogy when large 

displacement occurs since ill -conditioned or even negative cells may easily be created and thus abort the solution 

process. To overcome this problem, some efforts have been made for improving the robustness of spring analogy. 

Farhat et al. [3,4] introduced non-linear torsional springs to the spring analogy method to avoid the mesh crossing 

associated with the linear spring network and Murayama et al. [5] linked the grid edge stiffness with the angle 

between the faces to avoid the generation of squashed invalid elements. Elastic analogy [6,7], which can be viewed 

as an extension of the spring analogy, treats the grid as an elastic body following linear elasticity equations of solid 

mechanics. Theoretically, this method could be robust as it links the stiffness of a region to its volume and sets the 

boundary layer as a solid body. However, the performance of this method varies for different mesh types and 

magnitude of mesh deformation. All the spring analogy methods as mentioned above have to solve huge equations 

and become very expensive for large meshes. 

An interpolation method for mesh deformation, by applying certain interpolation schemes, directly obtains the 

new position or the displacement of each mesh point so as to reflect geometric changes. Transfinite interpolation 

(TFI) [8] is an algebraic mesh generation method for generating structured meshes. It can also be used as a mesh 

deformation method for structured meshes if all the mesh generation parameters are kept the same as the geometry 

deforms. In principal, TFI interpolates the displacements of points on boundaries along mesh lines to the points in 

the interior domain. Combined with the multi-block structured grid, the ability of TFI can be enhanced to handle 

three-dimensional geometric perturbations. TFI has been widely used in aeroelasticity, aerodynamic optimization 

and multidisciplinary optimization to generate the dynamic structured grid. However, the efficiency and robustness 

of the TFI are limited to applications for structured meshes. There is also another type of interpolation methods 

developed without dependency on mesh topology and therefore they can be applied to different kind of meshes. This 

type of methods is typically represented by the Delaunay graph mapping method (DGM) proposed by Liu et al. [9] 

and the radial basis function (RBF) method proposed by de Boer [10] and further developed by Rendall and Allen 

[11,12,13]. The mesh deformation method based on Delaunay graph mapping [9] has been proved as a fast mesh 

deforming method due to the fact that it uses an explicit algebraic one to one mapping rather than solve a differential 

equation or a large linear system. The drawback of this method is that the mesh quality near the moving boundaries 

is difficult to be preserved when the moving bodies exhibit large rotation, which can lead to an invalid Delaunay 

graph. Alternatively, a mesh deformation method [10] using the radial basis functions interpolation [14,15] provides 
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a more robust moving mesh, which can handle larger mesh rotational deformation. However, the robustness is at the 

expense of computational cost with large mesh due to the fact that the interpolation of any mesh point is a global 

function involving position changes of all basis points on the surface. The size of the linear system to be solved is 

directly related to the number of the moving surface mesh points. To accelerate the computation, data reduction 

algorithms were proposed by Rendall and Allen [11, 12, 13], Sheng and Allen [16] and Wang et al. [17] to limit the 

RBF interpolation on a coarsened subset of surface mesh. To decrease the error on the surface points, they applied a 

greedy algorithm to select the optimum reduced set of surface mesh. Using only portion of the moving surface mesh 

points as basis points cannot fully recover the exact deformation, making it difficult to tackle aerodynamic problems 

which are sensitive to small-scale deformation. Most recently, Wang and Qin [18] developed a method combining 

the Delaunay graph mapping with local RBF, in which the Delaunay graph is used to group fluid mesh points, and 

the nodes of each graph element are treated as basis points of RBF for each group of fluid mesh points. This method 

can dramatically reduce the number of the basis points for RBF and hence results in higher computational efficiency 

and more robustness for mesh deformation. However, this method has to treat translation and rotation motion in 

separated ways, which may be difficult to distinguish in some applications.  

It has to be mentioned that, though numerous efforts have been made within the methodology to improve the 

performance of the mesh deformation methods, these methods suffer from the problem with large deformation, in 

particular, with large relative motion of multiple bodies. Mesh quality is difficult to be preserved, or even, mesh 

could degenerate, when large displacements occur. A remedial measurement for the degenerated mesh quality is to 

locally or even fully regenerate the mesh. Zhang and Wang [19] used an unstructured grid to link the body-fitted 

grid and Cartesian grid and applied a local grid regeneration on this part when mesh deformation deteriorates. Zhang 

et al. [ 20] further extended this technique to three-dimensional applications where dynamic hybrid mesh 

deformation are applied in combination with local re-meshing. Still local grid regeneration is a costly part with 

penalty of complex algorithm design and accuracy loss at the same time. 

In addition to the aforementioned grid regeneration and mesh deformation methodologies, the overset grid is a 

mature technology that has been used for decades to simplify the grid generation for complex geometries and as an 

embedding technique for simulations involving multiple bodies with relative movement. The overset grid method 

was firstly proposed by Steger [21] and subsequently extended by Nakahashi et al. [22] for its applications on 

unstructured grids. The overset grid can be applied to store separation, turbomachinery [23], rotary aircrafts [24,25] 
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and flapping wing aerodynamics [26,27]. For problems with boundary deformation, Fast and Henshaw [28] applied 

the overset grid in conjunction with a hyperbolic grid generator. In their work, a thin layer of body-fitted structured 

grid around the deforming boundary is overlapped on a fixed Cartesian grid covering the entire computational 

domain. At each time step, the body-fitted grid was regenerated for the deforming shape resulting from flow-

structure interaction. By doing so, the global mesh regeneration switches to a local one, which improves the 

computational efficiency. However, local grid regeneration is still expensive, in particular, for complex three-

dimensional large mesh systems. 

There are many engineering applications, which exhibit simultaneous large relative displacement between bodies 

with self-deformation, such as flexible flapping wings, fish swarming, rotary wings coupled with structural 

dynamics, pose significantly challenge to the dynamic mesh techniques. Solely using mesh deformation methods or 

overset grid cannot satisfy the extreme scenarios mentioned above in terms of preserving the mesh quality and 

computational efficiency. To successfully simulate the unsteady flow field contains multiple bodies undergoing 

relative motion and deformation, a deformable overset grid by using unstructured overset grid technique coupled 

locally with an improved Delaunay graph mapping mesh deformation method is proposed in the present study. This 

paper is organized as follows:  the numerical frame of an in-house developed unsteady Reynolds averaged Navier-

Stokes (URANS) solver is introduced in Section 2; the dynamic mesh techniques, including the improved Delaunay 

graph mapping mesh deformation, unstructured overset grid method and deformable overset grid, are presented in 

Section 3; followed by several demonstration cases in Section 4 and the conclusions in Section 5. 

II. Numerical frame of the URANS solver 

In this section, some key elements of an in-house unsteady Reynolds-averaged Navier-Stokes flow solver used in 

this study are briefly described. 

A. Governing equations in arbitrary Lagrangian Eulerian form 

For the general problem of compressible flows in a moving and deformable computational domain( )t with 

boundary ( )t , the integral form of unsteady compressible Navier-Stokes equations can be written as̟  

  
( ) ( ) ( )

d ( ) d dvt t t
V n S S

t   


   

   W F W W Fx ,        (1) 
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where W represents the vector of conservative variable (mass, momentum, and energy), 

 u v w E    W T, ( )F W  represents the convective fluxes and vF  represents the viscous fluxes. x

andn are the velocity and the unit normal of the interface( )t , respectively.  

Defining gnv n x , the case gnv V n   (where  = , ,V u v w is the vector of flow velocity) corresponds to a 

Lagrangian system, and gn 0v  is an Eulerian one. In the present formulation, gnv is arbitrarily specified. The 

Spalart-Allmaras one-equation model and the Menter k-Ȧ SST two-equation model are implemented in the 

developed code to close the governing equations for turbulent flows. 

B. Dual-time stepping with low Mach number preconditioning 

For the solution of unsteady flow, a dual-time stepping algorithm is employed in conjunction with low Mach 

number preconditioning intended for extending application of the solver to low speed flows. The governing 

equations with a preconditioned pseudo-time-derivative term introduced into Eq.(1) can be written as follows: 

 gn( ) ( ) ( ) ( )
d d ( ) d dW vt t t t
V V v S S

t    

 
   

    ī W W F W W F  ,                           (2) 

where  and t denote pseudo and physical time respectively, and Wī is the preconditioning matrix. This approach 

involves an inner iteration loop in each pseudo time step that is wrapped by an outer loop stepping through physical 

time, whereas convergence of the inner iterations in pseudo-time is optimized by preconditioning, local time 

stepping or other convergence enhancement techniques. 

For the convenience of preconditioning analysis, primitive variables instead of the conservative variables are 

selected as the system variables. The present analysis is simplified by considering the entropy variables

 d d d d d dp c u v w SQ  where 2d d dS p c    is proportional to the change in entropy. In terms of 

conservative variables, the preconditioning matrix is W Q





Qī ī
W

 where Qī  represents the preconditioning matrix 

for the entropic variables designed as  2diag 1 1 1 1Q 


Wī
Q

. In this paper,  is designed for the purpose 

of improving robustness for unsteady flow with moving boundaries as follows, 

  2 2 2
Local minmin max , ,  1.0Ma  , 

where LocalMa  is the local maximum relative Mach number defined as, 
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neighbors
Local max ,

g g cell
V V V V

Ma
c c

  
 
 
 

, 

and 2 2 2
min ,mean3max( , )gMa Ma  , gV represents grid velocity vector, Ma  the incoming free-stream Mach number 

and ,meangMa   the mean Mach number of moving boundaries. 

C. Finite volume discretization: a unified approach for either cell-centered or cell-vertex scheme 

In the code, a unified approach is used for either cell-centered or cell-vertex discretization applying on arbitrary 

type meshes (structured, unstructured, Cartesian or hybrid of them). A face-based data structure is employed which 

creates pointers from cell interfaces to adjacent control volumes as the only connectivity information. Cell-centered 

discretization using the primary mesh or cell-vertex discretization using the median dual mesh can be selected at 

run-time, the only difference being the preparation of the metric data. Eq. (2) can be discretized in a polygonal 

control volume iV  as: 

( ) ( )
( )i i

Wi i

V V

t
 

  
 
W Wī RES W                                                (3) 

1 1

( ) ( )
nface nface

i ij ij vij ij
j j

S S
 

  RES W F W F
 .
 

The inviscid flux, through the interfaceijS between the control volume iV and jV , is calculated using a 

reformulated Roe-type flux difference splitting scheme. The left and right state variables at both sides of a control 

volume face are reconstructed by a weighted least square or Green-Guass linear gradient reconstruction approach 

with Venkatakrishnan’s limiter [29] applied to prevent oscillations near shock waves. For viscous fluxes 

computation, the velocity and temperature gradients at the interface are obtained by averaging the values of its 

adjacent control volumes with an additional correction in the direction from volume centroid i to volume centroid j 

to avoid odd-even decoupling. 

When dynamic meshes are used, the grid velocitiesx  and the surface unit normal n  need to be considered 

carefully so that the errors introduced by the mesh deformation do not degrade the accuracy of the flow 

computation. The discrete geometric conservative law [30, 31, 32] provides a guideline on how to evaluate these 

parameters. 

D. Temporal discretization and implicit iteration 
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The pseudo-time term in Eq.(2) is discretized with a first order backward difference and the physical time term is 

discretized in an implicit fashion by means of k -step backward difference respectively. The linearized equations 

system is finally given as, 

 
1 1 1 1

1 1

0

1
( )

n n m n k
n hmi n i n

Wi i n h
h

V V V
V

t t t

 




   
 




 
            

WRESī W RES W W
W

,           (6) 

where mand n denote pseudo-time and physical time steps, respectively. The choice of the sequence  n [33] 

governs the accuracy of the temporal discretization from the steady flow solver mode to unsteady schemes up to 3rd 

order time accuracy. The linear system of equations for the increments to the dependent variables, given by Eq.(6) is 

solved by an iterative Lower-Upper Symmetric Gauss-Seidel or Krylov subspace type Generalized Minimal 

Residual (GMRES) algorithm. 

In this study, all the unsteady flow simulations were performed by using cell-vertex scheme for spatial 

discretization with Green-Gauss gradient reconstruction. Second-order temporal accuracy was achieved by implicit 

GMRES with the residual of each time-step reduced by at least two orders. 

III. Deformable Overset Grid 

In this section, an improved Delaunay graph mapping strategy is first developed to achieve a robust and efficient 

mesh deformation. Secondly, the overset grid method and its combination with the local mesh deformation are 

presented. 

A. Improved Delaunay graph mapping for mesh deformation 

The mesh deformation method base on Delaunay graph mapping [9] has been proved to be an efficient mesh 

deformation method since it uses an explicit algebraic one to one mapping. The original Delaunay background graph 

is generated by all the surface mesh points and a few boundary points at the outer boundary. A notable disadvantage 

of this choice is that the initial Delaunay graph will easily get invalid when large rotational deformation occurs. To 

solve the aforementioned problem, a finer Delaunay graph, yet a very coarse mesh is proposed to work as the 

background graph here. The spring analogy method is then used to deform the Delaunay graph according to 

specified movement. The original computational mesh is mapped into their new position using the algebraic one to 

one mapping [9]. By doing so, the robustness of the original Delaunay graph mapping method is improved without 

substantially increasing the computational cost, as the spring analogy method is only applied on a very coarse 
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background Delaunay graph. The algorithm of the proposed graph mapping is illustrated using a periodic pitching 

NACA0012 airfoil (seen in Fig.1) exhibits a sinusoidal kinematics: ( ) 90 sin(2 )a t ft  as follow: 

(1) Generating background Delaunay graph in the computational domain. 

A good quality computational mesh is generated in the computational domain (Fig. 1(a)). In the same domain, a 

very coarse background Delaunay graph (Fig. 1(b)) is generated, and the background graph will be moved by spring 

analogy method on demand. For the Delaunay graph, the grid distribution on the moving boundaries (walls) should 

be identical to the computational mesh to preserve full integrity of boundary movement, while the entire domain is 

meshed with a large growth rate, yet resulting in much less cell amount when compared with the computational 

mesh. This can be helpful to propagate the deformation to the very far field while the mesh quality in the area near 

wall boundaries can be preserved. 

 

  
  (a)                                                        (b) 

  
(c)                                                (d) 

Fig. 1 Improved Delaunay graph mapping method: (a) initial computational mesh; (b) coarse background 

Delaunay graph mesh; (c) deformation of the background graph; (d) deformation of the computational mesh 

after the one to one Delaunay graph mapping. 
 

(2) Defining one-to-one mapping between the computational mesh and the Delaunay graph. 

 For each computational mesh point P, by using the efficient searching Alternative Digital Tree (ADT) algorithm 

[34], the Delaunay graph element E is found where the mesh point P locates. As illustrated in Fig. 2 for 2D case but 

without losing its generality, the corresponding area (2D) or volume (3D) ratios based on Eq. (7) [9] are then 
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calculated to obtain the uniquely defined one-to-one mapping between the mesh point and the graph element for 

two-dimensional or three-dimensional cases. The area or volume coefficientsie , which uniquely determine the 

relative position of point P in the graph element E, are defined as, 

,    1,2,3      (2D)

,   1,2,3,4   (3D)
i i

i i

e S S i

e V V i

 
 

 ,   (7) 

where Si  denotes the area of the triangle formed by point P and the edge of graph element E for 2D case while Vi is 

the volume of the tetrahedral formed by the point P and the face of element E. S or V is total area or total volume of 

the graph element. 

The calculated area/volume coefficients of each mesh point are stored along with the graph element number as a 

primary quantity before deforming the mesh and remain the same during the mesh deformation. 

 

Fig. 2 Illustration of Delaunay graph mapping method. 
 

(3) Moving or deforming the Delaunay graph. 

Treated as a network of springs, the background Delaunay graph is moved by means of the spring analogy 

model with passive deformation accordingly, as shown in Fig. 1(c). Although more sophisticated methods including 

torsional springs are available, the commonly used spring analogy model of Batina [2] is employed in this procedure 

by considering the fact that the background graph is very coarse with large disparity of mesh density near the wall 

and far away from the wall and, therefore, this method is sufficient for deforming the Delaunay graph in a robust 

manner even for large displacements. With graph element edges modelled as springs, the static equilibrium equation 

for node i can be written as,  

 
1

0
iNE

ij i j
j

k  


  x x  
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where NEi is the number of nodes directly connected to node i by the element edges,  x represents node 

displacement vector and ijk is the linear spring stiffness for a given edge ij. In the present study, ijk is calculated as

2
1ij i jk  x x .  

By applying the static equilibrium equation to all nodes in the Delaunay graph, a system of equations can be 

derived. Again, the efficient iterative methods used in the flow solver can be used here. In the present study, the 

derived linear system is iteratively solved by a preconditioned conjugated gradient algorithm with tolerance of 10-10. 

(4) Relocating the computational mesh points by the pre-calculated one-to-one mapping coefficients. 

After the background Delaunay graph is deformed, as illustrated in Fig. 2, the computational mesh points can be 

mapped into new position by the one to one mapping scheme. The new position Px  of computational mesh point P 

is calculated based on the pre-calculated area/volume ratio coefficients as, 

1

n

P i ENii
e


 x x , 

where ENix is the new position of the ith node of the moved graph element, and n=3 for two dimensional case, n=4 

for three dimensional case. The deformed computational mesh around the NACA0012 airfoil can be seen in Fig. 1 

(d). 

Comparing to the original Delaunay graph mapping method [9], using a coarse background mesh modeled by a 

spring analogy model as the mapping graph is principally able to improve the robustness in terms of preserving the 

mesh quality. The new Delaunay graph contains a small number of interior points, rather than the original one which 

only consists of surface mesh points and some outer boundary points. It can propagate the wall displacement, both 

translation and rotation, to the far field by spring analogy effectively and, therefore, can survive from graph element 

intersection for larger displacement. In the meantime, the very coarse Delaunay graph with large disparity of 

element size is beneficial to maintain the quality of the graph elements near wall boundaries. These small size 

elements are hardly deformed due to their strong stiffness while the large size elements in the far field absorb the 

most of the perturbation. As a result, the computational mesh quality is well maintained in the area near wall 

boundaries where the mesh quality is particularly important especially for viscous flow simulation. In addition, as 

the spring analogy is only applied on a very coarse graph, rather a dense computational mesh, the graph updating 

procedure does not dramatically scarify the computational time.  

To assess the aforementioned capability of the improved method, evaluations were performed on two typical 
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test cases, a two-dimensional NACA0012 airfoil rotating around its ¼ chord axis, and a three-dimensional DLR-F6 

model deforming following a prescribed blending motion. These two test cases were performed on a computer with 

Intel i7-4500@2.4G Hz CPU and 16GB RAM. For the sake of comparison, the same tests were run by both the 

original Delaunay graph mapping (hereafter referred to as DGM) and the improved Delaunay graph mapping 

method (hereafter referred to as Improved-DGM). 

Case1 Rotating NACA0012 airfoil 

 In the first case, the two-dimensional NACA0012 airfoil rotates around its ¼ chord position with a constant 

angular speed at 1 degree/step within a fixed box boundary. In order to test the range of rotation the method can 

tolerate, the rotation continues until element crossing occurs in the Delaunay graph which is regarded as the rotating 

limit for valid mesh deformation. To address the effect of mesh density on the efficiency and deforming capability, 

four sets of meshes with different resolutions are compared in Table 1. 

 
Table 1 Mesh size of the NACA0012 airfoil 

 Computational mesh             Background Delaunay graph 

 Nodes on wall Total nodes Total cells Nodes on wall Total nodes Total cells 

Coarse 200 7510 11443 200 1236 2249 

Medium 400 16288 22042 400 2348 4261 

Fine 800 35282 43281 800 4367 7893 

Extra fine 1600 92976 104855 1600 6414 11583 

 

Fig. 3 shows the average and worst mesh quality of the computational mesh by both DGM and Improved-

DGM.  The grid cell shape/skew [35] is regarded as a criterion here to represent the grid quality ranges from 0 to 1 

where 1 means an equilateral cell and 0 indicates the mesh is degenerated. As seen for all the mesh density, the mesh 

quality of DGM, either average or worst value, degrades rapidly as rotation angle increases while the Improved-

DGM successfully maintains the average quality at a relative high level throughout with only a very small 

degradation even at very large rotational displacement. Considering the worst grid quality, a plateaus region is found 

at small rotating angles for the Improved-DGM, which indicates that the mesh quality can be well maintained with 

small rotating magnitude. 
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Fig. 3 Mesh quality vs. rotation angle (Left: average mesh quality; Right: worst mesh quality) 

 

The rotation angle limit and average CPU time per step for both DGM and Improved-DGM is summarized in 

Table 2. As illustrated, the Delaunay graph are invalid at around 62-64 degree when using DGM, whereas the mesh 

system is admitted as valid with Improved-DGM even the airfoil rotates up to around 150 degree. Regarding the 

efficiency, the CPU time of Improved-DGM is about one order higher as compared to DGM, a price for robustness. 

Nevertheless, the Improved-DGM method is a few orders more efficient than the original spring analogy method for 

deforming the mesh. In addition, the extra computational cost decreases relatively with the increase of mesh size, as 

can be seen from the time ratio listed in Table 2. 

Table 2 Comparison of rotation angle limit and average CPU time per step 

 Rotation angle limit              Average CPU time per step 
 DGM Improved-DGM DGM Improved-DGM ratio 
Coarse 64deg 146deg 6.23ms 101.12ms 16.23 
Medium 64deg 147deg 12.66ms 213.46ms 16.86 
Fine 64deg 144deg 27.02ms 379.40ms 14.04 
Extra fine 62deg 151deg 69.60ms 590.65ms 8.49 

 

To expand this point, Table 3 shows the breakdown of the CPU time for the Improved-DGM. The CPU time of 

Improved-DGM can be principally divided into three parts: (1) moving boundary nodes based on the specified 

motion; (2) updating Delaunay graph; (3) relocating the computational mesh by the algebraic one-to-one mapping. 

As shown in Table 3, the ratio of the updating Delaunay graph procedure decreases with the increasing grid size. 

 
Table 3 Breakdown of the CPU time for Improved-DGM 

 Moving 
Boundary 
nodes  

updating 
Delaunay 
graph 

relocating 
computational 
mesh nodes 

Coarse 0.12% 93.84% 6.04%   
Medium 0.10% 94.07% 5.83%   
Fine 0.11% 92.88% 7.01%   
Extra fine 0.13% 88.22% 11.65%   
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Fig. 4 plots the mesh quality contour of the computational mesh by both DGM and Improved-DGM. The  

DGM method cannot guarantee a good mesh quality near the moving boundary as shown in Fig. 4(a), while the 

Improved-DGM method is able to propagate the rotational displacement to the very far-field and hence the mesh 

quality can be well preserved (seen in Fig. 4(b)). The robustness of the Improved-DGM method is further evidenced 

by keeping rotating the airfoil to 120 degree situation as illustrated in Fig. 4(c) that the viscous mesh (boundary 

layer) demonstrates a good mesh quality distribution. 

 

    
(a)  

   
(b)  

   
(c)  

Fig. 4 Mesh quality contours of the medium density computational mesh around the NACA 0012 airfoil: (a) 

DGM, 60 degree rotation angle; (b) Improved-DGM, 60 degree rotation angle; (c) Improved-DGM, 120 

degree rotation angle. 
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Case2 Deforming DLR F6 wing model 

To further examine the capability of the improved mesh deformation strategy, a three-dimensional DLR F6 

model with large bending deformation is used here as an extreme test case. Fig. 5(a, b) demonstrate the 

computational mesh around the model and its corresponding background Delaunay graph. The computational mesh 

consists of about 6.46 million nodes and 19.07 million cells while the graph contains 257869 nodes and about 1 

million graph elements and the wall surface meshes are the same for the computational mesh and the graph.  

 

 
(a)        (b)         (c)         (d) 

  
(e)                  (f) 

Fig. 5 The application of improved Delaunay graph mapping method on a wing/body/pylon/nacelle model: (a) 

initial computational mesh; (b) initial Delaunay graph; (c, d) the deformed Delaunay graph; (e, f) the 

deformed computational mesh and zoom in view. 

 

Table 4 presents the average mesh quality and worst quality of the computational mesh around the DLR F6 

model when the wing of the model performs bending deformation with large vertical displacement of L, 2L, -L and -

2L at the wingtip. Compared to the initial mesh, the mesh quality does not deteriorate much even for such a large 

displacement. The breakdown of the CPU time of Improved-DGM for DLR F6 model is shown in Table 5. The 

CPU time for deforming the Delaunay graph decreased down to 83.67% of the full process which is about 5.3 times 

higher the one-to-one mapping, indicating that the robustness and good mesh quality of mesh deformation can be 

achieved by the Improved-DGM method at a moderate extra cost for large scale meshes. Fig. 5(e, f) presents the 
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deformed the computational mesh and the zoom-in views of the areas near the wingtip and the pylon, demonstrating 

that the mesh quality was well preserved. 

 
Table 4 mesh quality summarization for the computational mesh of DLR F6 model  

 Initial mesh +L +2L -L -2L 

Average quality 0.881643 0.880797 0.878079 0.880720 0.878048 

Worst quality 0.131632 0.110985 0.107877 0.110252 0.098935 

 

Table 5 Breakdown of the CPU time of mesh deformation for DLR F6 model 

 Moving 
Boundary 
nodes 

updating 
Delaunay 
graph 

relocating 
computational 
mesh nodes 

Total 

CPU Time (ms) 291.62 45785.68 8647.35 54724.65 

Percentage 0.53% 83.67% 15.80% 100% 

 

B. Hierarchically organized unstructured overset grid technique  

The developed solver uses an unstructured overset grid to simulate the flow involves complex geometries and 

multiple moving boundaries with large relative movement.  

(1) Generating and hierarchically organizing meshes 

The overset grid technique generates separate grids for each individual component, and one or more 

Cartesian/hybrid unstructured off-body grids as background grid if necessary. The generated grids are hierarchically 

organized into two levels as CLUSTER and LAYER according to [36]. A CLUSTER is usually a grid that covers a 

certain region of the flow field. It can be a body-fitting grid around geometrical component, such as wing, fuselage 

and tail, and also can be a background grid. A LAYER is a grid organizing level which consists of one CLUSTER or 

a number of overlapping CLUSTERs. One CLUSTER can overlap with other CLUSTERs in the same LAYER. One 

LAYER or several LAYERs are used to obtain an appropriate overall grid system that offers high densities in the 

near field of bodies but becomes coarser gradually towards the far field. Note that each LAYER can be only 

embedded into its immediate lower LAYER. Fig. 6 illustrates the hierarchical overset grid system for a group of 

airfoils with relative movement. Layer1, Layer2 and Layer3 each contains one CLUSTER of Cartesian grid offering 

a smooth transition from the high resolution grid near the airfoils to the coarser grid in far field and Layer4 consists 

of three CLUSTERs of body-fitted unstructured meshes with each for individual airfoil. 
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(a)                                                        (b)  

Fig. 6 Hierarchical overset grid system for a group of moving airfoils and its zoom in view. 

 
(2) Implicit hole-cutting and inter-grid boundary definition 

For flow field involves moving boundaries, a fully implicit automatic Chimera hole cutting and identification 

of inter-grid boundary procedure is implemented to exclude the mesh points or cells which do not participate in the 

computation. The grids in a higher LAYER are usually finer than the grids in a lower LAYER, or in the same 

LAYER, the grid elements closer to the body are finer than the far ones for resolving the flow structure in the near 

field region. Hence, the grid elements closer to the body are expected to be retained for the computation. For this 

reason, the wall-distance [22] is used as an indicator to decide the inter-grid boundary and thus provide the 

appropriate resolution near surfaces. 

The minimum self-wall distance from each node to the body surfaces in the same CLUSTER is first measured. 

For the body-fitted CLUSTER, the real wall distances of the nodes are computed to the self-wall boundaries. For the 

body-off CLUSTERs served as background grid, the wall distances of each node are determined according to the 

LAYER’s level as ∆d, 2∆d, 3∆d……n∆d, where n is the LAYER’s level number and ∆d is decided beforehand by 

user. Second, search the donor cell for each node lying in the overlapping regions, and then compare the wall 

distances between the node and its donor cell. If the wall distance of the node is smaller, the node is defined as an 

active node (which can also be called computational node); otherwise it is defined as a non-active node or non-

computational node. Then, by the nodal activity, all cells are classified into three groups: active cell with all nodes 

active, non-active cell with all nodes non-active and inter-grid boundary cell that has both active and non-active 

nodes. The inter-grid boundary cells are responsible to transfer the flow properties between different CLUSTERs. 

During the procedure of hole-cutting, donor cell searching is the most time-consuming part. To accelerate the 

data searching, the ADT technique [34] is again employed which organizes the grid elements of each CLUSTER 

into a binary data structure according their spatial position along alternative dimensions. In the present study, grid 



 
 

19 

elements in each CLUSTER are hierarchically organized in several ADTs and each ADT only contains the elements 

overlapped with the other CLUSTERs. By doing so, the donor cell searching between two overset CLUSTERs is 

localized to the partial overlapped region and therefore the efficiency is further improved. 

(3) Redefinition of inter-grid boundary 

The inter-grid boundary cells are identified among the sub-grids for inter-grid communication by the above 

hole-cutting and inter-grid definition procedure. However, the band of these overlapping layers is not spatially 

sufficient for a higher order flux computation. As shown in Fig. 7(a), for the interface ij between control volume i 

and control volume j, where i is active node/cell and j is interpolating node/cell determined by the initial inter-grid 

boundary defining step, only first-order accuracy of flux computation can be obtained as the flow gradient cannot be 

reconstructed due to the fact that some neighbors of control volume j are non-activated and excluded from flow 

computation. Therefore, a redefinition of inter-grid boundary, by which the non-active neighbors of volume j is 

activated as new interpolating nodes/cells, is needed to recover the high order accuracy of flux computation for 

volume i as demonstrated in Fig. 7(a). This procedure is also called for by another reason that cavities may exist 

after the initial definition of inter-grid boundary as shown in Fig. 7(b). An optimized redefining algorithm, that adds 

one or a few more layers of nodes/cells at each inter-grid boundary by advancing the inter-grid boundary to its non-

active region, is implemented for each grid CLUSTER to recover the accuracy as illustrated in Fig. 7(c). Two layers 

of interpolating nodes/cells are enough for the present secondary-order accuracy, but higher order scheme may need 

more layers. The algorithm is summarized in a pseudo program presented in Table 6 which can be applied to both 

cell-centered and cell-vertex scheme and higher order accuracy of spatial discretization. 

       

(a)          (b)           (c) 
Fig. 7 Illustration of inter-grid boundary redefinition: (a) high order accuracy of flux computation can be recovered by 

redefinition of inter-grid boundary; (b) cavities may exist after initial inter-grid boundary definition; (c) inter-grid 

boundary is extended for Mesh A (from mesh A to mesh B). 
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In the case of multiple sub-grids, there may be more than one candidate of donor cells for interpolation in the 

overlapping regions. In the current method, the active one with smallest/smaller cell volume is chosen as the 

optimum donor cell. The resulting overset mesh system of the airfoil group is illustrated in Fig. 8. The information 

transfer from a donor cell to a receiver cell/node is completed by an interpolation algorithm. 2nd order accurate 

inverse distance based interpolation method is used here. 

     
(a)        (b) 

Fig. 8 The resulting overset grid system for a group of airfoils. 
 
 
Table 6 Pseudo program for inter-grid boundary redefinition 

!After the initial inter-grid definition, 
! all cells and nodes are classified as 
!    cell-flag = 0 – non-active 
!                     1 – active 
!                     2 – BNDARY (interpolating) 
! Node-flag = 0 – non-active 
!                     1 – active 
do m = 0  number of extend layers 
 for all cells with cell-flag = BNDARY + m do 
  cell-flag = BNDARY + 1 

set non-active nodes of this cell as BNDARY + m 
add this cell to FrontCell-list 

 end 
while FrontCell-list is not empty 

  for all cells in the FrontCell-list do 
   find its non-active face-adjacent neighbor cells 

add these neighbor cells to TempFrontCell-list 
  end 

empty FrontCell-list 
for all cells in the TempFrontCell-list do 

   if it contains nodes with node-flag = BNDARY + m 
    set cell-flag = BNDARY + 1 + m 

add this cell to FrontCell-list 
   end if 
  end 

empty TempFrontCell-list 
 end 
end do 
set all cells with cell-flag ̱  BNDARY as interpolating cell 
set all nodes with node-flag ̱ BNDARY as interpolating node 

 

 
Fig. 9 Flowchart of the deformable overset 

grid method. 
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C. Deformable overset grid 

In engineering application, there are a large number of cases that involve multiple moving bodies with large 

relative displacement motion and self-body deformation at the same time, such as fish swarm swimming, flexible 

flapping wings and rotary wings coupled with structural deforming. Solely using overset grid or mesh deformation 

technique is not sufficient to satisfy the specified requirements. In the present study, an effective deformable overset 

grid is implemented by using the aforementioned hierarchical overset grid locally coupled with the improved 

Delaunay graph mapping method to perform the dynamic mesh movement. The movement of each component is 

decomposed to a relative motion and a self-deformation which are implemented by the overset grid and the mesh 

deformation technique, respectively.  

The algorithm of the proposed deformable overset grid method is summarized in a flowchart in Fig. 9. Taking a 

group of deforming airfoils with relative motion for example, the deformable overset grid technique is illustrated in 

Fig. 10. The airfoil group, consisting of Airfoil A, B and C, moves from the state in Fig. 10(d) to the position of Fig. 

10(e) or of Fig. 10(f) with each airfoil performing translation, pitching and self-deformation simultaneously. As can 

be seen, the relative movement between them is extremely large. The deformable overset grid method generates a 

coarse background Delaunay graph (see Fig. 10(a)) along with the computational mesh (see mesh CLUSTER in Fig. 

10(d)) for each airfoil and then calculates the area/volume ratio coefficients to obtain the one-to-one mapping 

between them. The domain of the Delaunay graph can be larger than that of the computational mesh, which can be 

beneficial to preserve the computational mesh quality, as the surface deformation can be propagated to very far field 

by the large domain of Delaunay graph and, therefore, the mesh quality are maintained in the near-field. At each 

time step of unsteady computation, the Delaunay graph is moved according to the specified translating or rotating 

motion and is deformed by the spring analogy according to the surface deformation (Fig. 10(b), (c))  Then the mesh 

CLUSTER of each moving component is mapped into its new position by the pre-defined one-to-one mapping (Fig. 

10(e), (f)). After the overset grid algorithm presented in Section II is performed (Fig. 10(h), (i)), the fluid flow 

computation can be fulfilled on each CLUSTER followed by flow interpolation between the CLUSTERs.  
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(a)           (b)           (c) 

 
(d)            (e)           (f) 

   
(g)           (h)           (i) 

Fig. 10 Illustration of the deformable overset grid for fish swarm swimming. 

 

IV. Application to Multi-body Unsteady Aerodynamic Test Cases 

This section performs several typical applications to examine its capability in multi-body unsteady aerodynamic 

simulations. 

A. Multi-flexible-body Problem with Relative Motion 

To test the the robustness and efficiency of the proposed deformable overset grid method in solving multiple 

bodies with both large movement and self-deformation, the unsteady flow caused by multiple flexible airfoils with 

relative motion was simulated. As shown in Fig. 11, the two airfoils on the sides of the middle one move forward 

with a relative faster speed, resulting in a shear type motion between them, while each airfoil perform a periodic 

swimming-like motion defined by the deforming of their backbone as, 

A 

A A 

B 

B 

B 

C C C 
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where 2
1 2( )a x c x c x  is the curve envelop. The swimming law is characterized by four parameters: 1 2,  c c , the 

wave length Ȝ and the frequency f. In this simulation, the free-stream conditions and the motion parameters were set 

to make the Reynolds number and the Strouhal number at Re=9.8×103, St=0.32, respectively.  

Four grid CLUSTTERs were generated and organized into two LAYERs. LAYER 1 as background mesh has 

one hybrid grid CLUSTER consisting of 49,614 rectangle/triangle elements with uniform size of 0.04L in the 

Cartesian grid zone. Three body-fitted grid CLUSTERs with refined boundary layer in LAYER 2 are related to the 

three deforming airfoils with each containing 10,801 grid cells. The relative motion of the airfoils, say the forward 

movement, was implemented by the overset grid at each time step; instantaneously, the self-deformation was locally 

handled with the improved Delaunay graph mapping method. Laminar flow was applied for this simulation. The 

deforming overset grid system and the flow field plotted with vorticity at different time instants are presented in Fig. 

11. As can be seen, the flow field reveals the period shedding of vortices due to the deforming airfoils. 

 

 
Fig. 11 The simulation of unsteady flow caused by the multiple flexible airfoils with large relative motion (left 

column: deformable overset grid; right column: vorticity contours). 

 

B. Application to 3D dragonfly model in forward flight with flexible wing 

Another application presented in this paper is a forward flight case of a 3D dragonfly model which was 

constructed according a picture of a real dragonfly as shown in Fig. 12(a). The kinematic parameters of the model’s 
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flapping wings, illustrated in Fig. 12(b), are set up the same as the forward flight case (advance ratio J=0.3) 

presented in Wang and Sun [37] with the hind-wing leading the forewing in a phase of 180o. Two kinematics of the 

motion were simulated: one is for rigid wings; the other is for flexible wings with camber deformation according to 

the data measured by Wang and Zeng [38]. The scattered camber deformation data during one flapping cycle are 

fitted into a curve as shown in Fig. 13(a) so that a continuous deformation can be implemented for the simulation. 

The flapping motion and the camber deformation for either wing during one cycle are demonstrated in Fig. 13(b). 

Fig. 14(a) and Fig. 14(b) show the grid system for the dragonfly model. A total four grid CLUSTERs were 

generated and assembled into two LAYERs. LAYER 1 has one CLUSTER serving as background grid while three 

body-fitted CLUSTERs in LAYER 2 are associated with the forewing, the hindwing and the body, respectively. A 

total four CLUSTERs consist of about 1.04 million nodes and 2.54 million cells. 

Laminar model was employed for the simulation as the Reynolds number is only 1566 based on the mean chord 

length L and the mean translating velocity Uref at 2/3 spanwise location of the forewing.  

           
(a)            (b) 

Fig. 12 Geometric and kinematic definition of a dragonfly model. 

 

      
(a)           (b)  

Fig. 13 Camber deformation of the dragonfly flapping wings during one flapping cycle. 
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(a)                                                      (b)  

Fig. 14 Overset grid system for the dragonfly model: (a) overset grid before hole-cutting; (b) overset grid 

after hole-cutting. 

 
The results for the vertical force coefficient caused by the forewing and the hindwing are shown in Fig. 15(a) and 

Fig. 15(b). The vertical forces computed by Wang and Sun [37] for rigid wings are also presented for comparison. 

As can be seen, good agreement in trend was obtained as the same kinematic motion of wings were employed by 

both studies, while the difference in the wing geometries (platform, aspect ratio and area) results in a difference in 

the predicted peaks of vertical forces. Comparison of vertical force between the rigid wings and flexible wings 

indicates that wing’s flexibility benefits the aerodynamics of flapping wing. Spanwise pressure contours of the two 

styles of flow at 2/3 wing length are plotted in Fig. 16(a, b). It can be seen from the figure that the pressure contours 

pass smoothly across the overlapping region showing proper communication between different sub-grids.  

 

      
(a)               (b) 

Fig. 15 Time courses of vertical force coefficient caused by the wings of the dragonfly model. 
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(a)            (b) 

Fig. 16 Spanwise pressure contours at 2/3 wing span length of the dragonfly model: (a) rigid wings; (b) 

flexible wings. 

 
Fig. 17 plots the iso-surface of the vorticity at different time instants during one flapping cycle, where the 

evolution of the starting vortex, leading edge vortex, wake vortex and tip vortex are clearly captured. The LEVs on 

the forewing and hindwing augment the vertical force generation with the first force peak at t/T = 0.25 as seen in 

Fig. 15(a) and the second peak at t/T=0.7 in Fig. 15(b), respectively. The second peak of the forewing (t/T = 0.4) 

and the third peak of the hindwing (t/T = 0.9) might due to the generation of the RSV that create a low pressure 

region on the upper wing surface. 

 

 
 
Fig. 17 Vortical structures generated by the dragonfly model during one flapping cycle plotted by the iso-

surface of the vorticity magnitude (J=0.3, =180o ,|Ȧ|=0.72Uref /L), notations are RSVιRotational Starting 

Vortex; LEVιLeading Edge Vortex; TVιTrailing Vortex; WVιWingtip Vortex; FιForewing, Hι

Hindwing. 
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V. Conclusion 

 A deformable overset grid method was proposed in this paper by combining an unstructured overset grid with an 

improved Delaunay graph mapping deformation method for simulating unsteady flows involving multiple moving 

bodies. The original Delaunay graph mapping method was firstly improved by creating a very coarse mesh as 

background graph which is deformed by means of spring analogy. As demonstrated by a two-dimensional rotating 

airfoil and a three-dimensional bending DLR F6 wing, the robustness (i.e. mesh quality) of the proposed mesh 

deformation method is significantly improved when comparing with the original method, particularly when the 

moving bodies experience large rotational deformation. The additional computational expense associated with the 

improved Delaunay graph mapping method is more than offset by the significantly improved robustness.  

 An unstructured overset grid technique, with sub-grids hierarchically organized into CLUSTERs and LAYERs, 

allows for overlapping and embedding of different type meshes, of which the mesh quality and resolution can be 

independently controlled. An efficient implicit hole-cutting and inter-grid boundary definition procedure was 

designed that allows a fully automatic implementation for either cell-centered or cell-vertex schemes. By locally 

coupled with the improved Delaunay graph mapping method on sub-grid CLUSTERs associated with deforming 

bodies, the deformable overset grid was implemented for multi-body unsteady problems with simultaneous large 

relative movement and surface deformation. This dynamic mesh method inherits the advantages of the overset grid 

method in handling large relative boundary movement, and also benefits from the efficiency of the mesh 

deformation technique based on Delaunay graph mapping for small deformation, especially when the mesh 

deformation is localized. 

 The deformable overset grid method was successfully applied to two unsteady aerodynamic problems, flows 

around multiple flexible moving airfoils and multiple deforming flapping wings, to demonstrate its capability for 

simulating multiple body flows undergoing both large relative movement and self-deformation. The results showed 

the robustness of this method for complex unsteady problems and suggested this method to be an efficient way to 

solve the problems that afflict the previous dynamic mesh methods. 
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