
This is a repository copy of Deformable Overset Grid for Multibody Unsteady Flow
Simulation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/102327/

Version: Accepted Version

Article:

Xiao, T., Qin, N. orcid.org/0000-0002-6437-9027, Luo, D. et al. (1 more author) (2016)
Deformable Overset Grid for Multibody Unsteady Flow Simulation. AIAA Journal, 54 (8).
pp. 2392-2406. ISSN 0001-1452

https://doi.org/10.2514/1.J054861

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

1

Deformable Overset Grid
 for Multi-Body Unsteady Flow Simulation

Tianhang Xiao*

 Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Ning Qin†
The University of Sheffield, Sheffield, S1 3JD, UK

Dongming Luo‡

Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Shuanghou Deng§
Delft University of Technology, Delft, the Netherlands, 2629HS, the Netherlands

A deformable overset grid method is proposed to simulate the unsteady aerodynamic problems with

multiple flexible moving bodies. This method uses an unstructured overset grid coupled with local mesh

deformation to achieve both robustness and efficiency. The overset grid hierarchically organizes the sub-grids

into CLUSTERs and LAYERs, allowing for overlapping/embedding of different type meshes, in which the

mesh quality and resolution can be independently controlled. At each time step, mesh deformation is locally

applied to the sub-grids associated with deforming bodies by an improved Delaunay graph mapping method

that uses a very coarse Delaunay mesh as the background graph. The graph is moved and deformed by the

spring analogy method according to the specified motion and then the computational meshes are relocated by

a simple one-to-one mapping. An efficient implicit hole-cutting and inter-grid boundary definition procedure

is implemented fully automatically for both cell-centered and cell-vertex schemes based on the wall distance

and an alternative digital tree (ADT) data search algorithm. This method is successfully applied to several

complex multi-body unsteady aerodynamic simulations and the results demonstrate the robustness and

efficiency of the proposed method for complex unsteady flow problems, particularly for those involve

simultaneous large relative motion and self-deformation.

————————————————————
* Associate Professor, College of Aeronautics and Astronautics, 29 Yudao Street; Visiting Scholar, Department of

Mechanical Engineering, University of Sheffield.
† Professor of Aerodynamics, Department of Mechanical Engineering, Mappin Street, AIAA Associate Fellow.
‡ Lecturer, College of Aeronautics and Astronautics, 29 Yudao Street.
§ PhD researcher, Faculty of Aerospace Engineering, Kluyverweg 1. AIAA Student Member.

2

Nomenclature
c = speed of sound

Cv = vertical force coefficient

d = distance

e = area/volume ratio coefficient

E = internal energy per unit mass

f = frequency

F = convective flux vector

vF = viscous flux vector

J = advance ratio

kij = spring stiffness

L = characteristic length/chord length

Ma = Mach number

n = unit normal vector

Q = entropy variables

Re = Reynolds number

RES = residual

S = area or entropy

St = Strohaul number

t = physical time

T = periodic time

Qī
 = preconditioning matrix for entropy variables

Wī = preconditioning matrix for conservative variables

U = free-stream velocity magnitude

V = volume

 = u, ,V v w
= velocity vector

W = conservative variables

x = Cartesian coordinate

 = density

 = control volume

 = pseudo-time

3

I. Introduction

nsteady flow simulation around multiple moving objectives poses numerical challenges for efficient and robust

meshing strategies. Four methodologies are documented that can simulate the unsteady flow around bodies with

locomotion, i.e., the re-meshing method, the immersed boundary method (IBM), the mesh deformation method and

the overset grid.

Re-meshing during unsteady motion can be carried out to address the change of the solution domain. However

there are two fundamental problems with such approach. Most importantly, re-meshing during time evolution

suffers from an accuracy loss due to solution interpolation in the physical conservation laws, where the

computational accuracy will be reduced because the new grid and the original one at the previous time step are not

necessarily consistent. Secondly, re-meshing will require some significant additional computational effort for

complicated geometries.

The IBM method [1] is extensively used in simulations involving moving bodies, particularly for low Reynolds

number flows. It discretizes the governing equations entirely on a fixed Cartesian grid, which does not conform to

the geometry of the boundaries. The presence of solid boundaries is represented by adding appropriate forcing to the

flow equations. This method therefore avoids the complicated grid movements. Such a feature makes it attractive for

simulating flows that involve moving bodies. However, imposing the wall boundary condition in IBM is not

straightforward, and may negatively impact on the accuracy and conservation properties of the numerical scheme. In

addition, it is noted that for high Reynolds numbers the computation becomes expensive in order to resolve the flow

behavior in the boundary layer.

Different from the re-meshing method, mesh deformation methods deform the grid with respect to the specified

motion where the grid connectivity is preserved. Generally, the mesh deformation techniques offer better

computational efficiency and numerical accuracy compared with the re-meshing method. Mesh deformation can be

mainly classified into two categories: physical analogy and interpolation method.

Physical analogies for mesh deformation, such as the spring analogy method first developed by Batina [2], use

certain physics processes to propagate the perturbation of boundaries to the field mesh. The spring analogy method

models the whole mesh as a network of linear springs, in which each grid edge is viewed as a spring with stiffness

proportional to the reciprocal of the length, and the new position of mesh points are determined by solving a static

equilibrium equation. The spring analogy method has been successfully applied to a wide range of unsteady and

U

4

optimization problems. However, the mesh quality will be difficult to be preserved by spring analogy when large

displacement occurs since ill -conditioned or even negative cells may easily be created and thus abort the solution

process. To overcome this problem, some efforts have been made for improving the robustness of spring analogy.

Farhat et al. [3,4] introduced non-linear torsional springs to the spring analogy method to avoid the mesh crossing

associated with the linear spring network and Murayama et al. [5] linked the grid edge stiffness with the angle

between the faces to avoid the generation of squashed invalid elements. Elastic analogy [6,7], which can be viewed

as an extension of the spring analogy, treats the grid as an elastic body following linear elasticity equations of solid

mechanics. Theoretically, this method could be robust as it links the stiffness of a region to its volume and sets the

boundary layer as a solid body. However, the performance of this method varies for different mesh types and

magnitude of mesh deformation. All the spring analogy methods as mentioned above have to solve huge equations

and become very expensive for large meshes.

An interpolation method for mesh deformation, by applying certain interpolation schemes, directly obtains the

new position or the displacement of each mesh point so as to reflect geometric changes. Transfinite interpolation

(TFI) [8] is an algebraic mesh generation method for generating structured meshes. It can also be used as a mesh

deformation method for structured meshes if all the mesh generation parameters are kept the same as the geometry

deforms. In principal, TFI interpolates the displacements of points on boundaries along mesh lines to the points in

the interior domain. Combined with the multi-block structured grid, the ability of TFI can be enhanced to handle

three-dimensional geometric perturbations. TFI has been widely used in aeroelasticity, aerodynamic optimization

and multidisciplinary optimization to generate the dynamic structured grid. However, the efficiency and robustness

of the TFI are limited to applications for structured meshes. There is also another type of interpolation methods

developed without dependency on mesh topology and therefore they can be applied to different kind of meshes. This

type of methods is typically represented by the Delaunay graph mapping method (DGM) proposed by Liu et al. [9]

and the radial basis function (RBF) method proposed by de Boer [10] and further developed by Rendall and Allen

[11,12,13]. The mesh deformation method based on Delaunay graph mapping [9] has been proved as a fast mesh

deforming method due to the fact that it uses an explicit algebraic one to one mapping rather than solve a differential

equation or a large linear system. The drawback of this method is that the mesh quality near the moving boundaries

is difficult to be preserved when the moving bodies exhibit large rotation, which can lead to an invalid Delaunay

graph. Alternatively, a mesh deformation method [10] using the radial basis functions interpolation [14,15] provides

5

a more robust moving mesh, which can handle larger mesh rotational deformation. However, the robustness is at the

expense of computational cost with large mesh due to the fact that the interpolation of any mesh point is a global

function involving position changes of all basis points on the surface. The size of the linear system to be solved is

directly related to the number of the moving surface mesh points. To accelerate the computation, data reduction

algorithms were proposed by Rendall and Allen [11, 12, 13], Sheng and Allen [16] and Wang et al. [17] to limit the

RBF interpolation on a coarsened subset of surface mesh. To decrease the error on the surface points, they applied a

greedy algorithm to select the optimum reduced set of surface mesh. Using only portion of the moving surface mesh

points as basis points cannot fully recover the exact deformation, making it difficult to tackle aerodynamic problems

which are sensitive to small-scale deformation. Most recently, Wang and Qin [18] developed a method combining

the Delaunay graph mapping with local RBF, in which the Delaunay graph is used to group fluid mesh points, and

the nodes of each graph element are treated as basis points of RBF for each group of fluid mesh points. This method

can dramatically reduce the number of the basis points for RBF and hence results in higher computational efficiency

and more robustness for mesh deformation. However, this method has to treat translation and rotation motion in

separated ways, which may be difficult to distinguish in some applications.

It has to be mentioned that, though numerous efforts have been made within the methodology to improve the

performance of the mesh deformation methods, these methods suffer from the problem with large deformation, in

particular, with large relative motion of multiple bodies. Mesh quality is difficult to be preserved, or even, mesh

could degenerate, when large displacements occur. A remedial measurement for the degenerated mesh quality is to

locally or even fully regenerate the mesh. Zhang and Wang [19] used an unstructured grid to link the body-fitted

grid and Cartesian grid and applied a local grid regeneration on this part when mesh deformation deteriorates. Zhang

et al. [20] further extended this technique to three-dimensional applications where dynamic hybrid mesh

deformation are applied in combination with local re-meshing. Still local grid regeneration is a costly part with

penalty of complex algorithm design and accuracy loss at the same time.

In addition to the aforementioned grid regeneration and mesh deformation methodologies, the overset grid is a

mature technology that has been used for decades to simplify the grid generation for complex geometries and as an

embedding technique for simulations involving multiple bodies with relative movement. The overset grid method

was firstly proposed by Steger [21] and subsequently extended by Nakahashi et al. [22] for its applications on

unstructured grids. The overset grid can be applied to store separation, turbomachinery [23], rotary aircrafts [24,25]

6

and flapping wing aerodynamics [26,27]. For problems with boundary deformation, Fast and Henshaw [28] applied

the overset grid in conjunction with a hyperbolic grid generator. In their work, a thin layer of body-fitted structured

grid around the deforming boundary is overlapped on a fixed Cartesian grid covering the entire computational

domain. At each time step, the body-fitted grid was regenerated for the deforming shape resulting from flow-

structure interaction. By doing so, the global mesh regeneration switches to a local one, which improves the

computational efficiency. However, local grid regeneration is still expensive, in particular, for complex three-

dimensional large mesh systems.

There are many engineering applications, which exhibit simultaneous large relative displacement between bodies

with self-deformation, such as flexible flapping wings, fish swarming, rotary wings coupled with structural

dynamics, pose significantly challenge to the dynamic mesh techniques. Solely using mesh deformation methods or

overset grid cannot satisfy the extreme scenarios mentioned above in terms of preserving the mesh quality and

computational efficiency. To successfully simulate the unsteady flow field contains multiple bodies undergoing

relative motion and deformation, a deformable overset grid by using unstructured overset grid technique coupled

locally with an improved Delaunay graph mapping mesh deformation method is proposed in the present study. This

paper is organized as follows: the numerical frame of an in-house developed unsteady Reynolds averaged Navier-

Stokes (URANS) solver is introduced in Section 2; the dynamic mesh techniques, including the improved Delaunay

graph mapping mesh deformation, unstructured overset grid method and deformable overset grid, are presented in

Section 3; followed by several demonstration cases in Section 4 and the conclusions in Section 5.

II. Numerical frame of the URANS solver

In this section, some key elements of an in-house unsteady Reynolds-averaged Navier-Stokes flow solver used in

this study are briefly described.

A. Governing equations in arbitrary Lagrangian Eulerian form

For the general problem of compressible flows in a moving and deformable computational domain()t with

boundary ()t , the integral form of unsteady compressible Navier-Stokes equations can be written as̟

  
() () ()

d () d dvt t t
V n S S

t   


   

   W F W W Fx , (1)

7

where W represents the vector of conservative variable (mass, momentum, and energy),

 u v w E    W T, ()F W represents the convective fluxes and vF represents the viscous fluxes. x

andn are the velocity and the unit normal of the interface()t , respectively.

Defining gnv n x , the case gnv V n  (where  = , ,V u v w is the vector of flow velocity) corresponds to a

Lagrangian system, and gn 0v  is an Eulerian one. In the present formulation, gnv is arbitrarily specified. The

Spalart-Allmaras one-equation model and the Menter k-Ȧ SST two-equation model are implemented in the

developed code to close the governing equations for turbulent flows.

B. Dual-time stepping with low Mach number preconditioning

For the solution of unsteady flow, a dual-time stepping algorithm is employed in conjunction with low Mach

number preconditioning intended for extending application of the solver to low speed flows. The governing

equations with a preconditioned pseudo-time-derivative term introduced into Eq.(1) can be written as follows:

 gn() () () ()
d d () d dW vt t t t
V V v S S

t    

 
   

    ī W W F W W F , (2)

where  and t denote pseudo and physical time respectively, and Wī is the preconditioning matrix. This approach

involves an inner iteration loop in each pseudo time step that is wrapped by an outer loop stepping through physical

time, whereas convergence of the inner iterations in pseudo-time is optimized by preconditioning, local time

stepping or other convergence enhancement techniques.

For the convenience of preconditioning analysis, primitive variables instead of the conservative variables are

selected as the system variables. The present analysis is simplified by considering the entropy variables

 d d d d d dp c u v w SQ where 2d d dS p c   is proportional to the change in entropy. In terms of

conservative variables, the preconditioning matrix is W Q





Qī ī
W

 where Qī represents the preconditioning matrix

for the entropic variables designed as  2diag 1 1 1 1Q 


Wī
Q

. In this paper,  is designed for the purpose

of improving robustness for unsteady flow with moving boundaries as follows,

  2 2 2
Local minmin max , , 1.0Ma  ,

where LocalMa is the local maximum relative Mach number defined as,

8

neighbors
Local max ,

g g cell
V V V V

Ma
c c

  
 
 
 

,

and 2 2 2
min ,mean3max(,)gMa Ma  , gV represents grid velocity vector, Ma the incoming free-stream Mach number

and ,meangMa the mean Mach number of moving boundaries.

C. Finite volume discretization: a unified approach for either cell-centered or cell-vertex scheme

In the code, a unified approach is used for either cell-centered or cell-vertex discretization applying on arbitrary

type meshes (structured, unstructured, Cartesian or hybrid of them). A face-based data structure is employed which

creates pointers from cell interfaces to adjacent control volumes as the only connectivity information. Cell-centered

discretization using the primary mesh or cell-vertex discretization using the median dual mesh can be selected at

run-time, the only difference being the preparation of the metric data. Eq. (2) can be discretized in a polygonal

control volume iV as:

() ()
()i i

Wi i

V V

t
 

  
 
W Wī RES W (3)

1 1

() ()
nface nface

i ij ij vij ij
j j

S S
 

  RES W F W F
 .

The inviscid flux, through the interfaceijS between the control volume iV and jV , is calculated using a

reformulated Roe-type flux difference splitting scheme. The left and right state variables at both sides of a control

volume face are reconstructed by a weighted least square or Green-Guass linear gradient reconstruction approach

with Venkatakrishnan’s limiter [29] applied to prevent oscillations near shock waves. For viscous fluxes

computation, the velocity and temperature gradients at the interface are obtained by averaging the values of its

adjacent control volumes with an additional correction in the direction from volume centroid i to volume centroid j

to avoid odd-even decoupling.

When dynamic meshes are used, the grid velocitiesx and the surface unit normal n need to be considered

carefully so that the errors introduced by the mesh deformation do not degrade the accuracy of the flow

computation. The discrete geometric conservative law [30, 31, 32] provides a guideline on how to evaluate these

parameters.

D. Temporal discretization and implicit iteration

9

The pseudo-time term in Eq.(2) is discretized with a first order backward difference and the physical time term is

discretized in an implicit fashion by means of k -step backward difference respectively. The linearized equations

system is finally given as,

 
1 1 1 1

1 1

0

1
()

n n m n k
n hmi n i n

Wi i n h
h

V V V
V

t t t

 




   
 




 
            

WRESī W RES W W
W

, (6)

where mand n denote pseudo-time and physical time steps, respectively. The choice of the sequence  n [33]

governs the accuracy of the temporal discretization from the steady flow solver mode to unsteady schemes up to 3rd

order time accuracy. The linear system of equations for the increments to the dependent variables, given by Eq.(6) is

solved by an iterative Lower-Upper Symmetric Gauss-Seidel or Krylov subspace type Generalized Minimal

Residual (GMRES) algorithm.

In this study, all the unsteady flow simulations were performed by using cell-vertex scheme for spatial

discretization with Green-Gauss gradient reconstruction. Second-order temporal accuracy was achieved by implicit

GMRES with the residual of each time-step reduced by at least two orders.

III. Deformable Overset Grid

In this section, an improved Delaunay graph mapping strategy is first developed to achieve a robust and efficient

mesh deformation. Secondly, the overset grid method and its combination with the local mesh deformation are

presented.

A. Improved Delaunay graph mapping for mesh deformation

The mesh deformation method base on Delaunay graph mapping [9] has been proved to be an efficient mesh

deformation method since it uses an explicit algebraic one to one mapping. The original Delaunay background graph

is generated by all the surface mesh points and a few boundary points at the outer boundary. A notable disadvantage

of this choice is that the initial Delaunay graph will easily get invalid when large rotational deformation occurs. To

solve the aforementioned problem, a finer Delaunay graph, yet a very coarse mesh is proposed to work as the

background graph here. The spring analogy method is then used to deform the Delaunay graph according to

specified movement. The original computational mesh is mapped into their new position using the algebraic one to

one mapping [9]. By doing so, the robustness of the original Delaunay graph mapping method is improved without

substantially increasing the computational cost, as the spring analogy method is only applied on a very coarse

10

background Delaunay graph. The algorithm of the proposed graph mapping is illustrated using a periodic pitching

NACA0012 airfoil (seen in Fig.1) exhibits a sinusoidal kinematics: () 90 sin(2)a t ft as follow:

(1) Generating background Delaunay graph in the computational domain.

A good quality computational mesh is generated in the computational domain (Fig. 1(a)). In the same domain, a

very coarse background Delaunay graph (Fig. 1(b)) is generated, and the background graph will be moved by spring

analogy method on demand. For the Delaunay graph, the grid distribution on the moving boundaries (walls) should

be identical to the computational mesh to preserve full integrity of boundary movement, while the entire domain is

meshed with a large growth rate, yet resulting in much less cell amount when compared with the computational

mesh. This can be helpful to propagate the deformation to the very far field while the mesh quality in the area near

wall boundaries can be preserved.

 (a) (b)

(c) (d)

Fig. 1 Improved Delaunay graph mapping method: (a) initial computational mesh; (b) coarse background

Delaunay graph mesh; (c) deformation of the background graph; (d) deformation of the computational mesh

after the one to one Delaunay graph mapping.

(2) Defining one-to-one mapping between the computational mesh and the Delaunay graph.

 For each computational mesh point P, by using the efficient searching Alternative Digital Tree (ADT) algorithm

[34], the Delaunay graph element E is found where the mesh point P locates. As illustrated in Fig. 2 for 2D case but

without losing its generality, the corresponding area (2D) or volume (3D) ratios based on Eq. (7) [9] are then

11

calculated to obtain the uniquely defined one-to-one mapping between the mesh point and the graph element for

two-dimensional or three-dimensional cases. The area or volume coefficientsie , which uniquely determine the

relative position of point P in the graph element E, are defined as,

, 1,2,3 (2D)

, 1,2,3,4 (3D)
i i

i i

e S S i

e V V i

 
 

 , (7)

where Si denotes the area of the triangle formed by point P and the edge of graph element E for 2D case while Vi is

the volume of the tetrahedral formed by the point P and the face of element E. S or V is total area or total volume of

the graph element.

The calculated area/volume coefficients of each mesh point are stored along with the graph element number as a

primary quantity before deforming the mesh and remain the same during the mesh deformation.

Fig. 2 Illustration of Delaunay graph mapping method.

(3) Moving or deforming the Delaunay graph.

Treated as a network of springs, the background Delaunay graph is moved by means of the spring analogy

model with passive deformation accordingly, as shown in Fig. 1(c). Although more sophisticated methods including

torsional springs are available, the commonly used spring analogy model of Batina [2] is employed in this procedure

by considering the fact that the background graph is very coarse with large disparity of mesh density near the wall

and far away from the wall and, therefore, this method is sufficient for deforming the Delaunay graph in a robust

manner even for large displacements. With graph element edges modelled as springs, the static equilibrium equation

for node i can be written as,

 
1

0
iNE

ij i j
j

k  


  x x

12

where NEi is the number of nodes directly connected to node i by the element edges,  x represents node

displacement vector and ijk is the linear spring stiffness for a given edge ij. In the present study, ijk is calculated as

2
1ij i jk  x x .

By applying the static equilibrium equation to all nodes in the Delaunay graph, a system of equations can be

derived. Again, the efficient iterative methods used in the flow solver can be used here. In the present study, the

derived linear system is iteratively solved by a preconditioned conjugated gradient algorithm with tolerance of 10-10.

(4) Relocating the computational mesh points by the pre-calculated one-to-one mapping coefficients.

After the background Delaunay graph is deformed, as illustrated in Fig. 2, the computational mesh points can be

mapped into new position by the one to one mapping scheme. The new position Px of computational mesh point P

is calculated based on the pre-calculated area/volume ratio coefficients as,

1

n

P i ENii
e


 x x ,

where ENix is the new position of the ith node of the moved graph element, and n=3 for two dimensional case, n=4

for three dimensional case. The deformed computational mesh around the NACA0012 airfoil can be seen in Fig. 1

(d).

Comparing to the original Delaunay graph mapping method [9], using a coarse background mesh modeled by a

spring analogy model as the mapping graph is principally able to improve the robustness in terms of preserving the

mesh quality. The new Delaunay graph contains a small number of interior points, rather than the original one which

only consists of surface mesh points and some outer boundary points. It can propagate the wall displacement, both

translation and rotation, to the far field by spring analogy effectively and, therefore, can survive from graph element

intersection for larger displacement. In the meantime, the very coarse Delaunay graph with large disparity of

element size is beneficial to maintain the quality of the graph elements near wall boundaries. These small size

elements are hardly deformed due to their strong stiffness while the large size elements in the far field absorb the

most of the perturbation. As a result, the computational mesh quality is well maintained in the area near wall

boundaries where the mesh quality is particularly important especially for viscous flow simulation. In addition, as

the spring analogy is only applied on a very coarse graph, rather a dense computational mesh, the graph updating

procedure does not dramatically scarify the computational time.

To assess the aforementioned capability of the improved method, evaluations were performed on two typical

13

test cases, a two-dimensional NACA0012 airfoil rotating around its ¼ chord axis, and a three-dimensional DLR-F6

model deforming following a prescribed blending motion. These two test cases were performed on a computer with

Intel i7-4500@2.4G Hz CPU and 16GB RAM. For the sake of comparison, the same tests were run by both the

original Delaunay graph mapping (hereafter referred to as DGM) and the improved Delaunay graph mapping

method (hereafter referred to as Improved-DGM).

Case1 Rotating NACA0012 airfoil

 In the first case, the two-dimensional NACA0012 airfoil rotates around its ¼ chord position with a constant

angular speed at 1 degree/step within a fixed box boundary. In order to test the range of rotation the method can

tolerate, the rotation continues until element crossing occurs in the Delaunay graph which is regarded as the rotating

limit for valid mesh deformation. To address the effect of mesh density on the efficiency and deforming capability,

four sets of meshes with different resolutions are compared in Table 1.

Table 1 Mesh size of the NACA0012 airfoil

 Computational mesh Background Delaunay graph

 Nodes on wall Total nodes Total cells Nodes on wall Total nodes Total cells

Coarse 200 7510 11443 200 1236 2249

Medium 400 16288 22042 400 2348 4261

Fine 800 35282 43281 800 4367 7893

Extra fine 1600 92976 104855 1600 6414 11583

Fig. 3 shows the average and worst mesh quality of the computational mesh by both DGM and Improved-

DGM. The grid cell shape/skew [35] is regarded as a criterion here to represent the grid quality ranges from 0 to 1

where 1 means an equilateral cell and 0 indicates the mesh is degenerated. As seen for all the mesh density, the mesh

quality of DGM, either average or worst value, degrades rapidly as rotation angle increases while the Improved-

DGM successfully maintains the average quality at a relative high level throughout with only a very small

degradation even at very large rotational displacement. Considering the worst grid quality, a plateaus region is found

at small rotating angles for the Improved-DGM, which indicates that the mesh quality can be well maintained with

small rotating magnitude.

14

Fig. 3 Mesh quality vs. rotation angle (Left: average mesh quality; Right: worst mesh quality)

The rotation angle limit and average CPU time per step for both DGM and Improved-DGM is summarized in

Table 2. As illustrated, the Delaunay graph are invalid at around 62-64 degree when using DGM, whereas the mesh

system is admitted as valid with Improved-DGM even the airfoil rotates up to around 150 degree. Regarding the

efficiency, the CPU time of Improved-DGM is about one order higher as compared to DGM, a price for robustness.

Nevertheless, the Improved-DGM method is a few orders more efficient than the original spring analogy method for

deforming the mesh. In addition, the extra computational cost decreases relatively with the increase of mesh size, as

can be seen from the time ratio listed in Table 2.

Table 2 Comparison of rotation angle limit and average CPU time per step

 Rotation angle limit Average CPU time per step
 DGM Improved-DGM DGM Improved-DGM ratio
Coarse 64deg 146deg 6.23ms 101.12ms 16.23
Medium 64deg 147deg 12.66ms 213.46ms 16.86
Fine 64deg 144deg 27.02ms 379.40ms 14.04
Extra fine 62deg 151deg 69.60ms 590.65ms 8.49

To expand this point, Table 3 shows the breakdown of the CPU time for the Improved-DGM. The CPU time of

Improved-DGM can be principally divided into three parts: (1) moving boundary nodes based on the specified

motion; (2) updating Delaunay graph; (3) relocating the computational mesh by the algebraic one-to-one mapping.

As shown in Table 3, the ratio of the updating Delaunay graph procedure decreases with the increasing grid size.

Table 3 Breakdown of the CPU time for Improved-DGM

 Moving
Boundary
nodes

updating
Delaunay
graph

relocating
computational
mesh nodes

Coarse 0.12% 93.84% 6.04%
Medium 0.10% 94.07% 5.83%
Fine 0.11% 92.88% 7.01%
Extra fine 0.13% 88.22% 11.65%

15

Fig. 4 plots the mesh quality contour of the computational mesh by both DGM and Improved-DGM. The

DGM method cannot guarantee a good mesh quality near the moving boundary as shown in Fig. 4(a), while the

Improved-DGM method is able to propagate the rotational displacement to the very far-field and hence the mesh

quality can be well preserved (seen in Fig. 4(b)). The robustness of the Improved-DGM method is further evidenced

by keeping rotating the airfoil to 120 degree situation as illustrated in Fig. 4(c) that the viscous mesh (boundary

layer) demonstrates a good mesh quality distribution.

(a)

(b)

(c)

Fig. 4 Mesh quality contours of the medium density computational mesh around the NACA 0012 airfoil: (a)

DGM, 60 degree rotation angle; (b) Improved-DGM, 60 degree rotation angle; (c) Improved-DGM, 120

degree rotation angle.

16

Case2 Deforming DLR F6 wing model

To further examine the capability of the improved mesh deformation strategy, a three-dimensional DLR F6

model with large bending deformation is used here as an extreme test case. Fig. 5(a, b) demonstrate the

computational mesh around the model and its corresponding background Delaunay graph. The computational mesh

consists of about 6.46 million nodes and 19.07 million cells while the graph contains 257869 nodes and about 1

million graph elements and the wall surface meshes are the same for the computational mesh and the graph.

(a) (b) (c) (d)

(e) (f)

Fig. 5 The application of improved Delaunay graph mapping method on a wing/body/pylon/nacelle model: (a)

initial computational mesh; (b) initial Delaunay graph; (c, d) the deformed Delaunay graph; (e, f) the

deformed computational mesh and zoom in view.

Table 4 presents the average mesh quality and worst quality of the computational mesh around the DLR F6

model when the wing of the model performs bending deformation with large vertical displacement of L, 2L, -L and -

2L at the wingtip. Compared to the initial mesh, the mesh quality does not deteriorate much even for such a large

displacement. The breakdown of the CPU time of Improved-DGM for DLR F6 model is shown in Table 5. The

CPU time for deforming the Delaunay graph decreased down to 83.67% of the full process which is about 5.3 times

higher the one-to-one mapping, indicating that the robustness and good mesh quality of mesh deformation can be

achieved by the Improved-DGM method at a moderate extra cost for large scale meshes. Fig. 5(e, f) presents the

17

deformed the computational mesh and the zoom-in views of the areas near the wingtip and the pylon, demonstrating

that the mesh quality was well preserved.

Table 4 mesh quality summarization for the computational mesh of DLR F6 model

 Initial mesh +L +2L -L -2L

Average quality 0.881643 0.880797 0.878079 0.880720 0.878048

Worst quality 0.131632 0.110985 0.107877 0.110252 0.098935

Table 5 Breakdown of the CPU time of mesh deformation for DLR F6 model

 Moving
Boundary
nodes

updating
Delaunay
graph

relocating
computational
mesh nodes

Total

CPU Time (ms) 291.62 45785.68 8647.35 54724.65

Percentage 0.53% 83.67% 15.80% 100%

B. Hierarchically organized unstructured overset grid technique

The developed solver uses an unstructured overset grid to simulate the flow involves complex geometries and

multiple moving boundaries with large relative movement.

(1) Generating and hierarchically organizing meshes

The overset grid technique generates separate grids for each individual component, and one or more

Cartesian/hybrid unstructured off-body grids as background grid if necessary. The generated grids are hierarchically

organized into two levels as CLUSTER and LAYER according to [36]. A CLUSTER is usually a grid that covers a

certain region of the flow field. It can be a body-fitting grid around geometrical component, such as wing, fuselage

and tail, and also can be a background grid. A LAYER is a grid organizing level which consists of one CLUSTER or

a number of overlapping CLUSTERs. One CLUSTER can overlap with other CLUSTERs in the same LAYER. One

LAYER or several LAYERs are used to obtain an appropriate overall grid system that offers high densities in the

near field of bodies but becomes coarser gradually towards the far field. Note that each LAYER can be only

embedded into its immediate lower LAYER. Fig. 6 illustrates the hierarchical overset grid system for a group of

airfoils with relative movement. Layer1, Layer2 and Layer3 each contains one CLUSTER of Cartesian grid offering

a smooth transition from the high resolution grid near the airfoils to the coarser grid in far field and Layer4 consists

of three CLUSTERs of body-fitted unstructured meshes with each for individual airfoil.

18

(a) (b)

Fig. 6 Hierarchical overset grid system for a group of moving airfoils and its zoom in view.

(2) Implicit hole-cutting and inter-grid boundary definition

For flow field involves moving boundaries, a fully implicit automatic Chimera hole cutting and identification

of inter-grid boundary procedure is implemented to exclude the mesh points or cells which do not participate in the

computation. The grids in a higher LAYER are usually finer than the grids in a lower LAYER, or in the same

LAYER, the grid elements closer to the body are finer than the far ones for resolving the flow structure in the near

field region. Hence, the grid elements closer to the body are expected to be retained for the computation. For this

reason, the wall-distance [22] is used as an indicator to decide the inter-grid boundary and thus provide the

appropriate resolution near surfaces.

The minimum self-wall distance from each node to the body surfaces in the same CLUSTER is first measured.

For the body-fitted CLUSTER, the real wall distances of the nodes are computed to the self-wall boundaries. For the

body-off CLUSTERs served as background grid, the wall distances of each node are determined according to the

LAYER’s level as ∆d, 2∆d, 3∆d……n∆d, where n is the LAYER’s level number and ∆d is decided beforehand by

user. Second, search the donor cell for each node lying in the overlapping regions, and then compare the wall

distances between the node and its donor cell. If the wall distance of the node is smaller, the node is defined as an

active node (which can also be called computational node); otherwise it is defined as a non-active node or non-

computational node. Then, by the nodal activity, all cells are classified into three groups: active cell with all nodes

active, non-active cell with all nodes non-active and inter-grid boundary cell that has both active and non-active

nodes. The inter-grid boundary cells are responsible to transfer the flow properties between different CLUSTERs.

During the procedure of hole-cutting, donor cell searching is the most time-consuming part. To accelerate the

data searching, the ADT technique [34] is again employed which organizes the grid elements of each CLUSTER

into a binary data structure according their spatial position along alternative dimensions. In the present study, grid

19

elements in each CLUSTER are hierarchically organized in several ADTs and each ADT only contains the elements

overlapped with the other CLUSTERs. By doing so, the donor cell searching between two overset CLUSTERs is

localized to the partial overlapped region and therefore the efficiency is further improved.

(3) Redefinition of inter-grid boundary

The inter-grid boundary cells are identified among the sub-grids for inter-grid communication by the above

hole-cutting and inter-grid definition procedure. However, the band of these overlapping layers is not spatially

sufficient for a higher order flux computation. As shown in Fig. 7(a), for the interface ij between control volume i

and control volume j, where i is active node/cell and j is interpolating node/cell determined by the initial inter-grid

boundary defining step, only first-order accuracy of flux computation can be obtained as the flow gradient cannot be

reconstructed due to the fact that some neighbors of control volume j are non-activated and excluded from flow

computation. Therefore, a redefinition of inter-grid boundary, by which the non-active neighbors of volume j is

activated as new interpolating nodes/cells, is needed to recover the high order accuracy of flux computation for

volume i as demonstrated in Fig. 7(a). This procedure is also called for by another reason that cavities may exist

after the initial definition of inter-grid boundary as shown in Fig. 7(b). An optimized redefining algorithm, that adds

one or a few more layers of nodes/cells at each inter-grid boundary by advancing the inter-grid boundary to its non-

active region, is implemented for each grid CLUSTER to recover the accuracy as illustrated in Fig. 7(c). Two layers

of interpolating nodes/cells are enough for the present secondary-order accuracy, but higher order scheme may need

more layers. The algorithm is summarized in a pseudo program presented in Table 6 which can be applied to both

cell-centered and cell-vertex scheme and higher order accuracy of spatial discretization.

(a) (b) (c)
Fig. 7 Illustration of inter-grid boundary redefinition: (a) high order accuracy of flux computation can be recovered by

redefinition of inter-grid boundary; (b) cavities may exist after initial inter-grid boundary definition; (c) inter-grid

boundary is extended for Mesh A (from mesh A to mesh B).

20

In the case of multiple sub-grids, there may be more than one candidate of donor cells for interpolation in the

overlapping regions. In the current method, the active one with smallest/smaller cell volume is chosen as the

optimum donor cell. The resulting overset mesh system of the airfoil group is illustrated in Fig. 8. The information

transfer from a donor cell to a receiver cell/node is completed by an interpolation algorithm. 2nd order accurate

inverse distance based interpolation method is used here.

(a) (b)

Fig. 8 The resulting overset grid system for a group of airfoils.

Table 6 Pseudo program for inter-grid boundary redefinition

!After the initial inter-grid definition,
! all cells and nodes are classified as
! cell-flag = 0 – non-active
! 1 – active
! 2 – BNDARY (interpolating)
! Node-flag = 0 – non-active
! 1 – active
do m = 0 number of extend layers
 for all cells with cell-flag = BNDARY + m do
 cell-flag = BNDARY + 1

set non-active nodes of this cell as BNDARY + m
add this cell to FrontCell-list

 end
while FrontCell-list is not empty

 for all cells in the FrontCell-list do
 find its non-active face-adjacent neighbor cells

add these neighbor cells to TempFrontCell-list
 end

empty FrontCell-list
for all cells in the TempFrontCell-list do

 if it contains nodes with node-flag = BNDARY + m
 set cell-flag = BNDARY + 1 + m

add this cell to FrontCell-list
 end if
 end

empty TempFrontCell-list
 end
end do
set all cells with cell-flag ̱ BNDARY as interpolating cell
set all nodes with node-flag ̱ BNDARY as interpolating node

Fig. 9 Flowchart of the deformable overset

grid method.

21

C. Deformable overset grid

In engineering application, there are a large number of cases that involve multiple moving bodies with large

relative displacement motion and self-body deformation at the same time, such as fish swarm swimming, flexible

flapping wings and rotary wings coupled with structural deforming. Solely using overset grid or mesh deformation

technique is not sufficient to satisfy the specified requirements. In the present study, an effective deformable overset

grid is implemented by using the aforementioned hierarchical overset grid locally coupled with the improved

Delaunay graph mapping method to perform the dynamic mesh movement. The movement of each component is

decomposed to a relative motion and a self-deformation which are implemented by the overset grid and the mesh

deformation technique, respectively.

The algorithm of the proposed deformable overset grid method is summarized in a flowchart in Fig. 9. Taking a

group of deforming airfoils with relative motion for example, the deformable overset grid technique is illustrated in

Fig. 10. The airfoil group, consisting of Airfoil A, B and C, moves from the state in Fig. 10(d) to the position of Fig.

10(e) or of Fig. 10(f) with each airfoil performing translation, pitching and self-deformation simultaneously. As can

be seen, the relative movement between them is extremely large. The deformable overset grid method generates a

coarse background Delaunay graph (see Fig. 10(a)) along with the computational mesh (see mesh CLUSTER in Fig.

10(d)) for each airfoil and then calculates the area/volume ratio coefficients to obtain the one-to-one mapping

between them. The domain of the Delaunay graph can be larger than that of the computational mesh, which can be

beneficial to preserve the computational mesh quality, as the surface deformation can be propagated to very far field

by the large domain of Delaunay graph and, therefore, the mesh quality are maintained in the near-field. At each

time step of unsteady computation, the Delaunay graph is moved according to the specified translating or rotating

motion and is deformed by the spring analogy according to the surface deformation (Fig. 10(b), (c)) Then the mesh

CLUSTER of each moving component is mapped into its new position by the pre-defined one-to-one mapping (Fig.

10(e), (f)). After the overset grid algorithm presented in Section II is performed (Fig. 10(h), (i)), the fluid flow

computation can be fulfilled on each CLUSTER followed by flow interpolation between the CLUSTERs.

22

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10 Illustration of the deformable overset grid for fish swarm swimming.

IV. Application to Multi-body Unsteady Aerodynamic Test Cases

This section performs several typical applications to examine its capability in multi-body unsteady aerodynamic

simulations.

A. Multi-flexible-body Problem with Relative Motion

To test the the robustness and efficiency of the proposed deformable overset grid method in solving multiple

bodies with both large movement and self-deformation, the unsteady flow caused by multiple flexible airfoils with

relative motion was simulated. As shown in Fig. 11, the two airfoils on the sides of the middle one move forward

with a relative faster speed, resulting in a shear type motion between them, while each airfoil perform a periodic

swimming-like motion defined by the deforming of their backbone as,

A

A A

B

B

B

C C C

23

0
0(,) ()sin 2

x x t
h x t a x x

T



       

  
ˈ (8)

where 2
1 2()a x c x c x  is the curve envelop. The swimming law is characterized by four parameters: 1 2, c c , the

wave length Ȝ and the frequency f. In this simulation, the free-stream conditions and the motion parameters were set

to make the Reynolds number and the Strouhal number at Re=9.8×103, St=0.32, respectively.

Four grid CLUSTTERs were generated and organized into two LAYERs. LAYER 1 as background mesh has

one hybrid grid CLUSTER consisting of 49,614 rectangle/triangle elements with uniform size of 0.04L in the

Cartesian grid zone. Three body-fitted grid CLUSTERs with refined boundary layer in LAYER 2 are related to the

three deforming airfoils with each containing 10,801 grid cells. The relative motion of the airfoils, say the forward

movement, was implemented by the overset grid at each time step; instantaneously, the self-deformation was locally

handled with the improved Delaunay graph mapping method. Laminar flow was applied for this simulation. The

deforming overset grid system and the flow field plotted with vorticity at different time instants are presented in Fig.

11. As can be seen, the flow field reveals the period shedding of vortices due to the deforming airfoils.

Fig. 11 The simulation of unsteady flow caused by the multiple flexible airfoils with large relative motion (left

column: deformable overset grid; right column: vorticity contours).

B. Application to 3D dragonfly model in forward flight with flexible wing

Another application presented in this paper is a forward flight case of a 3D dragonfly model which was

constructed according a picture of a real dragonfly as shown in Fig. 12(a). The kinematic parameters of the model’s

24

flapping wings, illustrated in Fig. 12(b), are set up the same as the forward flight case (advance ratio J=0.3)

presented in Wang and Sun [37] with the hind-wing leading the forewing in a phase of 180o. Two kinematics of the

motion were simulated: one is for rigid wings; the other is for flexible wings with camber deformation according to

the data measured by Wang and Zeng [38]. The scattered camber deformation data during one flapping cycle are

fitted into a curve as shown in Fig. 13(a) so that a continuous deformation can be implemented for the simulation.

The flapping motion and the camber deformation for either wing during one cycle are demonstrated in Fig. 13(b).

Fig. 14(a) and Fig. 14(b) show the grid system for the dragonfly model. A total four grid CLUSTERs were

generated and assembled into two LAYERs. LAYER 1 has one CLUSTER serving as background grid while three

body-fitted CLUSTERs in LAYER 2 are associated with the forewing, the hindwing and the body, respectively. A

total four CLUSTERs consist of about 1.04 million nodes and 2.54 million cells.

Laminar model was employed for the simulation as the Reynolds number is only 1566 based on the mean chord

length L and the mean translating velocity Uref at 2/3 spanwise location of the forewing.

(a) (b)

Fig. 12 Geometric and kinematic definition of a dragonfly model.

(a) (b)

Fig. 13 Camber deformation of the dragonfly flapping wings during one flapping cycle.

25

(a) (b)

Fig. 14 Overset grid system for the dragonfly model: (a) overset grid before hole-cutting; (b) overset grid

after hole-cutting.

The results for the vertical force coefficient caused by the forewing and the hindwing are shown in Fig. 15(a) and

Fig. 15(b). The vertical forces computed by Wang and Sun [37] for rigid wings are also presented for comparison.

As can be seen, good agreement in trend was obtained as the same kinematic motion of wings were employed by

both studies, while the difference in the wing geometries (platform, aspect ratio and area) results in a difference in

the predicted peaks of vertical forces. Comparison of vertical force between the rigid wings and flexible wings

indicates that wing’s flexibility benefits the aerodynamics of flapping wing. Spanwise pressure contours of the two

styles of flow at 2/3 wing length are plotted in Fig. 16(a, b). It can be seen from the figure that the pressure contours

pass smoothly across the overlapping region showing proper communication between different sub-grids.

(a) (b)

Fig. 15 Time courses of vertical force coefficient caused by the wings of the dragonfly model.

26

(a) (b)

Fig. 16 Spanwise pressure contours at 2/3 wing span length of the dragonfly model: (a) rigid wings; (b)

flexible wings.

Fig. 17 plots the iso-surface of the vorticity at different time instants during one flapping cycle, where the

evolution of the starting vortex, leading edge vortex, wake vortex and tip vortex are clearly captured. The LEVs on

the forewing and hindwing augment the vertical force generation with the first force peak at t/T = 0.25 as seen in

Fig. 15(a) and the second peak at t/T=0.7 in Fig. 15(b), respectively. The second peak of the forewing (t/T = 0.4)

and the third peak of the hindwing (t/T = 0.9) might due to the generation of the RSV that create a low pressure

region on the upper wing surface.

Fig. 17 Vortical structures generated by the dragonfly model during one flapping cycle plotted by the iso-

surface of the vorticity magnitude (J=0.3, =180o ,|Ȧ|=0.72Uref /L), notations are RSVιRotational Starting

Vortex; LEVιLeading Edge Vortex; TVιTrailing Vortex; WVιWingtip Vortex; FιForewing, Hι

Hindwing.

27

V. Conclusion

 A deformable overset grid method was proposed in this paper by combining an unstructured overset grid with an

improved Delaunay graph mapping deformation method for simulating unsteady flows involving multiple moving

bodies. The original Delaunay graph mapping method was firstly improved by creating a very coarse mesh as

background graph which is deformed by means of spring analogy. As demonstrated by a two-dimensional rotating

airfoil and a three-dimensional bending DLR F6 wing, the robustness (i.e. mesh quality) of the proposed mesh

deformation method is significantly improved when comparing with the original method, particularly when the

moving bodies experience large rotational deformation. The additional computational expense associated with the

improved Delaunay graph mapping method is more than offset by the significantly improved robustness.

 An unstructured overset grid technique, with sub-grids hierarchically organized into CLUSTERs and LAYERs,

allows for overlapping and embedding of different type meshes, of which the mesh quality and resolution can be

independently controlled. An efficient implicit hole-cutting and inter-grid boundary definition procedure was

designed that allows a fully automatic implementation for either cell-centered or cell-vertex schemes. By locally

coupled with the improved Delaunay graph mapping method on sub-grid CLUSTERs associated with deforming

bodies, the deformable overset grid was implemented for multi-body unsteady problems with simultaneous large

relative movement and surface deformation. This dynamic mesh method inherits the advantages of the overset grid

method in handling large relative boundary movement, and also benefits from the efficiency of the mesh

deformation technique based on Delaunay graph mapping for small deformation, especially when the mesh

deformation is localized.

 The deformable overset grid method was successfully applied to two unsteady aerodynamic problems, flows

around multiple flexible moving airfoils and multiple deforming flapping wings, to demonstrate its capability for

simulating multiple body flows undergoing both large relative movement and self-deformation. The results showed

the robustness of this method for complex unsteady problems and suggested this method to be an efficient way to

solve the problems that afflict the previous dynamic mesh methods.

Acknowledgments

This work has been supported by the Fundamental Research Funds for the Central Universities (56XAA15012)

and the National Science Foundation of China (No.11002072 and No.11502112). The first author acknowledges the

support from China Scholarship Council (CSC Grant No. 201303070173) for funding his visiting scholarship.

28

References

[1] Peskin, C. S., “The Immersed Boundary Method,” Acta Numerica, Vol. 11, 2002, pp. 479-517.

[2] Batina, J. T., “Unsteady Euler Algorithm with Unstructured Dynamic Mesh for Complex-Aircraft Aerodynamic Analysis,”

AIAA Journal, Vol. 29, No. 3, 1991, pp. 327-333.

[3] Farhat, C., Degand, C., Koobus, B., and Lesoinne, M., “Torsional Springs for Two-dimensional Dynamic Unstructured Fluid

Meshes,” Computer Methods in Applied Mechanics and Engineering, Vol. 163, 1998, pp. 231-245.

[4] Degand, C., and Farhat, C., “A Three-Dimensional Torsional Spring Analogy Method for Unstructured Dynamic Meshes,”

Computers & Structures, Vol. 80, 2002, pp.305-316.

[5] Murayama, M., Nakahashi, K., and Matsushima, K., “Unstructured Dynamic Mesh for Large Movement and Deformation,”

40th AIAA Aerospace Science Meeting & Exhibit, AIAA 2002-0122, Reno, NV, 2002.

[6] Johnson, A. A., and Tezduyar, T. E., “Simulation of Multiple Spheres Falling in a Liquid-filled Tube,” Computer Methods in

Applied Mechanics and Engineering, Vol.134, No.3, 1996, pp.351-373.

[7] Yang, Z., and Mavriplis, D. J., “Unstructured Dynamic Meshes with Higher-Order Time Integration Schemes for the

Unsteady Navier-Stokes Equations,” 43rd AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2005-1222. Reno, NV, 2005.

[8] Thompson, J. F., Warsi, Z. U., and Mastin, C. W., “Numerical Grid Generation, Foundations and Applications,” Elsevier

Science Publishing Company, New York, NY, 1985.

[9] Liu, X., Qin. N, and Xia, H., “Fast Dynamic Grid Deformation based on Delaunay Graph Mapping,” Journal of

Computational Physics, Vol. 211, No. 2, 2006, pp. 405-423.

[10] de Boer, A., van der Schoot, M. S., and Bijl, H., “Mesh Deformation based on Radial Basis Function Interpolation,”

Computers & Structures, Vol. 85, 2007, pp.784-795.

[11] Rendall, T. C. S., and Allen, C. B., “Improved Radial Basis Function Fluid-Structure Coupling via Efficient Localised

Implementation,” International Journal for Numerical Methods in Engineering, Vol. 78, No. 10, 2009, pp. 1188–1208.

[12] Rendall, T. C. S., and Allen, C. B., “Efficient Mesh Motion Techniques using Radial Basis Functions with Data Reduction

Algorithms,” Journal of Computational Physics, Vol. 228, No.17, 2010, pp. 6231–6249.

[13] Rendall, T. C. S., and Allen, C. B., “Parallel Efficient Mesh Motion Using Radial Basis Functions with Application on

Multi-Bladed Rotors,” International Journal for Numerical Methods in Engineering, Vol. 81,No. 1, 2010, pp. 89–105

[14] Buhmann, M., “Radial Basis Functions (1st edition),” Cambridge University Press: Cambridge, 2005.

[15] Wendland, H., “Scattered Data Approximation (1st edition),” Cambridge University Press: Cambridge, 2005.

[16] Sheng, C., and Allen, C. B., “Efficient Mesh Deformation Using Radial Basis Functions on Unstructured Meshes,” AIAA

Journal, Vol. 51, No. 3, 2013, pp. 707-720.

[17] Wang, G., Mian, H. H., Ye, Z. Y., and Lee, D. L., “Improved Point Selection Method for Hybrid-Unstructured Mesh

Deformation Using Radial Basis Functions,” AIAA Journal, Vol. 53, No.4, 2015, pp. 1016-1025

[18] Wang, Y., Qin, N., and Zhao, N., “Delaunay Graph and Radial Basis Function for Fast Quality Mesh Deformation,” Journal

of Computational Physics, Vol. 294, 2015, pp. 149–172.

[19] Zhang, L.P., and Wang, Z.J., “A Block LU-SGS Implicit Dual Time-Stepping Algorithm for Hybrid Dynamic Meshes,”

Computers & Fluids, Vol. 33, No.7, 2004, pp. 891-916.

[20] Zhang, L. P., Chang X. H., Duan, X. P., and Zhao Z., “Applications of Dynamic Hybrid Grid Method for Three-dimensional

Moving/Deforming Boundary Problems,” Computers & Fluids, Vol. 65, No.15, 2012, pp. 45-63.

[21] Steger, J. L., Dougherty, F. C., and Benek, J. A., “A Chimera Grid Scheme,” Advances in grid generation, K. N. Chua and U.

Ghia, Eds., New York: ASME FED, Vol. 5, June, 1985.

http://arc.aiaa.org/author/Wang%2C+G
http://arc.aiaa.org/author/Mian%2C+H+H
http://arc.aiaa.org/author/Ye%2C+Z

29

[22] Nakahashi, K., Togashi, F., and Sharov, D., “Inter-grid Boundary Definition Method for Overset Unstructured Grid

Approach,” AIAA Journal, Vol. 38, No. 11, 2000, pp. 2077-2084.

[23] Wang, G., Duchaine, F., Papadogiannis,D, Ignacio Duran, I., Moreau,S., Laurent Y.M., and Gicquel, L., “An Overset Grid

Method for Large Eddy Simulation of Turbomachinery Stages,” Journal of Computational Physics, Vol.274, No.1,2014,

pp.333-355.

[24] Chan, W. M., “Overset Grid Technology Development at NASA Ames Research Center,” Computers & Fluids, Vol.38,

No.3, 2009, pp.496-503.

[25] Biava, M., Khier, W., and Vigevano, L., “CFD Prediction of Air Flow past a Full Helicopter Configuration,” Aerospace

Science and Technology, Vol.19, No.1, 2012, pp.3-18

[26] Aono, H., and Liu, H., “Flapping Wing Aerodynamics of a Numerical Biological Flyer Model in Hovering Flight,”

Computers & Fluids, Vol.85, No.1, 2013, pp.85-92.

[27] Koomullil, R., Bhagat, N., Ito, Y., and Noack, R., “Generalized Overset Grid Framework for Incompressible Flows,” 44th

Aerospace Sciences Meeting and Exhibit, Reno, NV, AIAA 2006-1146, 2006.

[28] Fast, P., and Henshaw, W. D., “Time-Accurate Computation of Viscous Flow around Deforming Bodies Using Overset

Grids,” 15th AIAA Computational Fluid Dynamics Conference, Anaheim, CA, AIAA 2001-2640, 2001.

[29] Venkatakrishnan, V., “Convergence to Steady State Solutions of the Euler Equations on Unstructured Grids with Limiters,”

Journal of Computational Physics, Vol.118, No.1, 1995, pp.120-130.

[30] Lesoinne M., and Farhat C., “Geometric Conservation Laws for Flow Problems with Moving Boundaries and Deformable

Meshes, and their Impact on Aeroelastic Computations,” Computer Methods in Applied Mechanics and Engineering, Vol.134,

No.1-2, 1996, pp. 71-90.

[31] Koobus B., and Farhat C., “Second-Order Time-Accurate and Geometrically Conservative Implicit Schemes for Flow

Computations on Unstructured Dynamic Meshes,” Computer Methods in Applied Mechanics and Engineering, Vol.170,

No.1-2, 1999, pp. 103-129.

[32] Mavriplis D.J., and Yang Z., “Construction of the Discrete Geometric Conservation Law for High-order Time Accurate

Simulations on Dynamic Meshes,” Journal of Computational Physics, Vol.21, No.2, 2006, pp. 557-573.

[33] Xiao, T., Ang, H., and Yu, S., “A Preconditioned Dual Time-stepping Procedure Coupled with Matrix-free LU-SGS Scheme

for Unsteady Low Speed Viscous Flows with Moving Objects,” Internatioanl Journal of Computational Fluid Dynamics,

Vol.21, No. 3-4, 2007, pp. 165-173.

[34] Bonet, J., and Peraire, J., “An Alternating Digital Tree (ADT) Algorithm for 3D Geometric Searching and Intersection

Problems,” International Journal of Numerical Methods in Engineering, Vol. 31, No. 1, 1991, pp. 1-17.

[35] Knupp, P. M., “Algebraic Mesh Quality Metrics for Unstructured Initial Meshes,” Finite Elements in Analysis and Design,

Vol.39, No.3, 2003, pp. 217-241.

[36] Cai, J., Tsai, H.M., and Liu, F., “A Parallel Viscous Flow Solver on Multi-block Overset Grids,” Computers & Fluids, Vol.

35, No. 10, 2005, pp. 1290-1301.

[37] Wang, J. K., and Sun, M., "A Computational Study of the Aerodynamics and Forewing-Hindwing Interaction of a Model

Dragonfly in Forward Flight," Journal of Experimental Biology, Vol. 208, No.19, 2005, pp. 3785-3804.

[38] Wang, H., Zeng, L. J., Liu, H., and Yin, C., "Measuring Wing Kinematics, Flight Trajectory and Body Attitude during

Forward Flight and Turning Maneuvers in Dragonflies," Journal of Experimental Biology, Vol. 206, No.4, 2003, pp. 745-757.

http://www.sciencedirect.com/science/article/pii/S0021999114004136
http://www.sciencedirect.com/science/article/pii/S0021999114004136
http://www.sciencedirect.com/science/article/pii/S0021999114004136
http://www.sciencedirect.com/science/article/pii/S0021999114004136
http://www.sciencedirect.com/science/article/pii/S0021999114004136
http://www.sciencedirect.com/science/article/pii/S0021999114004136
http://www.sciencedirect.com/science/article/pii/S0045793008001953

