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A deformable overset grid method is proposed to simulate the unsteady aerodynamic problems with
multiple flexible moving bodies. This method uses an unstructured overset grid coupled with local mesh
deformation to achieve both robustness and efficiency. The overset grid hierarchically organizesthe sub-grids
into CLUSTERs and LAYERSs, allowing for overlapping/embedding of different type meshes, in which the
mesh quality and resolution can be independently controlled. At each time step, mesh deformation is locally
applied to the sub-grids associated with defor ming bodies by an improved Delaunay graph mapping method
that uses a very coarse Delaunay mesh as the background graph. The graph is moved and deformed by the
spring analogy method accor ding to the specified motion and then the computational meshes arerelocated by
a simple one-to-one mapping. An efficient implicit hole-cutting and inter-grid boundary definition procedure
is implemented fully automatically for both cell-centered and cell-vertex schemes based on the wall distance
and an alternative digital tree (ADT) data search algorithm. This method is successfully applied to several
complex multi-body unsteady aerodynamic simulations and the results demonstrate the robustness and
efficiency of the proposed method for complex unsteady flow problems, particularly for those involve

simultaneous lar ge relative motion and self-defor mation.
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Nomenclature

c speed of sound

C, vertical force coefficient

d distance

e area/volume ratio coefficient

E internal energy per unit mass

f frequency

F convective flux vector

F, viscous flux vector

J advance ratio

ki spring stiffness

L characteristic length/chord length
Ma Mach number

n unit normal vector

Q entropy variables

Re Reynolds number

RES residual

S area or entropy

St Strohaul number

t physical time

T periodc time

Tq preconditioning matrix for entropy variables
Ly preconditioning matrix for conservative variables
U free-stream velocity magnitude
\Y volume

V:[u,v ’W] = velocity vector

W conservative variables

X Cartesian coordinate

P density

Q

iy

control volume

psedo-time



|. Introduction

U nsteady flow simulation around multiple moving objectives poses numerical gfealéar efficient and robust
meshing strategies. Four methodologies are documented that can simulatstéaely flow around bodies with
locomotion, i.e., thee-meshing method, the immersed boundary method (IBM), the defshmation method and
the overset grid.

Re-meshing during unsteady motion can be carried out to address the diahg solution domain. However
there are two fundamental problems with such approach. Most imgprtestmeshing during time evolution
suffers from an accuracy lossue to solution interpolationn the physical conservation laws, where the
computational accuracy will be reduced because the new grid and timalosigeat the previous time stegre not
necessarily consistenSecondly, re-meshing will require some significant additional computatidfeat éor
complicated geometries.

The IBM method 1] is extensively used in simulations involving moving bodiestigularly for low Reynolds
number flows. It discretizes the governing equations entirely on a fize@stan grid, which does not confotm
the geometry of the boundari@he presence of solid boundaries is represented by adding appropriate tiotbieg
flow equations. This method therefore avoids the complicated grigmments. Such a feature makes it attractive for
simulating flows that involve moving bodies. However, imposihg wall boundary condition in IBM is not
straightforward, and may negatively impact on the accuracy and catisargroperties of the numerical scheme. In
addition, it is noted that for high Reynolds numbers the computatianisscexpensive in order to resolve the flow
behavior in the boundary layer.

Different from the re-meshing method, mesh deformation methodsndétie@ grid with respect to the specified
motion where the grid connectivity is preserved. Generally, the meshnddifon techniques offer better
computational efficiency and numerical accuracy compared with the re-mestihgdnMesh deformation can be
mainly classified into two categories: physical analogy and interpolatbnoah.

Physical analogies for mesh deformation, such as the spring analdgydnfiest developed by Batina [2], use
certain physics processes to propagate the perturbation of boundariedieétdtmesh. The spring analogy method
models the whole mesh as a network of linear springs, in whichgeatbdge is viewed as a spring with stiffness
proportional to the reciprocal of the length, and the new positianesh points are determined by solving a static

equilibrium equation. The spring analogy method has been succesgfpllgd to a wide range of unsteady and



optimization problems. However, the mesh quality will be difficult to Es@rved by spring analogy when larg
displacement occurs sindé-conditioned or even negative cells may easily be created and thus absoliution
process. To overcome this problem, some efforts have been madgpforving the robustness of spring analogy.
Farhat et al.3,4] introduced non-linear torsiahsprings to the spring analogy method to avoid the mesh crossing
associated with the linear spring network and Murayama et al. [5] litleedyrid edge stiffness with the angle
between the faces to avoid the generation of squashed invalid eleElast& analogy [6,7], which can be viewed
as an extension of the spring analogy, treats the grid as an elastic bodinfplinear elasticity equations of solid
mechanics. Theoretically, this method could be robust as it links firess of a region to its volume and sets the
boundary layer as a solid body. However, the performance of thisodhetries for different mesh types and
magnitude of mesh deformation. All the spring analogy methodseasioned above have to solve huge equations
and become very expensive for large meshes.

An interpolation method for mesh deformation, by applying certain ioi&ipn schemes, directly obtains the
new position or the displacement of each mesh pEanas to reflect geometric chang@&sansfinite interpolation
(TFI) [8] is an algebraic mesh generation method for generating struchegldes. It can also be used as a mesh
deformation method for structured meshes if all the mesh generation pasaanetkept the same as the geometry
deforms. In principal, TFI interpolates the displacements of points amdbdes along mesh lines to the points in
the interior domain. Combined with the multi-block structured grid, ahility of TFI can be enhanced to handle
three-dimensional geometric perturbations. TFI has been widelyinssetoelasticity, aesrodynamic optimization
and multidisciplinary optimization to generate the dynamic structured gride¥o, the efficiency and robustness
of the TFI are limited to applications for structured meshes. Tikesso arother type of interpolation methods
developed without dependency on mesh topology and thereforeahdye applied to different kind of meshébis
type of methodss typically represented by the Delaunay graph mapping method (DGMygm0by Liu et al. [9]
and the radial basis function (RBF) method proposed by de R6eard further developed by Rendall and Allen
[11,12,13]. The mesh deformation method based on Delaunay graph mapping [B¢dmproved as a fast mesh
deforming method due to the fact that it uses an explicit algebraic one tmapping rather than solve a differential
equation or a large linear systefhe drawback of this method is that the mesh quality near the mowinglaries
is difficult to be preserved when the moving bodies exhibit large rotationhwhitlead to an invalid Delaunay

graph. Alternatively, a mesh deformation method [10] using the raaéé functions interpolatiori4,15] provides



a more robust moving mesh, which can handle larger mesh rafat&fiormation. However, the robustness is at the
expense of computatiahcost with large mesh due to the fact that the interpolation of any poéshis a global
function involving position changes of all basis points on the surfagesitk of the linear system to be solved is

directly related to the number of the moving surface mesh diot accelerate the computation, data reduction

algorithms were proposed by Rendall and A Iéﬂ1|[12 13|, Sheng and Allen6] and Wang et al.1[7] to limit the

RBF interpolation on a coarsened subset of surface mesh. To decreasertbr e surface points, they applied a
greedy algorithm to select the optimum reduced set of surface nm&sl. dhly portiorof the moving surface mesh
points as bas points cannot fully recover the exact deformation, making ficdif to tackle aerodynamic problems
which are sensitive to small-scale deformatigtost recently, Wang and QirlLg] developed a method combining
the Delaunay graph mapping with local RBF, in which the Delaunay gsaped to group fluid mesh points, and
the nodes of each graph element are treated as basis points of RBshfgraem of fluid mesh points. This method
can dramatically reduce the number of the basis points for RBFegmog Inesults in higher computational ety
and more robustness for mesh deformation. However, this médmdo treat translation and rotation motion in
separated ways, which may be difficult to distinguish in some applications.

It has to be mentioned that, though numerous efforts haverbade within the methodology to improve the
performance of the mesh deformation methods, these methibeis feum the problem with large deformation, in
particular, with large relative motion of multiple bodies. Mesh quality is diffimube preservedor even, mesh
could degenerate, when large displacements occur. A remedial measumntiemtdegenerated mesh quality is to
locally or even fully regenerate the mesh. Zhang and Wa#jgused an unstructured grid to link the body-fitted
grid and Cartesian grid and applied a local grid regeneration on this partvedsé deformation deteriorates. Zhang
et al [20] further extendd this technique to three-dimensional applications where dynamic hybrith mes
deformation are applied in combination with locelmeshing. Still local grid regeneration is a costly part with
penalty of complex algorithm design and accuracy loss at the same time.

In addition to the aforementioned grid regeneration and mesh deformagitiodologies, the overset grid is a
mature technology that has been used for decades to simplify thgegedation for complex geometries and as an
embedding technique for simulations involving multiple bodies with relativeement. The overset grid method
was firstly proposed by Stege?]] and subsequently extended by Nakahashi et2&). fpr its applications on

unstructured grids. The overset grid can be appiiediore separation, turbomaching23], rotary aircrafts 24,25]



and flapping wing aerodynansi¢26,27]. For problems with boundary deformation, Fast and HensB8applied
the overset grid in conjunction with a hyperbolic grid generator. In @n@ik, a thin layer of body-fitted structured
grid around the deforming boundary is overlapped on a fixete§ian grid covering the entire computational
domain. At each time step, the body-fitted grid was regeneratethéodeforming shape resulting from flow-
structure interaction. By doing so, the global mesh regeneration switzh&docal one, which improves the
computational efficiency. However, local grid regenerati®rstill expensive, in particular, for complex three-
dimensional large mesh systems.

There are many engineering applications, which exhibit simultaneoesrtdagive displacement between bodies
with self-deformation, such as flexible flapping wings, fish swagniotary wings coupled with structural
dynamics, pose significantly challenge to the dynamic mesh techniBolety using mesteformation metlods or
overset grid cannot satisfy the extreme scenarios mentioned above $nafepreserving the mesh quality and
computational effiiency. To successfully simulate the unsteady flow field contains muliipdées undergoing
relative motion and deformation, a deformable overset grid by usirguctised overset grid technique coupled
locally with an improved Delaunay graph mapping mesh deformatiomochés proposed in the present studlgis
paper is organized as follows: the numerical frame dhdmuse developed unsteady Reynolds averaged Navier-
Stokes (URANS) solver is introduced in Section 2; the dynamic mekhi¢ees, including the improved Delaunay
graph mapping mesh deformatjamstructured overset grid method and deformable overset grid, aretpdesen

Section 3; followed by several demonstration cases in Section 4 and thesmmxln Section 5.

1. Numerical frame of the URANS solver

In this section, some key elements ofiimouse unsteady Reynolds-averaged Navier-Stokes flow solver used in

this study are briefly described.

A. Governing equationsin arbitrary Lagrangian Eulerian form

For the general problem of compressible flows in a moving and defidencomputational domafR(t) with
boundaryQ(t) , the integral form of unsteady compressible Navier-Stokes equations caitt®e as

0

ot QdeV +|]lg([)(F(W)—(>'< 'ﬁ)W) ds= Ujm) R, ds, 1)



where W represents the vector of conservative variable (mass, momentum, and ).energy

W=[p pu pv pw pE]", F(W) represents the convective fluxes adrepresents the viscous fluxes.
andn are the velocity and the unit normal of the interi@@¢t) , respectively.

Definingv,, = x-f, the casey,, =V-i (where\7:[u,v,w] is the vector of flow velocity) corresponds to a
Lagrangian system, and,, =0is an Eulerian one. In the present formulatiey),is arbitrarily specified. The

Spalart-Allmaras one-equation model and the Menter 8T two-equation model are implemented in the

developed code to close the governing equations for turbulent flows.

B. Dual-time stepping with low Mach number preconditioning
For the solution of unsteady flow, a dual-time stepping algorithm is gegblm conjunction with low Mach
number preconditioning intended for extending application of the solverwospeed flows. The governing

equations with a preconditioned pseudo-time-derivative term introduceBdnb) can be written as follows:

wdv + QWA+ m@ﬂ(t)(F(\N)—vgnW)dS= oo 0 ©)

Q(t)
where 7 and t denote pseudo and physical time respectively, Bpd the preconditioning matrix. This approach

involves an inner iteration loop in each pseudo time step that ip&ddny an outer loop stepping through physical
time, whereas convergence of the inner iterations in pseudo-time imizgati by preconditioning, local time
stepping or other convergence enhancement techniques.

For the conerience of preconditioning analysis, primitive variables instead of the a@tiser variables are

selected as the system variables. The present analysis is simplified byedogsithe entropy variables

dQ=[dp/pc du dv dw dY wheredS=dp- ¢ dp is proportional to the change in entropy. In terms of

Q

conservative variables, the preconditioning matriXjs=T, W whereT', represents the preconditioning matrix

for the entropic variables designedI%s:%diag(ﬁZ 111 i) In this paper g is designed for the purpose

of improving robustness for unsteady flow with moving maries as follows,

b= min(maX(Mafoca. ﬂrﬁin) ’ 1'()'

whereMa, ., is the local maximum relative Mach number defined as,
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MaLocaI =max c 1 c cel !
and g2, =3maxMaZ MaZ ...), \7g represents grid velocity vectoMa, the incoming free-stream Mach number
and Ma, ..., the mean Mach number of moving boundaries.

C. Finitevolume discretization: a unified approach for either cell-centered or cell-vertex scheme

In the code, a unified approach is used for either cell-centereell-vertex discretization applying on arbitrary
type meshes (structured, unstructured, Cartesian or hybrid of.tAeface-based data structure is employed which
creates pointers from cell interfaces to adjacent control volumes aslyh@anectivity information. Cell-centered
discretization using the primary mesh or cell-vertex discretizatiorg ubig median dual mesh can be selected at
run-time, the only difference being the preparation of the metric dgta(2lc can be discretized in a polygonal

control volumeV, as:

Ly

WYY, AWV), _
ot

~-RES (W) (3
or

nface nface

RES(W)=X F(W)\§ -2 R §
j=1 j=1
The inviscid flux, through the interfacg between the control volum¥, andV, , is calculated using a

reformulated Roe-type flux difference splitting scheme. The left myind state variables at both sides of a control
volume face are reconstructed by a weighted least square or Green-@easgadient reconstruction approach
with Venkatakrishnats limiter [29] applied to prevent oscillations near shock waves. For viscous fluxes
computation, the velocity and temperature gradients at the interface are obtaineztdgyngvthe values of its
adjacent control volumes with an additional correction in the direction fréameocentroid i to volume centroid j
to avoid odd-even decoupling.

When dynamic meshes are used, the grid velocktiesd the surface unit normél need to be considered
carefully so that the errors introduced by the mesh deformation talegrade the accuracy of the flow
computation The discrete geometric conservative 1880,[31, 32] provides a guideline on how to evaluate these

parameters.

D. Temporal discretization and implicit iteration



The pseudo-time term in Eq.(2) is discretized with a first order badksliierence and the physical time term is
discretized in an implicit fashion by means lofstep backward difference respectively. The linearized equations

systemis finally given as,

n+1 1 n+l k-1
(F\M VT bV ORES haWVT 1 > s (WV) (6)
h=0

Ar At oW At ALE
where mand n denote pseudo-time and physical time steps, respectiValy.choice of the sequenég } [33]

jAW = —RES (W™)—

governs the accuracy of the temporal discretization from the stieadgdlver mode to unsteady schemes up to 3rd
order time accuracy. The linear system of equations for the inatentethe dependent variables, given by E¢g6)
solved by an iterative Lower-Upper Symmetric Gauss-Seidel or Krylov sobstype Generalized Minimal
Residual (GMRES) algorithm.

In this study, all the unsteady flow simulations were performed bygusell-vertex scheme for spatial
discretization with Green-Gauss gradient reconstruction. Second-ordaréémpcuracy was achieved by implicit

GMRES with the residual of each time-step reduced by at least two orders.

I11. Deformable Overset Grid

In this section, an improved Delaunay graph mapping strategy is first developed to achieve a robust and efficient
mesh deformation. Secondly, the overset grid method and its combination with the local mesh deformation are

presented.

A. Improved Delaunay graph mapping for mesh defor mation

The mesh deformation method base on Delaunay graph mapping E’ has been proved to be an efficient mesh
deformation method since it uses an explicit algebraic one to one mapping. The original Delaunay background graph
is generated by all the surface mesh points and a few boundary points at the outer boundary. A notable disadvantage
of this choice is that the initial Delaunay graph will easily get invalid when large rotational deformation occurs. To
solve the aforementioned problem, a finer Delaunay graph, yet a very coarse mesh is proposed to work as the
background graph here. The spring analogy method is then used to deform the Delaunay graph according to
specified movement. The original computational mesh is mapped into their new position using the algebraic one to
one mapping [9]. By doing so, the robustness of the original Delaunay graph mapping method is improved without

substantially increasing the computational cost, as the spring analogy method is only applied on a very coarse



background Delaunay graph. The algorithm of the proposed graph mapping is illustrated using a periodic pitching

NACAO0012 airfoil (seen in Fig.1) exhibits a sinusoidal kinematics: a(t) = 90 sin(2r ft ) as follow:

(1) Generating background Delaunay graph in the computational domain.

A good quality computational mesh is generated in the computational domain (Fig. 1(a)). In the same domain, a

very coarse background Delaunay graph (Fig. 1{b)) is generated, and the background graph will be moved by spring

analogy method on demand. For the Delaunay graph, the grid distribution on the moving boundaries (walls) should

be identical to the computational mesh to preserve full integrity of boundary movement, while the entire domain is

meshed with a large growth rate, yet resulting in much less cell amount when compared with the computational

mesh. This can be helpful to propagate the deformation to the very far field while the mesh quality in the area near

wall boundaries can be preserved.

nnnnn

(c) (d)

Fig. 1 Improved Delaunay graph mapping method: (a) initial computational mesh; (b) coarse background

Delaunay graph mesh; (¢) deformation of the background graph; (d) deformation of the computational mesh

after the one to one Delaunay graph mapping.

(2) Defining one-to-one mapping between the computational mesh and the Delaunay graph.

For each computational mesh pointly using the efficient searching Alternative Digital Tree (ADT) algorithm

[34], the Delaunay graph element E is found where the mesh point P lotatéastrated i

Fig. 2

for 2D case but

without losing its generdl, the corresponding area (2D) or volume (3D) ratios based on E(are then

10



calculated to obtain the uniquely defined do@ne mapping between the mesh point and the graph element for

two-dimensional or three-dimensional cas€he area or volume coefficier#ts, which uniquely determine the

relative position of point P in the graph element E, are defined as,

§=S/S =123 (2D
e=V/V, i=123,4 (3D’

(M
where $denotes the area of the triangle formed by point P and the édgapb element E for 2D case whilgis/
the volume of the tetrahedral formed by the point P and the face afml&mSor V is total area or total volume of
the graph element.

The calculated area/volume coefficients of each mesh point are stored along with the graph element number as a

primary quantity before deforming the mesh and remain the same during the mesh deformation.

Computational mesh point P locates in the
graph element E formed by node N;, N>, N,.
N, N,
: Element £ moves/deforms i

—>

e; remains constant.

N, N; N,

'

e=S/S, i=123 New position of P x; = Z,llezxngl

Fig. 2 Illustration of Delaunay graph mapping method.

(3) Moving or deforming the Delaunay graph.

Treated as a network of springs, the background Delaunay graph is moved by means of the spring analogy

model with passive deformation accordingly, as shown in|Fig. 1{c). Although more sophisticated methods including

torsional springs are available, the commonly used spring analogy model of Batina [2] is employed in this procedure
by considering the fact that the background graph is very coarse with large disparity of mesh density near the wall
and far away from the wall and, therefore, this method is sufficient for deforming the Delaunay graph in a robust
manner even for large displacements. With graph element edges modelled as springs, the static equilibrium equation

for node i can be written as,

11



where NE; is the number of nodes directly connected to node i by the element edges, X represents node

displacement vector and K; is the linear spring stiffness for a given edge 7. In the present study, k; is calculated as

K; =]/|>g _Xi|2'

By applying the static equilibrium equation to all nodes in the Delaunay graph, a system of equations can be
derived. Again, the efficient iterative methods used in the flow solver can be used here. In the present study, the

derived linear system is iteratively solved by a preconditioned conjugated gradient algorithm with tolerance of 10™'°.

(4) Relocating the computational mesh points by the pre-calculated one-to-one mapping coefficients.

After the background Delaunay graph is deformed, as illustrated in|Fig. 2| the computational mesh points can be

mapped into new position by the one to one mapping scheme. The new position X, of computational mesh point P

is calculated based on the pre-calculated area/volume ratio coefficients as,

’

' n
Xp =2 18 %eni >

where X[, is the new position of the i node of the moved graph element, and n=3 for two dimensional case, n=4

for three dimensional case. The deformed computational mesh around the NACAO0012 airfoil can be seen in|Fig. 1

(d).

Comparing to the original Delaunay graph mapping method [9], using a coarse background mesh modeled by a
spring analogy model as the mapping graph is principally able to improve the robustness in terms of preserving the
mesh quality. The new Delaunay graph contains a small number of interior points, rather than the original one which
only consists of surface mesh points and some outer boundary points. It can propagate the wall displacement, both
translation and rotation, to the far field by spring analogy effectively and, therefore, can survive from graph element
intersection for larger displacement. In the meantime, the very coarse Delaunay graph with large disparity of
element size is beneficial to maintain the quality of the graph elements near wall boundaries. These small size
elements are hardly deformed due to their strong stiffness while the large size elements in the far field absorb the
most of the perturbation. As a result, the computational mesh quality is well maintained in the area near wall
boundaries where the mesh quality is particularly important especially for viscous flow simulation. In addition, as
the spring analogy is only applied on a very coarse graph, rather a dense computational mesh, the graph updating
procedure does not dramatically scarify the computational time.

To assess the aforementioned capability of the improved method, evaluations were performed on two typical

12



test cases, a two-dimensional NACAO0012 airfoil rotating around its % chord axis, and a three-dimensional DLR-F6
model deforming following a prescribed blending motion. These two test cases were performed on a computer with
Intel 17-4500@2.4G Hz CPU and 16GB RAM. For the sake of comparison, the same tests were run by both the
original Delaunay graph mapping (hereafter referred to as DGM) and the improved Delaunay graph mapping
method (hereafter referred to as Improved-DGM).

Casel Rotating NACAO0012 airfoil

In the first case, the two-dimensional NACAO0012 airfoil rotates around its %4 chord position with a constant
angular speed at 1 degree/step within a fixed box boundary. In order to test the range of rotation the method can
tolerate, the rotation continues until element crossing occurs in the Delaunay graph which is regarded as the rotating

limit for valid mesh deformation. To address the effect of mesh density on the efficiency and deforming capability,

four sets of meshes with different resolutions are compared in|{Table 1

Table 1 Mesh size of the NACAQ0012 airfoil

Computational mesh Background Delaunay graph
Nodes on wall Total nodes Total cells Nodes on wall Total nodes Total cells
Coarse 200 7510 11443 200 1236 2249
Medium 400 16288 22042 400 2348 4261
Fine 800 35282 43281 800 4367 7893
Extra fine 1600 92976 104855 1600 6414 11583

Fig. 3[shows the average and worst mesh quality of the computational mesh by both DGM and Improved-

DGM. The grid cell shape/skew [35] is regarded as a criterion here to represent the grid quality ranges from 0 to 1
where 1 means an equilateral cell and 0 indicates the mesh is degenerated. As seen for all the mesh density, the mesh
quality of DGM, either average or worst value, degrades rapidly as rotation angle increases while the Improved-
DGM successfully maintains the average quality at a relative high level throughout with only a very small
degradation even at very large rotational displacement. Considering the worst grid quality, a plateaus region is found
at small rotating angles for the Improved-DGM, which indicates that the mesh quality can be well maintained with

small rotating magnitude.

13
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Fig. 3 Mesh quality vs. rotation angle (Left: average mesh quality; Right: worst mesh quality)

The rotation angle limit and average CPU time per step for both DGM and Improved-DGM is summarized in

Table 2] As illustrated, the Delaunay graph are invalid at around 62-64 degree when using DGM, whereas the mesh

system is admitted as valid with Improved-DGM even the airfoil rotates up to around 150 degree. Regarding the
efficiency, the CPU time of Improved-DGM is about one order higher as compared to DGM, a price for robustness.
Nevertheless, the Improved-DGM method is a few orders more efficient than the original spring analogy method for

deforming the mesh. In addition, the extra computational cost decreases relatively with the increase of mesh size, as

can be seen from the time ratio listed in|Table 2

Table 2 Comparison of rotation angle limit and average CPU time per step

Rotation angle limit Average CPU time per step
DGM  Improved-DGM DGM Improved-DGM  ratio
Coarse 64deg 146deg 6.23ms 101.12ms 16.23
Medium 64deg 147deg 12.66ms 213.46ms 16.86
Fine 64deg 144deg 27.02ms 379.40ms 14.04
Extra fine 62deg 151deg 69.60ms 590.65ms 8.49

To expand this point,| Table 3[shows the breakdown of the CPU time for the Improved-DGM. The CPU time of

Improved-DGM can be principally divided into three parts: (1) moving boundary nodes based on the specified

motion; (2) updating Delaunay graph; (3) relocating the computational mesh by the algebraic one-to-one mapping.

As shown in| Table 3| the ratio of the updating Delaunay graph procedure decreases with the increasing grid size.

Table 3 Breakdown of the CPU time for Improved-DGM

Moving updating relocating

Boundary  Delaunay computational

nodes graph mesh nodes
Coarse 0.12% 93.84% 6.04%
Medium 0.10% 94.07% 5.83%
Fine 0.11% 92.88% 7.01%
Extra fine  0.13% 88.22% 11.65%

14



Fig. 4|plots the mesh quality contour of the computational mesh by both DGM and Improved-DGM. The

DGM method cannot guarantee a good mesh quality near the moving boundary as shown in|Fig. 4(a), while the

Improved-DGM method is able to propagate the rotational displacement to the very far-field and hence the mesh

quality can be well preserved (seen in|Fig. 4{b)). The robustness of the Improved-DGM method is further evidenced

by keeping rotating the airfoil to 120 degree situation as illustrated in|Fig. 4(c) that the viscous mesh (boundary

layer) demonstrates a good mesh quality distribution.

Fig. 4 Mesh quality contours of the medium density computational mesh around the NACA 0012 airfoil: (a)
DGM, 60 degree rotation angle; (b) Improved-DGM, 60 degree rotation angle; (¢) Improved-DGM, 120

degree rotation angle.
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Case2 Deforming DLR F6 wing model

To further examine the capability of the improved mesh deformation strategy, a three-dimensional DLR F6

model with large bending deformation is used here as an extreme test case. |Fig. 5{(a, b) demonstrate the

computational mesh around the model and its corresponding background Delaunay graph. The computational mesh
consists of about 6.46 million nodes and 19.07 million cells while the graph contains 257869 nodes and about 1

million graph elements and the wall surface meshes are the same for the computational mesh and the graph.

sl

0
Fig. 5 The application of improved Delaunay graph mapping method on a wing/body/pylon/nacelle model: (a)

initial computational mesh; (b) initial Delaunay graph; (c, d) the deformed Delaunay graph; (e, f) the

deformed computational mesh and zoom in view.

Table 4|presents the average mesh quality and worst quality of the computational mesh around the DLR F6

model when the wing of the model performs bending deformation with large vertical displacement of L, 2L, -L and -

2L at the wingtip. Compared to the initial mesh, the mesh quality does not deteriorate much even for such a large

displacement. The breakdown of the CPU time of Improved-DGM for DLR F6 model is shown in|Table 5] The

CPU time for deforming the Delaunay graph decreased down to 83.67% of the full process which is about 5.3 times

higher the one-to-one mapping, indicating that the robustness and good mesh quality of mesh deformation can be

achieved by the Improved-DGM method at a moderate extra cost for large scale meshes.|Fig. 5(e, f) presents the




deformed the computational mesh and the zoom-in views of the areas near the wingtip and the pylon, demonstrating

that the mesh quality was well preserved.

Table 4 mesh quality summarization for the computational mesh of DLR F6 model

Initial mesh  +L +2L -L 2L
Average quality 0.881643 0.880797 0.878079 0.880720 0.878048
Worst quality 0.131632 0.110985 0.107877 0.110252 0.098935

Table 5 Breakdown of the CPU time of mesh deformation for DLR F6 model

Moving updating relocating
Boundary Delaunay computational  Total
nodes graph mesh nodes
CPU Time (ms)  291.62 45785.68 8647.35 54724.65
Percentage 0.53% 83.67% 15.80% 100%

B. Hierarchically organized unstructured overset grid technique

The developed solver uses an unstructured overset grid to simulate thevibdbves complex geometries and
multiple moving boundaries with large relative movement
(1) Generating and hierarchically organizing meshes

The overset grid techniqgue generates separate grids for each individual eompamd one or more
Cartesian/hybrid unstructured off-body grids as background fgniecessary. The generated grids are hierarchically
organized into two levels as CLUSTER and LAYER according3@.[A CLUSTER is usually a grid that covers a
certain region of the flow field. It can be a body-fitting grid asbgeometrical component, such as wing, fuselage
and tail, and also can be a background grid. A LAYER is a grid orggrizvel which consists of one CLUSTER or
a number of overlapping CLUSTERs. One CLUSTER can overlap with GtH8ETERS in the same LAYER. One
LAYER or several LAYERs are used to obtain an appropriate overall gridnsythat offers high densities in the

near field of bodies but becomes coarser gradually towards the far Nietd. thateachLAYER can be only

embedded into its immediate lower LAYHRIig. 6|illustratesthe hierarchical overset grid system for a grofip

airfoils with relative movement.ayerl, Layer2 and Layer3 each contains one CLUSTER of Cartesiaoffgtichg
a smooth transition from the high resolution grid near the airfoilset@dlarser grid in far field and Layer4 consists

of three CLUSTERS of body-fitted unstructured meshes with eacéhdividual airfoil.
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Fig. 6 Hierarchical overset grid system for a group of moving airfoils and its zoom in view.

(2) Implicit hole-cutting and inter-grid boundary definition

For flow field involves moving boundariga fully implicit automatic Chimera hole cutting and identification
of inter-grid boundary proceduigs implemented to exclude the mesh points or cells which do not participée in
computation The grids ina higher LAYER are usually finer than the gridsddower LAYER, or in the same
LAYER, the grid elements closer to thedy are finer than the far ones for resolving the flow structutbémear
field region. Hence, the grid elements closer to the body are expectedretaimed for the computation. For this
reason the wall—distance is used as an indicator to decide the inter-grid boundary and thus epritnad
appropriate resolution near surfaces.

The minimum self-wall distance from each node to the bodwasesfin the same CLUSTER s first measured.
For the body-fitted CLUSTERhe real wall distances of the nodes are computed to the self-wall boundaribs For
body-off CLUSTERSs served as background grid, the wall distances of rezd are determined according to the
LAYER’s level asAd, 2Ad, 3Ad...... nAd, where n is the LAYER level number andd is decided beforehand by
user. Second, search the donor cell for each node lying iovirapping regions, and then compare the wall
distances between the node and its donor ddthel wall distance of the node is smaller, the node is defined as an
active node (which can also be called computational node); otherwisdsfiried as anonractive node or non-
computational nodeThen, by the nodal activity, all cells are classified into three groups: aefivevith all nodes
active, nonractive cell with all nodes non-active and inter-grid boundary cellttaatboth active and non-active
nodes. The inter-grid boundary cells are responsible to transfer thpriperties between different CLUSTERS.

During the procedure of hole-cutting, donor cell searching is thé tinos-consuming parifo accelerate the
data searching, the ADT techniqﬂ is again emplogd which organizes the grid elements of each CLUSTER

into a binary data structure according their spatial position along alternatieagiams. In the present study, grid
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elements in each CLUSTER are hierarchically organized in several ADTs and@&aamly contains the elements
overlapped with the other CLUSTERS. By doing so, the donor celtliagrbetween two overset CLUSTERS is

localized to the partial overlapped region and therefore the efficiency is furthenied.

(3) Redefinition of inter-grid boundary
The inter-grid boundary cells are identified among the sub-gridgfer-grid communication by the above
hole-cutting and inter-grid definition procedure. However, the banthedge overlapping layers is not spatially

suficient for a higher order flux computatios shown ifFig. 7{a), for the interfacéj between control volume

and control volume¢, wherei is active node/cell andis interpolating node/cell determined by the initial inter-grid
boundary defining step, only first-order accuracy of flux patation can be obtained as the flow gradient cannot be
reconstructed due to the fact that some neighbors of control vglamee non-activated and excluded from flow
computation. Therefore, a redefinition of inter-grid boundary, bickvithe non-active neighbors of volumes
activated as new interpolating nodes/cells, is needed to recover the high auracyof flux computation for

volumei as demonstrated |iF|ig. 7(a). This procedure is also called for by another reason that cavitiesxisay

after the initial definition of inter-grid boundary as showirig. 7(b). An optimized redefining algorithm, that add

oneor a few more layers of nodes/cells at each inter-grid boundaagh\mncing the inter-grid boundary to its non-

active region, is implemented for each grid CLUSTER to recover theaagcas illustragd in[Fig. 7(c). Two layers

of interpolating nodes/cells are enough for the present secondary-order ycoutdggher order scheme may need

more layersThe algorithm is summarized mpseudo program presentedTiable 6|which can be applied to both

cell-centered and cell-vertex scheme and higher order accuracy of djzatiatization.

e active node or activecell [ 17 ey 2]
interpolating node or cell . | | x =
D, W
=l =t
i PLiii: B ) o
-, P @ 122
/\ il T3 ] X X e
SN 7T i O
T | j X i ®im
M : 1 1k o 6
Only first order accuracy for initially defined inter-grid boundary \\\ /-F?:‘/" i I X4 X im
N S > B 2 )
TR / X | Xui-R i
TSl N\ e 11— 0 -0 —
. Y1 I‘ | Ximim
R 111" |I 1 RS .. SEREEAON i \l\ ¥, (g
L YL [[xkx i
. P G L e e
N \ ] Ximim Mesh B
i i y = 9 i
o ® 1 i ! =] S s Hi ) Q I
Cavities may exist 1 @ the first and secondary layer of interpolating nodes
High order accuracy recovered by redefinition of inter-grid boundary ~ after initial inter-grid boundary definition x m the first and secondary layer of interpolating cells
(@) (b) (©

Fig. 7 Illustration of inter-grid boundary redefinition: (a) high order accuracy of flux computation can be recovered by
redefinition of inter-grid boundary; (b) cavities may exist after initial inter-grid boundary definition; (c) inter-grid

boundary is extended for Mesh A (from mesh A to mesh B).
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In the case of multiple sub-grids, there may be more than one candidimteoo cells for interpolation in the

overlapping regions. In the current method, the active one with smallek¢isioell volume is chosen as the

optimum donor cell. The resulting overset mesh system of the airfoip gedlustrated ifFig. 8 The information

transfer from a donor cell to a receiver cell/node is completed by an interpoddgiorithm. 2° order accurate

inverse distance based interpolation method is used here.

Layerl

Layer2

(a)
Fig. 8 Theresulting overset grid system for a group of airfails.

Table 6 Pseudo program for inter-grid boundary redefinition

Layer3

(b)

1After the initial inter-grid definition,
I all cells and nodes are classified as
I cell-flag =0 — non-active

! 1- active = : v —
! 2 _ BNDARY (Interp0|atlng) enerate De duz;i’nil:r?entor €ach moving
! Nodeflag = 0— non-active 3

! 1- active

dom =0 number of extend layers

for all cells with cell-flag = BNDARY mdo

cell-flag = BNDARY + 1

setnonactive nodes of this cell as BNDARYmM
add this cell to FrontCell-list

while FrontCell-list is not empty
for all cells in the FrontCell-lisio

empty FrontCell-list
for all cells in the TempFrontCell-listo

add this cell to FrontCell-list
end if

end
empty TempFrontCell-list

end

end do

set all cells with cell-flage BNDARY as interpolating cell

set all nodes with node-flag BNDARY as interpolating node

Generate mesh CLUSTER for each component

Set up one-to-one mapping between the mesh
CLUSTER and its corresponding Delaunay
graph for each moving component

>

Py

Update Delaunay graph according
to specified movement

v

Relocate computational mesh
for moving components

A . - . =n+1

find its non-active face-adjacent neighbor cells = _ Y '

add these neighbor cells to TempFrontCell-list Hole-cutting and stencil search
end v

Redefine inter-grid boundary for high order
accuracy computation

if it contains nodes with node-flag = BNDARYnN v
set cell-flag = BNDARY+ 1 + m Flow computation and interpolation between
mesh CLUSTERs

Fig. 9 Flowchart of the deformable overset
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C. Deformable overset grid

In engineering application, there are a large number of cases that invdif@enmaoving bodies with large
relative displacement motion and self-body deformation at the same time,ssfish awarm swimming, flexible
flapping wings and rotary wings coupled with structural deform8aely using overset grid or mesh deformation
technique is not sufficient to satisfy the specified requirements. lprédsent study, an effective deformable overset
grid is implemented by using the aforementioned hierarchical oversetogally coupled with the improved
Delaunay graph mapping methtal perform the dynamic mesh movement. The movement of eachoo@mis
decomposed to a relative motion and a self-deformation which are impezhignthe overset grid and the mesh

deformation technique, respectively.

The algorithm of the proposed deformable overset grid method is simachar a flowchart ifFig. 9] Taking a

group of deforming airfoils with relative motion for example, dermable overset grid technique is illustrated in

Fig. 10] The airfoil group, consisting of Airfoil A, B and C, movesifr the state |ri>Fig. 10{d) to the position fFig.

Ele) or ofFig. 10(f) with each airfoil performing translation, pitching and self-defation simultaneously. As can

be seen, the relative movement between them is extremely largeefbnmable overset grid method generates a

coarse background Delaunay graph |See 10(a)) along with the computational mesh (see mesh CLUSWE

d)) for each airfoil and then calculates the area/volume ratio coefficientbtaon che onde-one mapping

between them. The domain of the Delaunay graph can be largahé#tasf the computational mesh, which can be
beneficial to preserve the computational mesh quality, as the surface diaforcaa be propagated to very far field
by the large domain of Delaunay graph and, therefore, the meshyqualimaintained in the near-field. At each

time step of unsteady computation, the Delaunay graph is moved accurdivegspecified translating or rotating

motion and is deformed by the spring analogy according to the sutéormatior{Kig. 10{b), (9) Then the mesh

CLUSTER of each moving component is mapped into its new positiomebgre-defined ontgs-one mappingKig.

e), (f). After the overset grid algorithm presented in Section feidormed|Fig. 10(h), (i)), the fluid flow

computatiorcanbe fulfilled on each CLUSTER followed by flow interpolation betweenGhe)STERS.
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Fig. 10 Illustration of the deformable overset grid for fish swarm swimming.

IV. Application to Multi-body Unsteady Aerodynamic Test Cases

This section performs several typical applications to examine its capabilitylinbmdy unsteady aerodynamic

simulations.

A. Multi-flexible-body Problem with Relative M otion
To test the the robustness and efficiency of the proposed determadrset grid method in solving multiple
bodies with both large movement and self-deformatiloa unsteady flow caused by multiple flexible airfoils with

relative motion was simulated. As showr[ﬁ'rg. 11} the two airfoils on the sides of the middle one move forward

with a relative faster speed, resulting in a shear type motion betwemn while each airfoil perform a periodic

swimming-like motion defined by the deforming of their bamhd as,
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T
where a(X) = ¢ x+ ¢, Xis the curve envelop. The swimming law is characterized by foumesaeesc,, c,, the

h(xt) = a( x- )g)sin{h[%—lﬂ, ®)

wave lengtht and the frequency f. In this simulation, the free-stream condiéindghe motion parameters were set
to make the Reynolds number and the Strouhal nuatfe=9.8x10, St=0.32 respectively

Four grid CLUSTTERSs were generated and organized into two LAYERs. LAYER background mesh has
one hybrid grid CLUSTER consisting of 49,614 rectangle/triangle elenwatiisuniform size of 0.04L in the
Cartesian grid zone. Thrémdy-itted grid CLUSTERswith refined boundary layer in LAYER 2 are related to the
three deforming airfoils with each containing 10,801 grid c@lke relative motion of the airfoils, say the forward
movementwas implemented by the overset grid at each time step; instantaneoedg|ftdeformationvas locally
handled with the improved Delaunay graph mapping method. Larivarwas applied for this simulation. The

deforming overset grid system and the flowdiplotted with vorticiy at different time instants are presentediig.

As can be seen, the flow field reveals the period shedding of vodiiee® the deforming airfoils.

HT=125

tHT=35.0

t/T=10.0

i

Fig. 11 The siniulatlon of unstad flow cailse by the multiple flexible airfoils with large relative motion (left

column: deformable overset grid; right column: vorticity contours).

B. Application to 3D dragonfly model in forward flight with flexible wing

Another application presented in this paper is a forward flight case & dr&gonfly model which was

constructed according a picture of a real dragonfly as shgwigiri2(a). The kinematic parameters of the maslel
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flapping wings, illustrated ifFig. 12(b), are set up the same as the forward flight case (advance ratig J=0.3

presented in Wang and Sui7[ with the hind-wing leading the forewing @phaseof 18C. Two kinematics of the

motion were simulated: one is for rigid wings; the other is for flexitings with camber deformation according to

the data measured by Wang and ZeB@|.[The scattered camber deformation data during one flapping cycle are

fitted into a curve as shown|kig. 13(a) so that a continuous deformation can be implemented for thé&agonu

The flapping motion and the camber deformation for either wing doregcycle are demonstrate

Fiy. 13

b).

Fig. 14{a) andFig. 14{(b) show the grid system for the dragonfly modal.total four grid CLUSTERs were

generated and assembled into two LAYERs. LAYER 1 has one CLUSTER sasvivackground grid while three

bodyfitted CLUSTERSs in LAYER 2 are associated with the forewing, theiimg and the body, respectivel.

total four CLUSTERS consist of about 1.04 million nodes and 2ibibmcells.

Laminar model was employed for the simulation as the Reynolds nusbely 1566 based on the mean chord

length L and the mean translating velocity;dt 2/3 spanwise location of the forewing.

stroke plane

./l

forewing <, hindwing

forewing hindwing

rotation axis

(a) (b)

Fig. 12 Geometric and kinematic definition of a dragonfly model.
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Fig. 13 Camber deformation of the dragonfly flapping wings during one flapping cycle.
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(@) (b)
Fig. 14 Overset grid system for the dragonfly model: (a) overset grid before hole-cutting; (b) overset grid

after hole-cutting.

The results for the vertical force coefficient caused by the forewing arninitheing are shown (Fig. 15

a) and

Fig. 15{b). The vertical forces computed by Wang and for rigid wings are also presented for comparison.

As can be seen, good agreement in trend was obtained as the sanai&inetion of wings were employed by

both studies, while the difference in the wing geometries (platfospech ratio and area) results in a difference in

the predicted peaks of vertical forc&®omparison of vertical force between the rigid wings and flexible sving

indicates that wint flexibility benefits the aerodynamics of flapping wing. Spanwise pressantours of

the two

styles of flow at 2/3 wing length are plottecrl-‘i'rg. 16(a, b). It can be seen from the figure that the pressure contours

pass smoothly across the overlapping region showing proper cdoatiom between different sub-grids.

4 4r
Rigid forewing Rigid hindwing
Y Flexible forewing 3 eesedessses Flexible hindwing
0 Results by Sun . Results by Sun 0..0

T ' - ’ ' t/“r
(a) (b)

Fig. 15 Time courses of vertical force coefficient caused by the wings of the dragonfly model.
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Fig. 16 Spanwise pressure contours at 2/3 wing span length of the dragonfly model: (a) rigid wings; (b)

flexible wings.

Fig. 17| plots the iso-surface of the vorticity at different time instants duoing flapping cycle, where the

evolution of the starting vortex, leading edge vortex, wake vortex anartipxvare clearly captured. The LEn

the forewing and hindwing augment the vertical force generationthdtliirst force peak at t/T = 0.25 as seen in

Fig. 15{a) and the second peakt&ai=0.7 inFig. 15(b), respectively. The second peak of the forewing £t(0.4)

and the third peak of the hindwing (t/T = 0.9) might due to the génarof the RSV that create a low pressure

region on the upper wing surface.

t=0.0T t=0.25T & t=0.375T |
| 7LH_RSVLLX 7 i, '
B @
=) s
o & £ (

5 éy A/
N
—

t=0.875T lj\

Fig. 17 Vortical structures generated by the dragonfly model during one flapping cycle plotted by the iso-
surface of the vorticity magnitude (J=0.3, y=180° ,|®|=0.72U,; /L), notations are RSV —Rotational Starting
Vortex; LEV—Leading Edge Vortex; TV—Trailing Vortex; WV—Wingtip Vortex; F—Forewing, H—
Hindwing.
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V. Conclusion

A deformable overset grid method was proposed in this paper by combining an unstructured overset grid with an
improved Delaunay graph mapping deformation method for simulating unsteady flows involving multiple moving
bodies. The original Delaunay graph mapping method was firstly improved by creating a very coarse mesh as
background graph which is deformed by means of spring analogy. As demonstrated by a two-dimensional rotating
airfoil and a three-dimensional bending DLR F6 wing, the robustness (i.e. mesh quality) of the proposed mesh
deformation method is significantly improved when comparing with the original method, particularly when the
moving bodies experience large rotational deformation. The additional computational expense associated with the
improved Delaunay graph mapping method is more than offset by the significantly improved robustness.

An unstructured overset grid technique, with sub-grids hierarchically organized into CLUSTERs and LAYERs,
allows for overlapping and embedding of different type meshes, of which the mesh quality and resolution can be
independently controlled. An efficient implicit hole-cutting and inter-grid boundary definition procedure was
designed that allows a fully automatic implementation for either cell-centered or cell-vertex schemes. By locally
coupled with the improved Delaunay graph mapping method on sub-grid CLUSTERs associated with deforming
bodies, the deformable overset grid was implemented for multi-body unsteady problems with simultaneous large
relative movement and surface deformation. This dynamic mesh method inherits the advantages of the overset grid
method in handling large relative boundary movement, and also benefits from the efficiency of the mesh
deformation technique based on Delaunay graph mapping for small deformation, especially when the mesh
deformation is localized.

The deformable overset grid method was successfully applied to two unsteady aerodynamic problems, flows
around multiple flexible moving airfoils and multiple deforming flapping wings, to demonstrate its capability for
simulating multiple body flows undergoing both large relative movement and self-deformation. The results showed
the robustness of this method for complex unsteady problems and suggested this method to be an efficient way to

solve the problems that afflict the previous dynamic mesh methods.
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