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SIMULTANEOUS CONFIDENCE BANDS IN NONLINEAR

REGRESSION MODELS WITH NONSTATIONARITY

Degui Li1, Weidong Liu2, Qiying Wang3 and Wei Biao Wu4

1The University of York, 2Shanghai Jiao Tong University,

3The University of Sydney and 4The University of Chicago

Abstract: We consider nonparametric estimation of the regression function g(·) in

a nonlinear regression model Yt = g(Xt) + σ(Xt)et, where the regressor (Xt) is a

nonstationary unit root process and the error (et) is a sequence of independent and

identically distributed (i.i.d.) random variables. With proper centering and scaling,

the maximum deviation of the local linear estimator of the regression function g

is shown to be asymptotically Gumbel. Based on the latter result, we construct

simultaneous confidence bands for g, which can be used to test patterns of the

regression function. Our results substantially extend existing ones which typically

require independent or stationary weakly dependent regressors. Furthermore, we

examine the finite sample behavior of the proposed approach via the simulated and

real data examples.

Key words and phrases: Gumbel convergence, integrated process, local linear es-

timation, local time limit theory, maximum deviation, simultaneous confidence

bands.

1. Introduction

Following Granger (1981) and Engle and Granger (1987), cointegration has

become one of the most important topics in econometrics. For two non-stationary

processes (Xt) and (Yt), we say that they are (linearly) cointegrated if there exists

a nonzero constant a such that

Yt − aXt = εt, t = 1, . . . , n, (1.1)

where (εt) is a stationary process. The above cointegration property indicates

that the two nonstationary processes (Xt) and (Yt) have a common stochastic

trend over a long time series period. The classic linear cointegration models
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have been extensively studied in the literature. To account for possible nonlinear

relations, in this paper we consider the nonlinear and nonstationary regression

model:

Yt − g(Xt) = σ(Xt)et, t = 1, . . . , n, (1.2)

where (et) is a stationary error process, (Xt) is a nonstationary regressor, g

and σ are two smooth functions. Model (1.2) generalizes the traditional linear

cointegration model (1.1) by allowing possible nonlinear structures on both g and

σ. Hence, it provides a flexible tool to analyze nonlinear relationships between

two nonstationary processes.

The aim of this paper is to study nonparametric estimates of the function

g in model (1.2). Convergence properties of the conventional Nadaraya-Watson

kernel-based estimator have been widely discussed under the assumption that

(Xt, Yt) are i.i.d.; see Härdle (1990) and the references therein. In Györfil et al

(1989), Bosq (1998) and Fan and Yao (2003), the i.i.d. assumption is relaxed and

strong mixing stationary processes are allowed. The asymptotic problem becomes

quite challenging if (Xt) is non-stationary. Karlsen et al (2007, 2010) assumed

that (Xt) is a null recurrent Markov chain. Wang and Phillips (2009a, 2009b,

2011) and Cai et al (2009) considered the integrated processXt =
∑t

j=1 xj , where

(xj) is a stationary linear process. For other recent literature on this research

area, we refer to Gao et al (2009a, 2009b), Chen et al (2010, 2012), Kasparis and

Phillips (2012), Wang and Phillips (2012) and Wang (2014).

All the aforementioned papers deal with the point-wise central limit theorem

for the Nadaraya-Watson estimator. This type of point-wise distributional result,

however, is not useful for testing certain patterns of the regression function g. In

recent years, there has been increasing interests on deriving the uniform consis-

tency results for the kernel-based estimator under the nonstationary framework.

For instance, Wang and Wang (2013) and Chan and Wang (2014) established

the uniform consistency of the kernel-based estimator by using the local time

limit theory, Wang and Chan (2014) obtained uniform convergence rates for a

class of martingales and studied their application in nonlinear cointegration re-

gression, and Gao et al (2015) derived some uniform consistency results using

the framework of the null recurrent Markov chains.

Throughout this paper, we estimate the regression function g using the local
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linear smoothing method in which the estimator of g(x) is defined by

ĝn(x) =
n∑

t=1

wt(x)Yt/
n∑

t=1

wt(x), (1.3)

where the weight function is defined through

wt(x) = K[(Xt − x)/h]Vn2(x)−K1[(Xt − x)/h]Vn1(x)

with Vnj(x) =
∑n

i=1Kj [(Xi−x)/h], Kj(x) = xjK(x), K(·) being a non-negative

real function and the bandwidth h ≡ hn → 0. Under the stationarity assump-

tion on the observations, existing literature such as Fan and Gijbels (1996) has

already shown that the local linear estimation method has some advantages over

the Nadaraya-Watson kernel estimation method. A recent paper by Chan and

Wang (2014) further showed that the performance of ĝn(·) is superior to that of

the conventional Nadaraya-Watson estimator in uniform asymptotics for nonta-

tionary time series.

To assess patterns of the regression function g, for example, to test whether

g is linear or of other parametric forms, we need to construct a simultaneous

confidence band (SCB) for g over a suitable interval. Neither the point-wise

central limit theorem nor the uniform convergence of ĝn(·) is sufficient for testing

whether g has a particular functional form. To deal with the latter problem,

we shall obtain in this paper the asymptotic distribution for the normalized

maximum absolute deviation

∆n = sup
|x|≤Bn

∣∣Vn(x)
[
ĝn(x)− g(x)

]
/σ(x)

∣∣ , (1.4)

where Bn is a sequence of positive constants which may diverge to infinity and

the normalizing term is defined by

Vn(x) = V −1
n2 (x)

n∑

t=1

wt(x)
/( n∑

t=1

K2
[
(Xt − x)/h

])1/2
. (1.5)

Such an asymptotic distributional theory substantially refines the existing uni-

form consistency results such as those obtained by Chan and Wang (2014), and

it further enables one to construct a SCB for the unknown regression function

g. In the traditional simultaneous inference theory it is assumed that the re-

gressor process (Xt) is i.i.d. or stationary; see, for example, Bickel and Rosen-

blatt (1973), Johnston (1982), Hall and Titterington (1988), Xia (1998), Fan and
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Zhang (2000), Zhao and Wu (2008), Liu and Wu (2010) and Zhang and Peng

(2010). However, in our setting, due to the nonstationarity and the dependence,

it is very demanding to establish a limit theory for ∆n. To this end, we introduce

new technical mechanisms and obtain a precise characterization of Vn(x) over an

unbounded interval.

The rest of the paper is organized as follows. The assumptions and main

theoretical results are stated in Section 2. By using the asymptotic distribution

of ∆n defined in (1.4), in Section 3, we construct SCBs for the regression func-

tion g over an expanding interval. In Section 4, we provide both the simulated

and real data examples to illustrate the finite sample behavior of the proposed

approach. The proofs of the main results are provided in Section 5. Section 6

concludes the paper. Some technical lemmas with the proofs and some supple-

mental asymptotic theorems are given in a supplemental document.

2. Main results

We start with some regularity conditions which will be used later to establish

our main theorem on the asymptotic distribution of ∆n defined in (1.4). Let C

be a positive constant whose value may change from line to line.

(C1) [Regressor process] Let

Xt =

t∑

j=1

xj , xj =

∞∑

k=0

φk ηj−k,

where (ηj) is a sequence of i.i.d. random variables with E[η1] = 0, E[η21] = 1 and

E[|η1|2+δ] < ∞ for some δ > 0, the characteristic function ϕ(t) of η1 satisfies∫∞
−∞(1+ |t|)|ϕ(t)|dt < ∞, and the coefficients (φk)k≥0 satisfy

∑∞
k=0 |φk| < ∞ and

φ ≡
∑∞

k=0 φk 6= 0.

(C2) [Regression function] The first derivative of g(x) exists and it is denoted

by g′(x). There exists a real positive function g0(x) such that

|g′(y)− g′(x)| ≤ g0(x)|y − x|, (2.1)

uniformly for x ∈ R and |y − x| sufficiently small.

(C3) [Range and Bandwidth] (i) Let Bn = M0n
1/2−ǫ, where M0 is a constant

and ǫ > 0 can be arbitrarily small. (ii) For some constant 0 < δ0 < 1/4,
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n1/2−δ0h → ∞. (iii) nh10 sup|x|≤2Bn

[
1 + g40(x)

]
= O(log−8 n), where g0(x) is

given in (2.1).

(C4) [Errors] (i) The error process (et) is i.i.d. with E[e1] = 0, E[e21] = 1 and

E[|e1|2p] < ∞, where p ≥ 1 + [1/δ0] and δ0 is defined as in (C3)(ii), and (et) is

independent of the process (ηt). (ii) For the function σ(·), we have

inf
x∈R

σ(x) > 0, sup
x∈R

|σ(x+ y)− σ(x)|
σ(x)

≤ C|y| (2.2)

for any |y| sufficiently small.

(C5) [Kernel] The kernel function K is absolutely continuous on a compact

support [−A,A] with A > 0,
∫
xK(x)dx = 0 and |K(x) −K(y)| ≤ C|x − y| for

all x, y ∈ R.

Remark 1. In the literature conditions similar to (C1) and (C2) have been

commonly used; see, for instance, Wang and Phillip (2009b), Wang and Wang

(2013) and Chan and Wang (2014). Note that the smoothness condition (2.1) on

g′ is slightly weaker than the existence of second derivative on g. For instance,

if the function g has continuous and bounded second order derivative, we may

replace g0(x) in (2.1) by a positive constant. As a consequence, (C3) (iii) can

be simplified to nh10 log8 n = O(1).

In condition (C3)(i), we allow Bn to diverge to infinity, which has an es-

sential difference from the literature that investigates the SCB for stationary

regressor where Bn is usually assumed to be fixed (c.f., Liu and Wu, 2010). Our

main theorem is established for diverging Bn, which indicates that the SCB for

unknown g with I(1) regressor may be constructed under an expanding interval

whose length is allowed to diverge to infinity; see Remark 4 in Section 3 for more

details. (C3)(ii) is close to the necessary condition of
√
nh → ∞ by letting δ0

be sufficiently close to zero. (C3)(iii) implies that there is a trade-off between

the function g, the bandwidth h and the range Bn. If Bn is assumed to be

a positive constant B, (C3)(iii) is satisfied when sup|x|≤2B g0(x) = O(1) and

nh10 log8 n = O(1). In particular, the condition (C3)(iii) ensures that the bias

term of the local linear estimator (1.3) with nonstationarity is asymptotically

negligible, which can simplify the presentation of our limit theory in Theorem 1

and the subsequent construction of the SCBs in Section 3.

In condition (C4), E[e21] = 1 is not necessary. If E[e21] = a2 6= 1, it suffices to
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standardize the model (1.2) with e′t = et/a and replace σ(x) by aσ(x). The mo-

ment condition of e1 depends on the δ0 in (C3)(ii), which is reasonable. Weaker

bandwidth restriction (smaller δ0) would lead to stronger moment condition on et

(larger p). We further require the independence between the regressor (Xt) and

the error (et) by noting that (et) is independent of (ηt) in (C4)(i). This condition

is restrictive, but seems difficult to be relaxed, even with the stationary regres-

sor, due to the technical reasons. The condition imposed on σ(x) is mild and is

satisfied by a large class of functions. Typical examples include σ(x) = 1 + |x|k

with k ≥ 0 and σ(x) = ex/(1 + ex).

The kernel condition (C5) implies that the derivativeK ′(x) exists almost ev-

erywhere and
∫ A
−A[K

′(x)]2dx < ∞. Define λ1 =
∫ A
−AK(x)dx, λ2 =

∫ A
−AK2(x)dx,

and κ2 =
∫ A
−A(K

′(x))2dx/(2λ2). We further have

r(s) ≡
∫ A

−A
K(x)K(x+ s)dx/λ2 = 1− κ2s

2 + o(s2), as s → 0. (2.3)

This follows from the Taylor’s expansion of r(s) and Theorems B1–B2 of Bickel

and Rosenblatt (1973). As in Bickel and Rosenblatt (1973), r(s) is used as

the covariance function of a certain Gaussian process, which will appear in the

proof of Theorem 1. Note that the kernel condition (C5) is mild and it can

be satisfied by many commonly-used functions such as the Epanechnikov kernel

K(u) = max{3(1− u2)/4, 0}.
We now introduce our main theoretical result: asymptotic distribution for

the normalized maximum absolute deviation ∆n defined in (1.4).

Theorem 1. Let Conditions (C1)-(C5) be satisfied. Then, for z ∈ R,

P

{
(2 log h̄−1)1/2 (∆n − dn) ≤ z

}
→ e−2e−z

, (2.4)

where h̄ = h/(2Bn) and

dn = (2 log h̄−1)1/2 +
1

(2 log h̄−1)1/2
log

κ
1/2
2

π21/2
.

Remark 2. Letting Gn = (2 log h̄−1)1/2 (∆n − dn) and G be the standard Gum-

bel distribution with the cumulative distribution function defined as the limit in
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(2.4), we may reformulate the above limit result as Gn
d→ G. Unlike the existing

results with stationary regressors, an important and useful feature of Theorem

1 is that we allow that Bn is divergent. Using Theorem 1, we can construct

SCBs for the unknown function g on expanding intervals which will be given

in Section 3 below. The requirement of intervals being expanding is crucial in

our functional estimation since the regressor process (Xt) is integrated and thus

stochastically unbounded, behaving like random walk. In fact, in the proof of

Theorem 1 in Section 5, we obtain the asymptotic Gumbel distribution theory

for Bn = O(
√
n log−c0 n) for some c0 > 0, which is optimal up to a logarithmic

multiplicative factor, which cannot be extended, for example, to Bn ≥ √
n log n.

To see this, consider the simplest case in which Xt =
∑t

j=1 xj and xj are i.i.d.

standard normal random variables. Then P(maxt≤n |Xt| ≥
√
n log n) → 0 and

there is almost no data point for estimating g(x) with x ≥ √
n log n. Liu and Wu

(2010) obtained Gumbel convergence for the nonlinear regression models with

stationary regressors. In the latter paper, however, it is assumed that the in-

volved interval is bounded and non-expanding. The result in Liu and Wu (2010)

generally fails if the interval is unbounded. This explains the significant differ-

ence between models with stationary and nonstationary regressors. The model

with nonstationary I(1) regressor presently allows expanding intervals, however,

the theoretical derivation is much more challenging and it uses local time limit

theory together with multivariate Gaussian approximation.

The asymptotic Gumbel distribution result (2.4) also holds when we replace

ĝn(·) by the Nadaraya-Watson kernel estimation g̃n(·) in the definition of ∆n.

To save the space of the main document, we provide some relevant results in

Appendix C of the supplemental document.

3. Construction of SCBs

This section constructs the SCBs for the regression function g. Since σ(x) in

the definition of ∆n given in (1.4) is unknown, Theorem 1 is not directly usable.

The consistent estimate of σ(x) satisfying certain rates are required over the set

{x : |x| ≤ Bn}. Using the similar arguments as in Wang and Wang (2013), we

construct the kernel estimation:

σ̂2
n(x) =

∑n
t=1[Yt − ĝn(Xt)]

2K[(Xt − x)/b]∑n
t=1K[(Xt − x)/b]

, (3.1)
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where ĝn(x) is the local linear estimate defined in (1.3), and b is a bandwidth.

Let an ≍ bn denote that an and bn have the same asymptotic order.

Proposition 1. Under the conditions of Theorem 1 and that b ≍ h, we have

sup
|x|≤Bn

∣∣∣ σ(x)
σ̂n(x)

− 1
∣∣∣ = OP

[
h+ (nh2)−1/4 log2 n

]
. (3.2)

Remark 3. The proof of Proposition 1 will be given in Section 5. Proposition

1 can be seen as an extension of Wang and Wang (2013)’s uniform consistency

results from the case of bounded range to the case of diverging range. The

uniform convergence rate in (3.2) is close to be optimal. Using the bandwidth

conditions in (C3), we can see that the rate in (3.2) is sufficient for us to replace

σ(·) by σ̂n(·) when constructing the SCBs of the regression function g.

Define

∆̂n = sup
|x|≤Bn

∣∣Vn(x)
[
ĝn(x)− g(x)

]
/σ̂n(x)

∣∣ .

Due to (3.2) and Theorem 1, ∆̂n and ∆n have the same limit distribution. Con-

sequently, for given α, the (1− α)-SCB for g over the set {x : |x| ≤ Bn} can be

constructed by [
ĝn(x)− lα(x), ĝn(x) + lα(x)

]
, (3.3)

where

lα(x) =
[
zα(2 log h̄

−1)−1/2 + dn

]
σ̂n(x)V

−1
n (x),

zα = − log

(
−1

2
log(1− α)

)
, h̄ = h/(2Bn),

dn = (2 log h̄−1)1/2 +
1

(2 log h̄−1)1/2
log

κ
1/2
2√
2π

.

Remark 4. As Theorem 1 implies that the asymptotic bias term is negligible

due to the bandwidth condition (C3), we do not need to correct the bias of

the local linear estimation when constructing the SCBs in (3.3). The simulation

study in Section 4 shows that such construction of SCBs works reasonably well in

the finite sample case. When the regression function g(x) has a thin tail such as

8
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g(x) = (α+βex)/(1+ex), some routine calculations show that supx |g0(x)| < ∞.

As a consequence, the SCB result (3.3) holds over the set {x : |x| ≤ M0n
1/2−ǫ},

whenever n1/2−δ0h → ∞ and nh10 log8 n → 0, where ǫ can be chosen sufficiently

small. As pointed out in Section 2, this is fundamentally different from the

existing literature with stationary regressor, which generally fails if the interval

is unbounded.

4. Numerical studies

In this section, we provide both the simulated and real data examples to

illustrate the finite sample behavior of our SCBs. For the construction, we need

to choose an appropriate cut-off value so that the pre-assigned nominal confidence

level can be achieved. However, the Gumbel convergence in Theorem 1 can be

quite slow, which implies that the SCB in (3.3) by using the asymptotically cut-

off value may not have a good finite sample performance. To circumvent such a

problem, as in Wu and Zhao (2007) and Liu and Wu (2010), we next introduce

a simulation-based method.

1. Choose an appropriate bandwidth h and a kernel function K satisfying

(C5). Then using (1.3), we compute ĝn(x) and the estimated residuals

êt = Yt − ĝn(Xt). Based on the latter, with another bandwidth b, we

estimate σ2(·) by using (3.1) and denote the estimate by σ̂2
n(·).

2. Generate i.i.d. standard normal random variables e∗1, . . . , e
∗
n which are in-

dependent of x1, . . . , xn; compute Y ∗
t = σ̂n(Xt)e

∗
t ; perform a local linear

regression of (Y ∗
t ) on (Xt) with bandwidth h and kernel K and let ĝ∗n(·) be

the estimated regression function. Then compute the normalized maximum

deviation

∆∗
n = max

|x|≤Bn

∣∣Vn(x)ĝ
∗
n(x)/σ̂n(x)

∣∣. (4.1)

3. Repeat the preceding Step 2 for N times, and then compute the (1− α)th

sample quantile, denoted by ∆∗
n,1−α.

4. Construct the (1− α)th SCB for g(x) over the interval x ∈ [−Bn, Bn] as

[
ĝn(x)− σ̂n(x)∆

∗
n,1−α/Vn(x), ĝn(x) + σ̂n(x)∆

∗
n,1−α/Vn(x)

]
.

9
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From Theorem 1, with the normalization in (2.4), ∆∗
n and ∆n have the same

asymptotic Gumbel distribution. Then the empirical quantile of the former can

approximate that of the latter. In comparison with the asymptotic Gumbel distri-

bution, the distribution of ∆∗
n better approximates that of ∆n. Consequently it is

expected that the latter has a better finite sample performance. Our simulation-

based construction has an important practical convenience: the procedure is the

same as when data are stationary. Therefore we do not have to be concerned

with whether the true data generating process is I(0) or I(1) for constructing

SCBs with asymptotically correct coverage probabilities.

Example 1. Consider the nonlinear regression model

Yt = g(Xt) + σ(Xt)et, Xt = Xt−1 + xt, t = 1, 2, · · · , n, (4.2)

where g(x) = log(10 + 0.25x1.2), σ(x) = (6 + 0.2x2)0.5, (xt) is generated by the

AR(1) process xt = 0.4xt−1 + vt, vt, t ∈ Z, are i.i.d. N(0, 1), et, t ∈ Z, are i.i.d.

uniform(−31/2, 31/2), and (vt)t∈Z and (et)t∈Z are independent. We choose three

levels of n: n = 100, 200, 500 and consider SCBs over the interval x ∈ [Bl, Bu],

where Bl (resp. Bu) is the 0.1th (resp. 0.9th) sample quantile of the I(1) regressor

(Xt).

Table 1. Coverage Probabilities for SCBs

Trueσ2(·) Estimatedσ2(·)
(α;n) Simulation Theoretical Simulation Theoretical

0.05; 100 0.9411 0.9568 0.8859 0.9069

0.01; 100 0.9874 0.9971 0.9564 0.9805

0.05; 200 0.9376 0.9530 0.9098 0.9271

0.01; 200 0.9875 0.9960 0.9723 0.9878

0.05; 500 0.9495 0.9622 0.9447 0.9573

0.01; 500 0.9901 0.9974 0.9880 0.9963

In our simulation, for convenience we use the Gaussian kernel functionK(u) =

(2π)−1/2 exp(−u2/2), since it has a very thin tail and is the default choice in R

package KernSmooth. We also use the function dpill (Ruppert et al, 1995) in

the package KernSmooth for choosing the bandwidth and the function locpoly for

performing the local linear regression. Table 1 shows the coverage probabilities

10
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which are the proportions of the SCBs that cover the true function g(x) over

x ∈ [Bl, Bu] based on 105 repetitions. Two levels are considered: α = 0.05 and

α = 0.01. Coverage probabilities based on theoretical cut-off values computed

from Theorem 1 are also shown. In the left panel we use the true variance func-

tion σ2(·), while in the right one the estimated σ̂2
n(·) is used. Using the true

variance function σ2(·), with α = 5% and n = 500, the coverage probability for

the simulation-based method is 0.9495 which is very close to the nominal level

0.95 with the relative accuracy level (1 − 0.9495)/(1 − 0.95) = 1.01. However,

for the theoretical cut-off value based on Theorem 1, the coverage probability

is 0.9622, which is quite different from 0.95 and has a relative accuracy level

(1 − 0.9622)/(1 − 0.95) = 0.76. As expected, larger n leads to more accurate

coverage probabilities. A similar claim can be made for the SCBs with α = 1%.

Hence the simulation-based method has a more accurate finite sample perfor-

mance in particular when n = 500. The accuracy of both coverage probabilities

can be slightly affected if the estimated variance function σ̂2
n(·) is used.

Example 2. We next consider the monthly US share price indices and treasury

bill rates for the period January/1957–December/2009, which are downloaded

from International Monetary Fund’s website and were also used by Chen et al

(2012). The upper two plots in Figure 1 give the two series with the log trans-

formation applied to the share price data. The augmented Dickey-Fuller test in-

dicates that the treasury bill rates are the I(1) process, and the log-transformed

share price indices are the I(1) process with drift. To ensure that our method-

ology and theory are applicable to the data, we remove the drift from the share

price indices and the adjusted share price indices are plotted in the lower-left plot

of Figure 1. The lower-right plot in Figure 1 gives the scatter plot of the adjusted

share price indices against the treasury bill rates, which indicates the existence of

heteroskedasticity. The aim of this example is to analyze the relationship between

the share price series and the treasury bill rates. Let (Yt) be the adjusted share

price series, and (Xt) be the treasury bill series. We first fit the data with the

linear regression model defined by Yt = a+ bXt+et, and obtain the least squares

estimation â and b̂ of the two parameters: −0.1582 and −0.0514, respectively.

However, the cointegration test shows that the null hypothesis of the I(1) error

process cannot be rejected. This indicates that the linear cointegration model is
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not appropriate for the data.

We next consider the nonlinear regression model:

Yt = g(Xt) + ε∗t , ε∗t = σ(Xt)et, t = 1, · · · , 636, (4.3)

where (et) is assumed to be independent of (Xt), g and σ are two nonlinear

functions as in model (1.2). The structure of ε∗t = σ(Xt)et allows the existence

of nonstationarity and heteroskedasticity for the model error term. The local

linear estimation method is used to estimate the regression function g and the

resulting estimate is denoted by ĝn(·), where the bandwidth is chosen by the

commonly-used cross-validation method. Let ε̂∗t = Yt − ĝn(Xt). Figure 2 plots

the residual (ε̂∗t ) against the regressor (Xt), which shows that our nonlinear model

(4.3) with heteroskedasticity on errors is appropriate for the data.

The SCB for the regression function is plotted in Figure 3 with the cut-off

value chosen by using the simulation-based method. The upper and lower dashed

lines are the 95%-SCB for the regression function g. The solid line is the local

linear estimated regression function and the dotted line is the estimated linear

regression function. From the figure, we have to reject the hypothesis that g is

linear at 5% level as part of the dotted line lies outside the SCB. This again

shows that (Xt) and (Yt) are not linearly cointegrated and the traditional linear

model is not suitable for the data.

It is well-known that it is difficult to derive the local time limit theory for

local linear estimation when (Xt) is multivariate I(1), which limits the empirical

applicability of the proposed SCB construction. While Figures 3 suggests a

nonlinear relationship between the adjusted share price series and the treasury

bill series, the true relationship may also depend on some other macroeconomic

variables such as the long-term bond yields (Chen et al, 2012). To address

the latter problem, we may extend the nonlinear regression model (4.3) to the

nonlinear varying-coefficient models (c.f., Cai et al, 2009) and include some other

macroeconomic time series in the empirical analysis. However, this is beyond the

scope of this paper, and we will leave this in our future study.
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Figure 1: The data plots over period of January/1959–December/2009.
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Figure 2: The residuals from the nonlinear regression model against the treasury bill rates.
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Figure 3: The SCB for the regression function g.

5. Proofs of the main results

In this section, we give the proofs of Theorem 1 in Section 2 and Proposition

1 in Section 3. We shall prove Theorem 1 for Bn =
√
n/(logc0 n) with c0 being

a positive constant, which is asymptotically wider than Bn = M0n
1/2−ǫ. Some

of the arguments used in this section and the supplemental material are similar

to those in Bickel and Rosenblatt (1973) and Liu and Wu (2010). However, due

to the presence of non-stationary series, our proofs are quite challenging, using

uniform asymptotics for martingale and functionals of non-stationary time series

over some expanding intervals, which are more complicated than the uniform

asymptotic results over a bounded interval used in the stationary time series

literature.

Proof of Theorem 1. Let

Γ1n(x) =
1

Sn(x)Vn2(x)
·

n∑

t=1

wt(x)
[
g(Xt)− g(x)

]
,

Γ2n(x) =
Vn1(x)

Sn(x)Vn2(x)
·

n∑

t=1

K1[(Xt − x)/h]et,

Γ3n(x) =
1

Sn(x)Vn2(x)
·

n∑

t=1

wt(x)
[
σ(Xt)− σ(x)

]
et/σ(x),

where S2
n(x) =

∑n
t=1K

2
[
(Xt − x)/h

]
, Vnj(·), wt(·) and K1(·) are defined as in

14
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Section 1. Similarly to Liu and Wu (2010), we may split the Vn(x)
[
ĝn(x) −

g(x)
]
/σ(x) as follows:

Vn(x)
[
ĝn(x)− g(x)

]
/σ(x)

= Vn(x)
{ n∑

t=1

wt(x)σ(Xt)et +

n∑

t=1

wt(x)
[
g(Xt)− g(x)

]}
/
[
σ(x)

n∑

t=1

wt(x)
]

=
1

Sn(x)
·

n∑

t=1

K[(Xt − x)/h]et + Γ1n(x)/σ(x) + Γ2n(x) + Γ3n(x). (5.1)

Furthermore, we apply the truncation technique to deal with the first term on

the right hand side of (5.1). Let In = [−h−1Bn, h
−1Bn] and e′t = ẽt/(Eẽ

2
t )

1/2,

where

ẽt = etI{|et| ≤ log n} − E [etI{|et| ≤ log n}] , 1 ≤ t ≤ n. (5.2)

Define Zt(x) = K(Xt/h− x)/Sn(xh) and

Mn(x) =
n∑

t=1

Zt(x)et, Mn = sup
x∈In

|Mn(x)|;

M̃n(x) =

n∑

t=1

Zt(x)e
′
t, M̃n = sup

x∈In

|M̃n(x)|.

The main idea of proving Theorem 1 is to show that Γjn(x), j = 1, 2, 3,

are asymptotically dominated by Mn(x) uniformly over |x| ≤ Bn, and Mn(x)

is asymptotically equivalent to its truncated version M̃n(x). Due to (5.1) and

infx∈R σ(x) > 0, it is clearly seen that Theorem 1 follows from the following three

propositions, which are proved in the supplemental materials. �

Proposition 2. Under the conditions of Theorem 1, we have

sup
|x|≤Bn

|Γjn(x)| = OP (log
−2 n), j = 1, 2, 3.

Proposition 3. Under the conditions of Theorem 1, we have

sup
x∈In

|Mn(x)− M̃n(x)| = OP (log
−2 n).

15
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Proposition 4. Under the conditions of Theorem 1, we have for any z ∈ R,

P

{
(2 log h̄−1)1/2(M̃n − dn) ≤ z

}
→ e−2e−z

,

where dn is defined as in Theorem 1.

Proof of Proposition 1. Note that, due to the condition (C4)(ii) and K(s) = 0

if |s| ≥ A,
∣∣σi(Xt)− σi(x)

∣∣
σi(x)

·K
[
(Xt − x)/b

]
≤ CbK

[
(Xt − x)/b

]
,

for i = 1 and 2, all x ∈ R and a sufficiently small b. Similarly, we have

|ĝn(Xk)− g(Xk)|iK
[
(Xk − x)/b

]
≤ CK

[
(Xk − x)/b

]
· sup
|x|≤2Bn

|ĝn(x)− g(x)|i ,

for i = 1 and 2, |x| ≤ Bn and a sufficiently small b. Then, we have
∣∣σ̂2

n(x)− σ2(x)
∣∣

σ2(x)
≤ C

[
b+ σ−2(x) sup

|z|≤2Bn

|ĝn(z)− g(z)|2
]
+

C

∣∣∣∣∣

∑n
t=1K

[
(Xt − x)/b

]
(e2t − 1)∑n

t=1K
[
(Xt − x)/b

]
∣∣∣∣∣+

C

[ ∑n
t=1K

[
(Xt − x)/b

]
|et|

σ(x)
∑n

t=1K
[
(Xt − x)/b

] · sup
|z|≤2Bn

|ĝn(z)− g(z)|
]
,

for |x| ≤ Bn and a sufficiently small b. Furthermore, by Theorem 4.1 of Chan

and Wang (2014) and (C3)(iii), we have

sup
|x|≤2Bn

|ĝn(x)− g(x)| = OP

[
(nh2)−1/4 log1/2 n+ h2 sup

|x|≤2Bn

|g0(x)|
]

= OP

[
(nh2)−1/4 log2 n

]
.

The above arguments, together with Lemma A.4 given in the supplemental doc-

ument, b ≍ h and infx∈R σ(x) > 0, lead to

sup
|x|≤Bn

∣∣σ̂2
n(x)− σ2(x)

∣∣
σ2(x)

= OP

[
h+ (nh2)−1/4 log2 n

]
.

Hence, we have

sup
|x|≤Bn

∣∣∣∣
σ(x)

σ̂(x)
− 1

∣∣∣∣ ≤ sup
|x|≤Bn

σ(x)

σ̂(x)

∣∣σ̂2(x)− σ2(x)
∣∣

σ2(x)
= OP

[
h+ (nh2)−1/4 log2 n

]
.
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This completes the proof of Proposition 1. �

6. Conclusion

In this paper we study a local linear estimator of the regression function in

a nonlinear regression model, where the univariate regressor is generated by a

nonstationary I(1) process. Under some regularity conditions and with a proper

normalization, we derive the asymptotic Gumbel distribution for the maximum

deviation of the developed local linear estimator, and then use this result to

construct the SCBs of the regression function. Furthermore, we also propose a

nonparametric kernel-based method to estimate the variance function, and intro-

duced a simulation-based procedure to choose the cut-off value in the construc-

tion of SCBs which can circumvent the slow convergence issue of the asymptotic

Gumbel distribution. The simulation study and the empirical application show

that the proposed approach of constructing SCBs performs reasonably well in

finite samples.

Supplementary materials

The supplementary materials contain the proofs of Propositions 2–4, some

technical lemmas with proofs, and the discussion on the asymptotic Gumbel

distribution for the Nadaraya-Watson kernel estimation.
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