University of Work

This is a repository copy of Uniform Consistency of Nonstationary Kernel-Weighted Sample Covariances for Nonparametric Regression.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/102283/
Version: Accepted Version

Article:

Li, Degui orcid.org/0000-0001-6802-308X, Phillips, Peter C. B. and Gao, Jiti (2016) Uniform Consistency of Nonstationary Kernel-Weighted Sample Covariances for Nonparametric Regression. Econometric Theory. pp. 655-685. ISSN 0266-4666
https://doi.org/10.1017/S0266466615000109

Reuse

Other licence.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Uniform Consistency of Nonstationary Kernel-Weighted Sample Covariances for Nonparametric Regression

Degui Li* Peter C. B. Phillips ${ }^{\dagger}$ and Jiti Gao ${ }^{\ddagger}$

December 18, 2014

Abstract

We obtain uniform consistency results for kernel-weighted sample covariances in a nonstationary multiple regression framework that allows for both fixed design and random design coefficient variation. In the fixed design case these nonparametric sample covariances have different uniform asymptotic rates depending on direction, a result that differs fundamentally from the random design and stationary cases. The uniform asymptotic rates derived exceed the corresponding rates in the stationary case and confirm the existence of uniform super-consistency. The modelling framework and convergence rates allow for endogeneity and thus broaden the practical econometric import of these results. As a specific application, we establish uniform consistency of nonparametric kernel estimators of the coefficient functions in nonlinear cointegration models with time varying coefficients or functional coefficients, and provide sharp convergence rates. For the fixed design models, in particular, there are two uniform convergence rates that apply in two different directions, both rates exceeding the usual rate in the stationary case.

Key words and phrases: Cointegration; Functional coefficients; Kernel degeneracy; Nonparametric kernel smoothing; Random coordinate rotation; Super-consistency; Uniform convergence rates; Time varying coefficients.

JEL classification: C13, C14, C32.

[^0]
1 Introduction

Uniform consistency results with convergence rates for nonparametric kernel estimators have been extensively studied in the existing literature. These results are important in many kernel-based applications such as semiparametric estimation with first-stage kernel smoothing, kernel-based specification testing, and cross-validation bandwidth selection. Existing studies mainly focus on obtaining uniform consistency results for independent and identically distributed (i.i.d.) data or time series that satisfy certain stationarity and mixing conditions. Early statistical studies include Mack and Silverman (1982), Roussas (1990), Liebscher (1996), Masry (1996) and Bosq (1998). Later developments and econometric applications can be found in Hansen (2008), Kristensen (2009) and Li et al (2012).

Recent years have witnessed a growing literature on nonparametric kernel smoothing in a nonstationary framework. This work is of practical importance because the stationarity condition is restrictive and unrealistic in many empirical applications as discussed in the literature. Among others, see Phillips and Park (1998), Karlsen and Tjøstheim (2001), Karlsen et al (2007), Cai et al (2009), Wang and Phillips (2009a, 2009b), Xiao (2009), Chen et al (2010), Chen et al (2012), and Gao and Phillips (2013a, 2013b). Most recently, there has been interest in obtaining uniform consistency results for nonparametric kernel smoothing under nonstationarity (notably, Chan and Wang, 2012; Duffy, 2013; Wang and Wang, 2013; Wang and Chan, 2014; Gao et al, 2015). This work confirms that uniform convergence rates of kernel-based estimates in nonstationary cases are slower than those in the stationary case. Just as in pointwise convergence, the slower convergence rate is explained by the random wandering character of nonstationary time series (such as those arising in unit root or null recurrent Markov frameworks) so that the amount of time spent by the series in the vicinity of any particular point is of smaller order than the stationary case, thereby reducing the effective sample size in estimation.

This paper develops uniform consistency results for potentially multivariate kernel-weighted sample covariance functions of the following form

$$
\begin{equation*}
Q_{n}(z)=\sum_{t=1}^{n} K\left(\frac{Z_{t}-z}{h}\right) X_{t} e_{t} \tag{1.1}
\end{equation*}
$$

after appropriate normalization, where $K(\cdot)$ is a kernel function, $h \equiv h_{n}$ is a bandwidth which tends to zero as n tends to infinity, X_{t} is a nonstationary I(1) process with dimension
$d \geq 1$, and e_{t} is stationary. Detailed properties of the time series X_{t} and e_{t} are provided in Section 2. Quantities such as the weighted sample covariance (1.1) play a central role in kernel regression and are fundamental in determining the limit theory of such regressions. For example, when X_{t} and e_{t} are stationary and Z_{t} follows an i.i.d. random design, the standardized quantity $Q_{n}(z) /\left[\sum_{t=1}^{n} K\left(\frac{Z_{t}-z}{h}\right)\right]$ estimates the conditional covariance between X_{t} and e_{t} for given $Z_{t}=z$. When X_{t} is integrated, a similar quantity arises in nonparametric functional coefficient cointegrating regression. Section 4 shows that the limit theory for $Q_{n}(z)$ is useful in deriving asymptotics for kernel estimation of coefficient functions in nonlinear cointegration models with varying coefficients. This paper focuses on two cases of particular interest: (i) $Z_{t}=\frac{t}{n}$, corresponding to a fixed design structure; and (ii) Z_{t} is i.i.d., corresponding to a random design framework. Asymptotic rates for $Q_{n}(z)$ will be developed uniformly in z for these two cases.

For case (ii) with random design Z_{t}, we show that the uniform asymptotic rate of (1.1) is $O_{P}(n \sqrt{h \log n})$, which exceeds the $O_{P}(\sqrt{n h \log n})$ rate that holds when both X_{t} and e_{t} are stationary. This result can be used to derive a uniform convergence rate for nonparametric kernel-based estimation of the functional coefficients in nonlinear cointegration models where super-consistency exists. In contrast, case (i) with fixed design Z_{t} is much more complicated because kernel weighting produces degeneracy in the signal matrix defined later on the left hand side of (2.3) when X_{t} has dimension $d>1$. This degeneracy introduces a major challenge in developing the asymptotic estimation theory as shown in other recent work (Phillips et al, 2013). This phenomenon of kernel degenerate asymptotics is new and will be discussed in Section 2 where we show how the limit theory may be developed to accommodate the degeneracy. Theorem 2.1 and Corollary 2.1 below show that the uniform rates for the quantity $Q_{n}(z)$ depends on a certain random direction, yielding two different rates both of which exceed the $O_{P}(\sqrt{n h \log n})$ rate that applies in the stationary case.

These results are used to derive uniform consistency for nonparametric kernel estimates in nonlinear cointegration models with varying coefficients, accommodating the superconsistency rates of kernel convergence. Our approach allows for endogeneity between the regressor X_{t} and the error e_{t}, which enhances the practical relevance of the results in cointegration analysis: case (i) with the fixed design framework $Z_{t}=\frac{t}{n}$ relates particularly to cointegration models with time-varying coefficients (Park and Hahn, 1999; Phillips et al, 2013); and case (ii) with random design Z_{t} relates to cointegration models with functional
coefficients (Cai et al, 2009; Xiao, 2009; Gao and Phillips 2013b). In addition, the uniform consistency results with sharp convergence rates that are obtained in this paper are of some independent interest with other potential applications, such as to semiparametric cointegration models with partially-varying coefficients.

The remainder of the paper is organised as follows. Uniform consistency results for the fixed design case are given in Section 2. Those for the random design case are given in Section 3. Applications of the main results to nonlinear cointegration models with varying coefficients are provided in Section 4. Section 5 concludes the paper. Proofs of the main results are given in the Appendix.

2 Uniform rates with a fixed design covariate

This section establishes uniform asymptotic rates for $Q_{n}(z)$ defined in (1.1) with $Z_{t}=\frac{t}{n}$. The random design case is discussed in Section 3. We start with regularity conditions that characterize the multivariate nonstationary time series X_{t} and the scalar stationary process e_{t}. Let X_{t} be a unit root process with generating mechanism $X_{t}=X_{t-1}+v_{t}$, initial value $X_{0}=O_{P}(1)$ and innovations determined by the linear process

$$
\begin{equation*}
v_{t}=\boldsymbol{\Phi}(\mathcal{L}) \varepsilon_{t}=\sum_{j=0}^{\infty} \boldsymbol{\Phi}_{j} \varepsilon_{t-j} \tag{2.1}
\end{equation*}
$$

where $\boldsymbol{\Phi}(\mathcal{L})=\sum_{j=0}^{\infty} \boldsymbol{\Phi}_{j} \mathcal{L}^{j}, \boldsymbol{\Phi}_{j}$ is a sequence of $d \times d$ matrices, \mathcal{L} is the lag operator and $\left\{\varepsilon_{t}\right\}$ is a sequence of i.i.d. innovation vectors with dimension d.

ASSUMPTION 1. (i) Let $\left\{\varepsilon_{t}\right\}$ be i.i.d. d-dimensional random vectors with $\mathbb{E}\left[\varepsilon_{t}\right]=0, \boldsymbol{\Lambda}_{\varepsilon} \equiv$ $\mathbb{E}\left[\varepsilon_{t} \varepsilon_{t}^{\prime}\right]$ positive definite, and $\mathbb{E}\left[\left\|\varepsilon_{t}\right\|^{4+\delta_{0}}\right]<\infty$ for $\delta_{0}>0$. The linear process coefficient matrices in (2.1) satisfy that $\sum_{j=0}^{\infty} j\left\|\boldsymbol{\Phi}_{j}\right\|<\infty$ and $\boldsymbol{\Omega}_{\varepsilon} \equiv \boldsymbol{\Phi} \boldsymbol{\Lambda}_{\varepsilon} \boldsymbol{\Phi}^{\prime}$ is positive definite with $\boldsymbol{\Phi}=\sum_{j=0}^{\infty} \mathbf{\Phi}_{j} \neq 0$, where $\|\cdot\|$ denotes the Euclidean norm.
(ii) Let $\left\{e_{t}\right\}$ be generated by the linear process $e_{t}=\sum_{j=0}^{\infty} \phi_{j} \eta_{t-j}$, where $\left\{\eta_{t}\right\}$ is an i.i.d. sequence with $\mathbb{E}\left[\eta_{t}\right]=0, \sigma_{\eta}^{2} \equiv \mathbb{E}\left[\eta_{t}^{2}\right]>0, \mathbb{E}\left[\left|\eta_{t}\right|^{4+\delta_{0}}\right]<\infty, \phi \equiv \sum_{j=0}^{\infty} \phi_{j} \neq 0$, and $\sum_{j=0}^{\infty} j\left|\phi_{j}\right|<\infty$. In addition, $\left(\eta_{t}, \varepsilon_{t}^{\prime}\right)$ is independent of $\left\{\left(\eta_{s}, \varepsilon_{s}^{\prime}\right): s \leq t-1\right\}$, but η_{t} may be correlated with ε_{t}.

Assumption 1(i) ensures that a functional law holds for X_{t} upon standardization. In
particular, from Phillips and Solo (1992) we have for $t=\lfloor n x\rfloor$ and $0<x \leq 1$,

$$
\begin{equation*}
\frac{X_{t}}{\sqrt{n}}=\frac{1}{\sqrt{n}} \sum_{s=1}^{t} v_{s}+\frac{1}{\sqrt{n}} X_{0}=\frac{1}{\sqrt{n}} \sum_{s=1}^{\lfloor n x\rfloor} v_{s}+o_{P}(1) \Rightarrow B_{x}\left(\boldsymbol{\Omega}_{\varepsilon}\right), \tag{2.2}
\end{equation*}
$$

where $B .\left(\boldsymbol{\Omega}_{\varepsilon}\right)$ is a d-dimensional Brownian motion with variance matrix $\boldsymbol{\Omega}_{\varepsilon}$ and the floor function $\lfloor\cdot\rfloor$ denotes integer part. In a more specialized setting, Assumption 1(ii) might be replaced by a martingale difference structure with $\mathbb{E}\left[e_{t} \mid \mathcal{G}_{t-1}\right]=0$ a.s., where $\mathcal{G}_{t}=$ $\sigma\left(e_{t}, \cdots, e_{1}, \varepsilon_{t+1}, \varepsilon_{t}, \cdots\right)$, and the uniform consistency results developed in this paper still hold. Instead, we allow for a more general linear dependence structure and joint contemporaneous correlation between the innovations η_{t} and ε_{t} which builds endogeneity into the regression equation. Moreover, the limit theory developed in this paper continues to hold with some modification of the proofs when e_{t} and v_{t} are jointly determined by a multivariate linear process of the form

$$
\left(e_{t}, v_{t}^{\prime}\right)^{\prime}=\boldsymbol{\Phi}^{*}(\mathcal{L}) \varepsilon_{t}^{*}=\sum_{j=0}^{\infty} \boldsymbol{\Phi}_{j}^{*} \varepsilon_{t-j}^{*},
$$

where $\boldsymbol{\Phi}^{*}(\mathcal{L})=\sum_{j=0}^{\infty} \boldsymbol{\Phi}_{j}^{*} \mathcal{L}^{j}$ with $\boldsymbol{\Phi}_{j}^{*}$ a sequence of $(d+1) \times(d+1)$ coefficient matrices and $\left\{\varepsilon_{t}^{*}\right\}$ is a sequence of i.i.d. random vectors of dimension $d+1$.

We impose some mild conditions on the kernel function $K(\cdot)$ and the bandwidth h.
AsSumption 2. (i) The kernel function $K(\cdot)$ is continuous, positive, symmetric and has compact support $[-1,1]$ with $\mu_{0} \equiv \int_{-1}^{1} K(u) d u=1$.
(ii) The bandwidth h satisfies $h \rightarrow 0$ and $n h \rightarrow \infty$ as $n \rightarrow \infty$.

A recent paper by Phillips et al (2013) shows that for $0<z \leq 1$,

$$
\begin{equation*}
\frac{1}{n^{2} h} \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right) \Rightarrow \mathbf{W}_{z}\left(\boldsymbol{\Omega}_{\varepsilon}\right), \tag{2.3}
\end{equation*}
$$

where $\mathbf{W}_{z}\left(\boldsymbol{\Omega}_{\varepsilon}\right)=B_{z}\left(\boldsymbol{\Omega}_{\varepsilon}\right) B_{z}\left(\boldsymbol{\Omega}_{\varepsilon}\right)^{\prime}$ and " \Rightarrow " denotes weak convergence. However, the $d \times d$ limiting Wishart matrix $\mathbf{W}_{z}\left(\boldsymbol{\Omega}_{\varepsilon}\right)$ on the right hand side of (2.3) is an outer product of the Gaussian variate $B_{z}\left(\boldsymbol{\Omega}_{\varepsilon}\right)$ and hence is singular with rank unity when $d>1$. In other words, the limit Wishart variate $\mathbf{W}_{z}\left(\boldsymbol{\Omega}_{\varepsilon}\right)$ has a single degree of freedom and is a singular distribution when $d>1$. It follows from (2.3) that the kernel-weighted signal matrix $\left(1 / n^{2} h\right) \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)$ is asymptotically singular whenever the dimension of the regressor X_{t} exceeds unity. This phenomenon of kernel degeneracy leads to asymptotic singularity
in the limit distribution and variance matrix of the corresponding kernel-weighted sample covariance $\frac{1}{n \sqrt{h}} Q_{n}(z)$ when Z_{t} is a fixed design structure.

The reason for this kernel degeneracy in the limit of the weighted signal matrix is that kernel regression concentrates attention on some time coordinate (say z_{0}), thereby fixing attention on a particular coordinate of the limit process of the regressor, say $X_{\left\lfloor n z_{0}\right\rfloor}$. In the multivariate case with $d>1$, this focus on a single time coordinate produces a limit signal matrix (corresponding to the limit of the outer product $\frac{1}{n} X_{\left\lfloor n z_{0}\right\rfloor} X_{\left\lfloor n z_{0}\right\rfloor}^{\prime}$) that is of deficient rank unity. Moreover, the zero eigenspace of this limit matrix depends on the (random vector) value of the limit process at that time coordinate. To address this type of kernel degeneracy, Phillips et al (2013) develop a coordinate transformation to isolate the random direction of singularity and use the associated coordinate rotation to obtain the limit distribution theory. We extend this technique in the present paper to derive uniform asymptotic rates for $Q_{n}(z)$. For $z>h$, define the quantities $\gamma_{n}(z)=\lfloor n(z-h)\rfloor$,

$$
q_{\gamma_{n}(z)}=\frac{b_{\gamma_{n}(z)}}{\left[b_{\gamma_{n}(z)}^{\prime} b_{\gamma_{n}(z)}\right]^{1 / 2}}=\frac{b_{\gamma_{n}(z)}}{\left\|b_{\gamma_{n}(z)}\right\|}, \text { and } b_{\gamma_{n}(z)}=\frac{1}{\sqrt{n}} X_{\gamma_{n}(z)}
$$

Let $q_{\gamma_{n}(z)}^{\perp}$ be an orthogonal complement of $q_{\gamma_{n}(z)}$ constructed so that

$$
\begin{equation*}
\mathbf{D}_{n}(z)^{\prime} \mathbf{D}_{n}(z)=\mathbf{I}_{d} \quad \text { with } \quad \mathbf{D}_{n}(z)=\left[q_{\gamma_{n}(z)}, q_{\gamma_{n}(z)}^{\perp}\right] \tag{2.4}
\end{equation*}
$$

and introduce the normalization matrix

$$
\begin{equation*}
\mathbf{R}_{n}=\operatorname{diag}\left\{n \sqrt{h},(n h) \mathbf{I}_{d-1}\right\} \tag{2.5}
\end{equation*}
$$

where \mathbf{I}_{r} is the $r \times r$ identity matrix. The transformation matrix $\mathbf{D}_{n}(z)$ is random, path dependent, and localized to the coordinate of concentration at $\gamma_{n}(z)$. Within this transformation matrix, the component vector $q_{\gamma_{n}(z)}$ and complementary submatrix $q_{\gamma_{n}(z)}^{\perp}$ provide random directions localized according to $\gamma_{n}(z)$.

The following result gives uniform asymptotic orders for $Q_{n}(z)$.
Theorem 2.1. Suppose that Assumptions 1 and 2 are satisfied. Let

$$
\begin{equation*}
\frac{n^{\delta_{0}-4} h^{\delta_{0}+12}}{(\log n)^{\delta_{0}}} \rightarrow \infty \tag{2.6}
\end{equation*}
$$

where $\delta_{0}>4$ is defined as in Assumption 1(i). Then, we have

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\mathbf{R}_{n}^{-1} \mathbf{D}_{n}(z)^{\prime} Q_{n}(z)\right\|=O_{P}(\sqrt{\log n}) \tag{2.7}
\end{equation*}
$$

where $\epsilon_{*}>0$ can be arbitrarily small.
In the limit result (2.7), we take the suprema over the closed interval $\left[\epsilon_{*}, 1-\epsilon_{*}\right]$ and the upper limit can be extended from $1-\epsilon_{*}$ to 1 with minor modification of the proofs. However, we may not extend the lower limit from ϵ_{*} to 0 . For example, when $z=h$, we have $\gamma_{n}(z)=0$ which indicates that $b_{\gamma_{n}(z)}=0$ and thus $q_{\gamma_{n}(z)}$ is undefined. The condition (2.6) indicates the trade-off between the moment condition and bandwidth restriction. In particular, when both η_{t} and ε_{t} are Gaussian, the value of δ_{0} can be arbitrarily large, the condition (2.6) would be close to the commonly-used one of $n h \rightarrow \infty$. From the above theorem, we find that the existence of correlation between X_{t} and e_{t} does not affect the uniform rate of the kernel-weighted sample covariance. This robustness to endogeneity in the present case arises because the induced asymptotic bias arising from the non-zero mean of $Q_{n}(z)$ turns out to be a "second order" bias effect as in the linear parametric case (Phillips and Durlauf, 1986; Phillips and Hansen, 1990). Furthermore, from the definitions of $\mathbf{D}_{n}(z)$ and \mathbf{R}_{n}, it is apparent that two different rates are obtained for the two directions determined by $q_{\gamma_{n}(z)}$ and $q_{\gamma_{n}(z)}^{\perp}$, which are stated in the following corollary.
Corollary 2.1. Let the assumptions in Theorem 2.1 hold. Then, we have

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left|q_{\gamma_{n}(z)}^{\prime} Q_{n}(z)\right|=O_{P}(n \sqrt{h \log n}) \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\left(q_{\gamma_{n}(z)}^{\perp}\right)^{\prime} Q_{n}(z)\right\|=O_{P}(n h \sqrt{\log n}) . \tag{2.9}
\end{equation*}
$$

The above results are used in Section 4 to derive uniform convergence rates for nonparametric kernel-based estimators of the time-varying coefficients in nonlinear cointegration models. Although the uniform rates are different in the two directions, both rates exceed the usual rate $O_{P}(\sqrt{n h \log n})$ for kernel estimators that applies in stationary models. A detailed discussion of this phenomenon in the point-wise kernel regression case is given in Phillips et al (2013). We provide the following example to illustrate the above results.

EXAMPLE 2.1. Let $X_{t}=\left(X_{1 t}, X_{2 t}\right)^{\prime}, X_{i t}=X_{i, t-1}+v_{i t}$ for $i=1$ and $2, v_{i t}=\rho_{i} v_{i, t-1}+\varepsilon_{i t}$, and $e_{t}=\rho e_{t-1}+\eta_{t}$, where $\left(\varepsilon_{t}, \eta_{t}\right) \equiv\left(\varepsilon_{1 t}, \varepsilon_{2 t}, \eta\right)^{\prime} \sim_{i i d} N(0, V)$ with $V>0$. If $-1<\rho_{i}, \rho<1$, it is easy to verify that Assumption 1 above is satisfied. With this model structure, we can write out the specific form of the transformation matrix, from which the two random directions
can be determined. Let $\gamma_{n}(z)$ be defined as before,

$$
q_{\gamma_{n}(z)}=\left[\frac{X_{1 \gamma_{n}(z)}}{\sqrt{n}\left\|b_{\gamma_{n}(z)}\right\|}, \frac{X_{2 \gamma_{n}(z)}}{\sqrt{n}\left\|b_{\gamma_{n}(z)}\right\|}\right]^{\prime} \equiv\left[q_{1 n}(z), q_{2 n}(z)\right]^{\prime} \text { with } b_{\gamma_{n}(z)}=\frac{1}{\sqrt{n}} X_{\gamma_{n}(z)}
$$

and

$$
q_{\gamma_{n}(z)}^{\perp}=\left[p_{1 n}(z), p_{2 n}(z)\right]^{\prime}=\left[q_{2 n}(z),-q_{1 n}(z)\right]^{\prime} \text { or } q_{\gamma_{n}(z)}^{\perp}=\left[-q_{2 n}(z), q_{1 n}(z)\right]^{\prime},
$$

so that the orthogonality condition in (2.4) is satisfied. By Theorem 2.1, when Z_{t} has fixed design, the uniform rate of $Q_{n}(z)$ is $O_{P}(n \sqrt{h \log n})$ in the direction determined by $q_{\gamma_{n}(z)}$, whereas the uniform rate of $Q_{n}(z)$ is $O_{P}(n h \sqrt{\log n})$ in the direction orthogonal to $q_{\gamma_{n}(z)}$. Both directions are random and are determined by $\gamma_{n}(z)=\lfloor n(z-h)\rfloor$. The uniform rate $O_{P}(n \sqrt{h \log n})$ can be understood as $O_{P}\left(\sqrt{n^{2} h \log n}\right)$, which indicates that the effective sample size used to derive the uniform rate of $Q_{n}(z)$ in the direction $q_{\gamma_{n}(z)}$ is of order $\left(n^{2} h\right)$. In contrast, the effective sample size used to derive the uniform rate of $Q_{n}(z)$ in the direction $q_{\gamma_{n}(z)}^{\perp}$ is of order $(n h)^{2}$, which is smaller than that in the direction $q_{\gamma_{n}(z)}$ and thus leads to a smaller uniform rate for $Q_{n}(z)$ in the direction orthogonal to $q_{\gamma_{n}(z)}$. Hence, the signal (and convergence rate) of the kernel weighted sample covariance $Q_{n}(z)$ is strongest in the direction $q_{\gamma_{n}(z)}$, which spans the direction of the dominating range space of the (asymptotically signal) signal matrix $\left(1 / n^{2} h\right) \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)$, and this rate is uniformly $O_{P}\left(\sqrt{n^{2} h \log n}\right)$.

3 Uniform rates with a random design covariate

This section develops uniform asymptotic rates for the sample covariance $Q_{n}(z)$ when Z_{t} is generated by i.i.d. random variables, and compares this result with those of the fixed design case studied in the previous section. For the stationary case, it is well known that the same uniform rates hold for $Q_{n}(z)$ irrespective of whether Z_{t} is a random design or fixed design variate. In contrast to Section 2, there is no kernel degeneracy in the random design case and a common uniform convergence rate applies which is the same as that given in (2.8). The next assumption is used in the derivation of the uniform consistency result in Theorem 3.1 below.

ASSUMPTION 3. Let $\left\{\left(Z_{t}, \eta_{t}, \varepsilon_{t}^{\prime}\right)\right\}$ be a sequence of i.i.d. random vectors with continuous density function $f(\cdot, \cdot, \cdot)$, and let Z_{t} be independent of η_{t} and have compact support, say $[0,1]$.

Much of the existing literature on the limit theory of $Q_{n}(\cdot)$ for the random design case imposes a martingale difference structure on e_{t}, which excludes the possibility of correlation between X_{t} and e_{t} (c.f., Cai et al, 2009; Li et al, 2014). However, for consistency with the framework of Section 2, we follow the same structure as Assumption 1 to generate the unit root process X_{t} and the stationary process e_{t}, thereby allowing for possible correlation between X_{t} and e_{t}. Hence, the result below has wider applicability than currently available theory.

The uniform asymptotic order for $Q_{n}(z)$ in the random design case is given as follows. Theorem 3.1. Suppose that Assumptions 1-3 are satisfied. Let

$$
\begin{equation*}
\frac{n^{2+\delta_{0}} h^{4+\delta_{0}}}{(\log n)^{4+\delta_{0}}} \rightarrow \infty \tag{3.1}
\end{equation*}
$$

where δ_{0} is defined in Assumption 1(i). Then, we have

$$
\begin{equation*}
\sup _{0 \leq z \leq 1}\left\|Q_{n}(z)\right\|=O_{P}(n \sqrt{h \log n}) \tag{3.2}
\end{equation*}
$$

This theorem shows that the uniform rate (3.2) is exactly the same as (2.8) and therefore exceeds the stationary rate $O_{P}(\sqrt{n h \log n})$. This rate is also common across coordinates unlike the different rates that apply in the fixed design model. The reason for this common uniform rate is that there is no particular direction of dominance (such as $q_{\gamma_{n}(z)}$ in the fixed design case) because the random components Z_{t} are independently distributed with continuous density. The result is used in Section 4 to derive a uniform convergence rate for nonparametric kernel-based estimation of the functional coefficients in nonlinear cointegration models.

4 Cointegration models with varying coefficients

In this section we use the results developed earlier to derive the uniform consistency rate results for nonparametric kernel estimators in a nonlinear cointegration model with varying coefficients. The model has the form

$$
\begin{equation*}
Y_{t}=X_{t}^{\prime} \beta\left(Z_{t}\right)+e_{t}, \quad t=1, \cdots, n \tag{4.1}
\end{equation*}
$$

where X_{t} and e_{t} satisfy Assumption $1, \beta(\cdot)$ is a d-dimensional coefficient function, and Z_{t} is either a fixed design or random design variate. In the fixed design case, model (4.1) is a
cointegration model with time-varying coefficients, which has been studied in Park and Hahn (1999) and Phillips et al (2013). The model can then be regarded as an extension of the locally stationary models used in Robinson (1989) and Cai (2007) where the regressors are stationary. In the random design case, model (4.1) is a cointegration model with functional coefficients of the type studied in Cai et al (2009), Xiao (2009) and Gao and Phillips (2013b). These studies provide nonstationary extensions of the models considered in Fan and Zhang (1999) and Cai et al (2000). The existing literature in these cases focuses on the development of pointwise asymptotic theory for nonparametric estimators of the coefficient function $\beta(\cdot)$ (c.f., Cai et al, 2009; Phillips et al, 2013). Uniform consistency results and associated convergence rates in the nonstationary case have so far not been considered due to the technical difficulties involved in the presence of nonstationary regressors. This section aims to fill this gap in the literature.

Under a smoothness condition on $\beta(\cdot)$ and for some fixed z, we have the local approximation $\beta\left(Z_{t}\right) \approx \beta(z)$ when Z_{t} is in a small neighborhood of z. The kernel-weighted local level regression estimator of the coefficient $\beta(z)$ at z has the following form

$$
\begin{equation*}
\widehat{\beta}_{n}(z)=\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{Z_{t}-z}{h}\right)\right]^{+}\left[\sum_{t=1}^{n} X_{t} Y_{t} K\left(\frac{Z_{t}-z}{h}\right)\right] \tag{4.2}
\end{equation*}
$$

where \mathbf{A}^{+}denotes the Moore-Penrose inverse of \mathbf{A}, and as in the previous sections, $K(\cdot)$ is a kernel function and h is a bandwidth. We provide below a uniform consistency rate result for the estimator $\widehat{\beta}_{n}(z)$ over a range of values of z. Other kernel-based approaches such as local polynomial regression are also applicable to estimate the coefficient functions, and similar uniform consistency results as those given here can be obtained with some modification of the proofs.

To establish the limit theory for $\widehat{\beta}_{n}(\cdot)$, we impose the following commonly used smoothness condition on $\beta(\cdot)$ (c.f., Wang and Phillips, 2009a; Phillips et al, 2013).

Assumption 4. The coefficient function $\beta(\cdot)$ is continuous with $\left\|\beta\left(z_{1}\right)-\beta\left(z_{2}\right)\right\|=O\left(\mid z_{1}-\right.$ $\left.\left.z_{2}\right|^{\alpha_{0}}\right)$ for $1 / 2<\alpha_{0} \leq 1$ and any $z_{1}, z_{2} \in(0,1)$.

We start with the fixed design case where $Z_{t}=\frac{t}{n}$ for $t=1, \cdots, n$. Let $B_{z, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right)$ be an independent copy of the d-dimensional Brownian motion $B_{z}\left(\boldsymbol{\Omega}_{\varepsilon}\right)$ which is defined as in (2.2). Define $\bar{b}_{z}=B_{z}\left(\boldsymbol{\Omega}_{\varepsilon}\right)$ and $\bar{q}_{z}=\bar{b}_{z} /\left\|\bar{b}_{z}\right\|$, and let \bar{q}_{z}^{\perp} be the $d \times(d-1)$ orthogonal complement matrix such that

$$
\mathbf{D}(z)^{\prime} \mathbf{D}(z)=\mathbf{I}_{d} \text { with } \mathbf{D}(z)=\left[\bar{q}_{z}, \bar{q}_{z}^{\perp}\right]
$$

which can be seen as the limiting version of (2.4). Define

$$
\boldsymbol{\Delta}_{z}=\left[\begin{array}{ll}
\Delta_{1}(z) & \Delta_{2}(z) \tag{4.3}\\
\Delta_{2}(z)^{\prime} & \Delta_{3}(z)
\end{array}\right]
$$

with $\Delta_{1}(z)=\bar{b}_{z}^{\prime} \bar{b}_{z}$,

$$
\Delta_{2}(z)=\sqrt{2}\left(\bar{b}_{z}^{\prime} \bar{b}_{z}\right)^{1 / 2}\left\{\int_{-1}^{1} B_{\frac{r+1}{2}, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right)^{\prime} K(r) d r\right\} \bar{q}_{z}^{\perp}
$$

and

$$
\Delta_{3}(z)=2\left(\bar{q}_{z}^{\perp}\right)^{\prime}\left\{\int_{-1}^{1} B_{\frac{r+1}{2}, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right) B_{\frac{r+1}{2}, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right)^{\prime} K(r) d r\right\} \bar{q}_{z}^{\perp} .
$$

Letting \mathbf{R}_{n} and $\mathbf{D}_{n}(z)$ be defined as in Section 2, Proposition A. 1 in Phillips et al (2013) shows that the standardized denominator matrix of (4.2) converges weakly to the limit:

$$
\mathbf{R}_{n}^{-1} \mathbf{D}_{n}(z)^{\prime}\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)\right] \mathbf{D}_{n}(z) \mathbf{R}_{n}^{-1} \Rightarrow \boldsymbol{\Delta}_{z}
$$

on which we make the following assumption.
Assumption 5. The limit matrix $\boldsymbol{\Delta}_{z}$ is non-singular with probability 1 for any $z \in\left[\epsilon_{\diamond}, 1-\right.$ ϵ_{\diamond}], where $0<\epsilon_{\diamond}<1 / 2$ can be arbitrarily small.

We provide the following discussion to justify this assumption. Using the technique of the triangular representation (Phillips, 1991), we may left transform $\boldsymbol{\Delta}_{z}$ by the nonsingular matrix

$$
\left[\begin{array}{cc}
1 & \mathbf{0}^{\prime} \\
-W(z) & \mathbf{I}_{d-1}
\end{array}\right]
$$

where $W(z)=\Delta_{2}(z)^{\prime} / \Delta_{1}(z)=\sqrt{2}\left(\bar{b}_{z}^{\prime} \bar{b}_{z}\right)^{-1 / 2}\left(\bar{q}_{z}^{\perp}\right)^{\prime}\left\{\int_{-1}^{1} B_{\frac{r+1}{2}, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right) K(r) d r\right\}$, giving the following matrix

$$
\boldsymbol{\Delta}_{z}^{*}=\left[\begin{array}{cc}
1 & \mathbf{0}^{\prime} \\
-W(z) & \mathbf{I}_{d-1}
\end{array}\right]\left[\begin{array}{cc}
\Delta_{1}(z) & \Delta_{2}(z) \\
\Delta_{2}(z)^{\prime} & \Delta_{3}(z)
\end{array}\right]=\left[\begin{array}{cc}
\Delta_{1}(z) & \Delta_{2}(z) \\
\mathbf{0} & \Delta_{3}^{*}(z)
\end{array}\right]
$$

where

$$
\Delta_{3}^{*}(z)=2\left(\bar{q}_{z}^{\perp}\right)^{\prime}\left\{\int B_{\frac{r+1}{2}, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right) B_{\frac{r+1}{2}, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right)^{\prime} K(r) d r-\left[\int B_{\frac{r+1}{2}, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right) K(r) d r\right]\left[\int B_{\frac{r+1}{2}, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right)^{\prime} K(r) d r\right]\right\} \bar{q}_{z}^{\perp}
$$

in which we use the notation $\int \equiv \int_{-1}^{1}$. Note that $\Delta_{1}(z)$ is positive with probability 1 if $z \geq \epsilon_{\diamond}$. Hence, if $\int B_{\frac{r+1}{2}, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right) B_{\frac{r+1}{2}, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right)^{\prime} K(r) d r-\left[\int B_{\frac{r+1}{2}, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right) K(r) d r\right]\left[\int B_{\frac{r+1}{2}, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right)^{\prime} K(r) d r\right]$ is
non-singular with probability $1, \Delta_{z}^{*}$ is non-singular for any $z \in\left[\epsilon_{\diamond}, 1-\epsilon_{\diamond}\right]$, which justifies Assumption 5.

Based on Theorem 2.1 and Corollary 2.1, we obtain the following uniform consistency rate results for the kernel estimator $\widehat{\beta}_{n}(z)$.

Theorem 4.1. Suppose that the assumptions in Theorem 2.1 and Assumptions 4 and 5 are satisfied. Then, we have as $n \rightarrow \infty$

$$
\begin{equation*}
\sup _{\epsilon_{0} \leq z \leq 1-\epsilon_{\odot}}\left|q_{\gamma_{n}(z)}^{\prime}\left[\widehat{\beta}_{n}(z)-\beta(z)\right]\right|=O_{P}\left(h^{\alpha_{0}}+\sqrt{\frac{\log n}{n^{2} h}}\right) \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\epsilon_{0} \leq z \leq 1-\epsilon_{o}}\left\|\left(q_{\gamma_{n}(z)}^{\perp}\right)^{\prime}\left[\widehat{\beta}_{n}(z)-\beta(z)\right]\right\|=O_{P}\left(h^{\alpha_{0}}+\frac{\sqrt{\log n}}{n h}\right) \tag{4.5}
\end{equation*}
$$

where ϵ_{\diamond} is defined in Assumption 5.
Note that

$$
\begin{align*}
\widehat{\beta}_{n}(z)-\beta(z)= & {\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{Z_{t}-z}{h}\right)\right]^{+}\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime}\left[\beta\left(Z_{t}\right)-\beta(z)\right] K\left(\frac{Z_{t}-z}{h}\right)\right]+} \\
& {\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{Z_{t}-z}{h}\right)\right]^{+}\left[\sum_{t=1}^{n} X_{t} e_{t} K\left(\frac{Z_{t}-z}{h}\right)\right] . } \tag{4.6}
\end{align*}
$$

The order $O_{P}\left(h^{\alpha_{0}}\right)$ is contributed by the first term on the right hand side of (4.6), which measures the bias effect of the nonparametric estimator $\widehat{\beta}_{n}(z)$. This order can be improved to $O_{P}\left(h^{2}\right)$ if the local linear method (c.f., Fan and Gijbels, 1996) is used to estimate $\beta(\cdot)$. We next discuss the twin uniform convergence rates contributed by the second term on the right hand side of (4.6). Theorem 4.1 above gives different uniform convergence rates in the two directions determined by the kernel degeneracy, just as in Corollary 2.1. In the direction $q_{\gamma_{n}(z)}$, we have the uniform convergence rate $O_{P}\left(\sqrt{\frac{\log n}{n^{2} h}}\right)$, which we call the type I uniform convergence rate. This rate is faster than the rate $O_{P}\left(\frac{\sqrt{\log n}}{n h}\right)$ that applies in the other direction (c.f. (4.5)) as well as the usual rate $O_{P}\left(\sqrt{\frac{\log n}{n h}}\right)$ that applies in the stationary case. In the direction $q_{\gamma_{n}(z)}^{\perp}$, the uniform convergence rate $O_{P}\left(\frac{\sqrt{\log n}}{n h}\right)$ is slower than the type I uniform convergence rate of (4.4), but is still faster than the stationary rate. The rate $O_{P}\left(\frac{\sqrt{\log n}}{n h}\right)$ is called the type II uniform convergence rate.

Next consider the random design case where the covariate Z_{t} is i.i.d., as discussed in Section 3. Define

$$
\boldsymbol{\Lambda}_{z}=f_{Z}(z) \int_{0}^{1} B_{r}\left(\boldsymbol{\Omega}_{\varepsilon}\right) B_{r}\left(\boldsymbol{\Omega}_{\varepsilon}\right)^{\prime} d r
$$

where $f_{Z}(\cdot)$ is the density function of Z_{t}. Similar to the argument in the proof of Proposition A. 1 in Li et al (2014), it is easy to show that

$$
\frac{1}{n^{2} h} \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{Z_{t}-z}{h}\right) \Rightarrow \boldsymbol{\Lambda}_{z}
$$

for $0 \leq z \leq 1$, and $\boldsymbol{\Lambda}_{z}$ is non-singular if $f_{Z}(\cdot)$ is strictly positive by using Lemma A2 in Phillips and Hansen (1990). Hence, there is no kernel degeneracy issue for this case. Using Theorem 3.1 we derive a uniform convergence rate for $\widehat{\beta}_{n}(\cdot)$ in the following theorem, which shows that a common type I uniform convergence rate is attained in all directions in the random design case.

Theorem 4.2. Suppose that the assumptions in Theorem 3.1 and Assumption 4 are satisfied. Let the density function $f_{Z}(z)$ be bounded away from zero and infinity for all $z \in[0,1]$. Then, we have as $n \rightarrow \infty$

$$
\begin{equation*}
\sup _{0 \leq z \leq 1}\left\|\widehat{\beta}_{n}(z)-\beta(z)\right\|=O_{P}\left(h^{\alpha_{0}}+\sqrt{\frac{\log n}{n^{2} h}}\right) . \tag{4.7}
\end{equation*}
$$

This uniform consistency result gives a sharp rate of convergence for estimation of nonlinear cointegration models with functional coefficients and complements the pointwise limit theory developed by Cai et al (2009), Xiao (2009) and Gao and Phillips (2013b).

5 Conclusions

This paper has derived uniform consistency results for nonparametric kernel-weighted sample covariances and regressions in a nonstationary data framework. This framework has practical applications in varying coefficient regressions with coefficient covariates that follow either fixed or random designs. In the fixed design case, two different uniform asymptotic rates have been obtained, depending on a certain covariate-sensitive random direction, a result that is quite different from the random design case where a common uniform asymptotic rate applies. Both results are shown to be robust to endogeneity of the regressors.

A regression application of these results has confirmed the uniform super-consistency of nonparametric kernel estimates of the coefficient functions in nonlinear cointegration models with varying coefficients and gives sharp convergence rates in this regression case. In the fixed design framework, two types of uniform convergence rates again have been established in the covariate sensitive random directions and both rates are faster than the rate in the
stationary case. In the random design framework, there is a common uniform convergence rate, which is also faster than that of the stationary case. These uniform consistency results are relevant in estimating semiparametric cointegration models with partially-varying coefficients, long run variance estimation in such models, kernel-based specification testing of nonlinear cointegration models, and the theory for the optimal bandwidth selection in the nonparametric kernel-smoothing under nonstationarity.

6 Acknowledgements

The authors thank the Co-Editor, Professor Oliver Linton, and three referees for their helpful and constructive comments. Thanks also go to Dr Jia Chen for useful suggestions. Phillips acknowledges support from the NSF under Grant No. SES 12-58258. Gao acknowledges support from the Australian Research Council Discovery Grants Program under Grant Nos. DP1096374 and DP130104229.

References

Billingsley, P. (1968). Convergence of Probability Measure. Wiley, New York.

Bosq, D. (1998). Nonparametric Statistics for Stochastic Processes: Estimation and Prediction (2nd ed.). Lecture Notes in Statistics 110. Springer-Verlag.

Cai, Z. (2007). Trending time-varying coefficient time series models with serially correlated errors. Journal of Econometrics 136, 163-188.

Cai, Z., Fan, J. and Li, R. (2000). Efficient estimation and inferences for varying-coefficient models. Journal of American Statistical Association 95, 888-902.

Cai, Z., Li, Q. and Park, J. (2009). Functional-coefficient models for nonstationary time series data. Journal of Econometrics 148, 101-113.

Chan, N. and Wang, Q. (2012). Uniform convergence for Nadaraya-Watson estimators with nonstationary data. Working paper, School of Mathematics and Statistics, University of Sydney, available at http://www.maths.usyd.edu.au/u/pubs/publist/preprints/2012/chan-12.pdf

Chen, J., Gao, J. and Li, D. (2012). Estimation in semiparametric regression with nonstationary regressors. Bernoulli 18, 678-702.

Chen, J., Li, D. and Zhang, L. (2010). Robust estimation in a nonlinear cointegration model. Journal of Multivariate Analysis 101, 706-717.

Csörgö, M. and Révész, P. (1981). Strong Approximations in Probability and Statistics. Academic Press.

Duffy, J. (2013). Uniform convergence rates, on a maximal domain, for structural nonparametric cointegrating regression. Unpublished paper, Yale University.

Fan, J., and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Chapman and Hall.

Fan, J. and Zhang, W. (1999). Statistical estimation in varying coefficient models. Annals of Statistics 27, 1491-1518.

Gao, J., Kanaya, S., Li, D. and Tjøstheim, D. (2015). Uniform consistency for nonparametric estimators in null recurrent time series. Forthcoming in Econometric Theory.

Gao, J. and Phillips, C. B. P. (2013a). Semiparametric estimation in triangular system equations with nonstationarity. Journal of Econometrics 176, 59-79.

Gao, J. and Phillips, C. B. P. (2013b). Functional coefficient nonstationary regression. Cowles Foundation Discussion Paper 1911. Cowles Foundation for Research in Economics, Yale University, available at http://cowles.econ.yale.edu/P/cd/d19a/d1911.pdf.

Hansen, B. E. (2008). Uniform convergence rates for kernel estimation with dependent data. Econometric Theory 24, 726-748.

Ibragimov, R. and Phillips, P. C. B. (2008). Regression asymptotics using martingale convergence methods. Econometric Theory 24, 888-947.

Karlsen, H. A. and Tjøstheim, D. (2001). Nonparametric estimation in null recurrent time series. Annals of Statistics 29, 372-416.

Karlsen, H. A., Myklebust, T. and Tjøstheim, D. (2007). Nonparametric estimation in a nonlinear cointegration type model. Annals of Statistics 35, 252-299.

Kristensen, D. (2009). Uniform convergence rates of kernel estimators with heterogenous dependent data. Econometric Theory 25, 1433-1445.

Li, D., Lu, Z. and Linton, O. (2012). Local linear fitting under near epoch dependence: uniform consistency with convergence rate. Econometric Theory 28, 935-958.

Li, K., Li, D., Liang, Z. and Hsiao, C. (2014). Estimation of semi-varying coefficient models with nonstationary regressors. Forthcoming in Econometric Reviews.

Liebscher, E. (1996). Strong convergence of sums of α-mixing random variables with applications to density estimation. Stochastic Processes and Their Applications 65, 69-80.

Mack, Y. P. and Silverman, B. W. (1982). Weak and strong uniform consistency of kernel regression estimates. Zeitschrift für Wahrscheinlichskeittheorie und verwandte Gebiete 61, 405-415.

Masry, E. (1996). Multivariate local polynomial regression for time series: uniform strong consistency and rates. Journal of Time Series Analysis 17, 571-599.

Park, J. Y. and Hahn, S. B. (1999). Cointegrating regressions with time varying coefficients. Econometric Theory 15, 664-703.
de la Peña, V. H. (1999). A general class of exponential inequalities for martingales and ratios. Annals of Probability 27, 537-564.

Phillips, P. C. B. (1991). Optimal inference in cointegrated systems. Econometrica 59, 283-306.

Phillips, P. C. B. and Durlauf, S. N. (1986). Multiple time series regression with integrated processes. Review of Economic Studies 53, 473-496.

Phillips, P. C. B. and Hansen, B. E. (1990). Statistical inference in instrumental variables regression with I(1) processes. Review of Economic Studies 57, 99-125.

Phillips, P. C. B., Li, D. and Gao, J. (2013). Estimating smooth structural change in cointegration models. Cowles Foundation Discussion Paper 1910, Cowles Foundation for Research in Economics, Yale University, available at http://cowles.econ.yale.edu/P/cd/d19a/d1910.pdf.

Phillips, P. C. B. and Park J. (1998). Nonstationary density estimation and kernel autoregression. Cowles Foundation Discussion Paper 1181, Cowles Foundation for Research in Economics, Yale University, available at http://cowles.econ.yale.edu/P/cd/d11b/d1181.pdf.

Phillips, P. C. B. and Solo, V. (1992). Asymptotics for linear processes. Annals of Statistics 20, 971-1001.

Robinson, P. M. (1989). Nonparametric estimation of time-varying parameters. Statistical Analysis and Forecasting of Economic Structural Change (ed. by P. Hackl). Springer, Berlin, pp. 164-253.

Roussas, G. G. (1990). Nonparametric regression estimation under mixing conditions. Stochastic Processes and Their Applications 36, 107-116.
van der Vaart, A. W. and Wellner, J. (1996). Weak Convergence and Empirical Processes with Applications to Statistics. Springer.

Wang, Q. and Chan, N. (2014). Uniform convergence rates for a class of martingales with application in non-linear cointegrating regression. Bernoulli 20, 207-230.

Wang, Q. and Phillips, P. C. B. (2009a). Asymptotic theory for local time density estimation and nonparametric cointegrating regression. Econometric Theory 25, 710-738.

Wang, Q. and Phillips, P. C. B. (2009b). Structural nonparametric cointegrating regression. Econometrica 77, 1901-1948.

Wang, Q. and Wang, Y. (2013). Nonparametric cointegrating regression with NNH errors. Econometric Theory 29, 1-27.

Xiao, Z. (2009). Functional-coefficient cointegrating regression. Journal of Econometrics 152, 81-92.

A Proofs of the main results

This appendix provides proofs of the main results in Sections 2-4. To simplify notation, in the sequel we let $q_{z}=q_{\gamma_{n}(z)}, q_{z}^{\perp}=q_{\gamma_{n}(z)}^{\perp}$, and use C for a positive constant whose value may change according to its position.

Proof of Theorem 2.1. For $\epsilon_{*} \leq z \leq 1-\epsilon_{*}$, define

$$
\begin{aligned}
Q_{n}(z, 1) & =\frac{q_{z}^{\prime}}{n \sqrt{h}} \sum_{t=1}^{n} K\left(\frac{t-n z}{n h}\right) X_{t} e_{t}, \\
Q_{n}(z, 2) & =\frac{\left(q_{z}^{\perp}\right)^{\prime}}{n h} \sum_{t=1}^{n} K\left(\frac{t-n z}{n h}\right) X_{t} e_{t} .
\end{aligned}
$$

Note that

$$
\begin{equation*}
Q_{n}(z, 1)=\frac{q_{z}^{\prime}}{n \sqrt{h}} X_{\gamma_{n}(z)} \sum_{t=1}^{n} K\left(\frac{t-n z}{n h}\right) e_{t}+\frac{q_{z}^{\prime}}{n \sqrt{h}} \sum_{t=1}^{n} K\left(\frac{t-n z}{n h}\right)\left(X_{t}-X_{\gamma_{n}(z)}\right) e_{t}, \tag{A.1}
\end{equation*}
$$

where $\gamma_{n}(z)$ is defined in Section 2, and

$$
\begin{equation*}
Q_{n}(z, 2)=\frac{\left(q_{z}^{\perp}\right)^{\prime}}{n h} \sum_{t=1}^{n} K\left(\frac{t-n z}{n h}\right)\left(X_{t}-X_{\gamma_{n}(z)}\right) e_{t}, \tag{A.2}
\end{equation*}
$$

as q_{z}^{\perp} is orthogonal to $X_{\gamma_{n}(z)}$ by (2.4) in Section 2. By continuous mapping (e.g. Billingsley, 1968), it is easy to show that

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left(\left\|q_{z}\right\|+\left\|q_{z}^{\perp}\right\|\right)=O_{P}(1) \tag{A.3}
\end{equation*}
$$

Then, by (A.1)-(A.3), it is sufficient to show that

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left|\frac{1}{\sqrt{n h}} \sum_{t=1}^{n} K\left(\frac{t-n z}{n h}\right) e_{t}\right|=O_{P}(\sqrt{\log n}), \tag{A.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\frac{1}{n h} \sum_{t=1}^{n} K\left(\frac{t-n z}{n h}\right)\left(X_{t}-X_{\gamma_{n}(z)}\right) e_{t}\right\|=O_{P}(\sqrt{\log n}), \tag{A.5}
\end{equation*}
$$

which we now prove in turn.
Proof of (A.4). Using the so-called Beveridge-Nelson (BN) decomposition approach (c.f., Phillips and Solo, 1992):

$$
\phi(\mathcal{L}) \equiv \sum_{j=0}^{\infty} \phi_{j} \mathcal{L}^{j}=\sum_{j=0}^{\infty} \phi_{j}-(1-\mathcal{L}) \sum_{j=0}^{\infty} \widetilde{\phi}_{j} \mathcal{L}^{j} \equiv \phi-(1-\mathcal{L}) \widetilde{\phi}(\mathcal{L})
$$

with $\widetilde{\phi}_{j}=\sum_{k=j+1}^{\infty} \phi_{k}$, we have

$$
\begin{equation*}
e_{t}=\bar{e}_{t}+\left(\widetilde{e}_{t-1}-\widetilde{e}_{t}\right), \tag{A.6}
\end{equation*}
$$

where $\bar{e}_{t}=\left(\sum_{j=0}^{\infty} \phi_{j}\right) \eta_{t}=\phi \eta_{t}$ and $\widetilde{e}_{t}=\sum_{j=0}^{\infty} \widetilde{\phi}_{j} \eta_{t-j}$. By (A.6), we have

$$
\begin{aligned}
\sum_{t=1}^{n} e_{t} K\left(\frac{t-n z}{n h}\right)= & \sum_{t=1}^{n} \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)+\sum_{t=1}^{n} \widetilde{e}_{t-1} K\left(\frac{t-n z}{n h}\right)-\sum_{t=1}^{n} \widetilde{e}_{t} K\left(\frac{t-n z}{n h}\right) \\
= & \sum_{t=1}^{n} \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)+\sum_{t=1}^{n} \widetilde{e}_{t-1} K\left(\frac{t-1-n z}{n h}\right)-\sum_{t=1}^{n} \widetilde{e}_{t} K\left(\frac{t-n z}{n h}\right)+ \\
& \sum_{t=1}^{n} \widetilde{e}_{t-1}\left[K\left(\frac{t-n z}{n h}\right)-K\left(\frac{t-1-n z}{n h}\right)\right] \\
= & \sum_{t=1}^{n} \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)+\sum_{t=1}^{n} \widetilde{e}_{t-1}\left[K\left(\frac{t-n z}{n h}\right)-K\left(\frac{t-1-n z}{n h}\right)\right]+ \\
& \widetilde{e}_{0} K\left(\frac{-z}{h}\right)-\widetilde{e}_{n} K\left(\frac{1-z}{h}\right) .
\end{aligned}
$$

By virtue of Assumption 2(i) and (ii),

$$
\begin{equation*}
\widetilde{e}_{0} K\left(\frac{-z}{h}\right)=\widetilde{e}_{n} K\left(\frac{1-z}{h}\right)=0 \tag{A.7}
\end{equation*}
$$

with probability 1 for any $\epsilon_{*} \leq z \leq 1-\epsilon_{*}$, which indicates that

$$
\begin{equation*}
\sum_{t=1}^{n} e_{t} K\left(\frac{t-n z}{n h}\right)=\sum_{t=1}^{n} \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)+\sum_{t=1}^{n} \widetilde{e}_{t-1}\left[K\left(\frac{t-n z}{n h}\right)-K\left(\frac{t-1-n z}{n h}\right)\right] \tag{A.8}
\end{equation*}
$$

uniformly for $\epsilon_{*} \leq z \leq 1-\epsilon_{*}$.
Define $\mathbb{S}_{k}=\left\{s \mid(k-1) n r_{n}+1 \leq s<k n r_{n}\right\}$ for $k=1,2, \cdots, R_{n}$, and $\mathbb{S}_{R_{n}+1}=\left\{s \mid n r_{n} R_{n}+1 \leq\right.$ $s \leq n\}$, where $R_{n}=\left\lfloor r_{n}^{-1}\right\rfloor, r_{n}=n^{-1 / 2} h^{3 / 2} \log ^{1 / 2}(n)$. Let s_{k} be the smallest number in the set \mathbb{S}_{k} for $k=1, \cdots, R_{n}, R_{n}+1$, and $R_{n}^{*}=R_{n}+1$. By standard arguments, we have for n large enough,

$$
\begin{aligned}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left|\sum_{t=1}^{n} \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)\right| \leq & \max _{1 \leq k \leq R_{n}^{*}} \sup _{s \in \mathbb{S}_{k}}\left|\sum_{t=1}^{n} \bar{e}_{t}\left[K\left(\frac{t-s}{n h}\right)-K\left(\frac{t-s_{k}}{n h}\right)\right]\right|+ \\
& \max _{1 \leq k \leq R_{n}^{*}}\left|\sum_{t=1}^{n} \bar{e}_{t} K\left(\frac{t-s_{k}}{n h}\right)\right| .
\end{aligned}
$$

Noting that

$$
\sup _{s \in \mathbb{S}_{k}}\left|K\left(\frac{t-s}{n h}\right)-K\left(\frac{t-s_{k}}{n h}\right)\right| \leq C \sup _{s \in \mathbb{S}_{k}}\left|\frac{s-s_{k}}{n h}\right| \leq C \cdot \frac{n r_{n}}{n h}=C r_{n} h^{-1}
$$

and $\left|\bar{e}_{t}\right|=O_{P}(1)$, we deduce that

$$
\begin{equation*}
\max _{1 \leq k \leq R_{n}^{*}} \sup _{s \in \mathbb{S}_{k}}\left|\sum_{t=1}^{n} \bar{e}_{t}\left[K\left(\frac{t-s}{n h}\right)-K\left(\frac{t-s_{k}}{n h}\right)\right]\right|=n \cdot O_{P}\left(r_{n} h^{-1}\right)=O_{P}\left(\frac{n r_{n}}{h}\right)=O_{P}(\sqrt{n h \log n}) . \tag{A.9}
\end{equation*}
$$

Noting that $\bar{e}_{t}=\phi \eta_{t}$, we next prove

$$
\begin{equation*}
\max _{1 \leq k \leq R_{n}^{*}}\left|\sum_{t=1}^{n} \eta_{t} K\left(\frac{t-s_{k}}{n h}\right)\right|=O_{P}(\sqrt{n h \log n}) \tag{A.10}
\end{equation*}
$$

by the truncation technique and using the Bernstein inequality. Let

$$
\bar{\eta}_{t}=\eta_{t} \cdot \mathrm{I}\left(\left|\eta_{t}\right| \leq \frac{(n h)^{1 / 2}}{(\log n)^{1 / 2}}\right) \text { and } \widetilde{\eta}_{t}=\eta_{t}-\bar{\eta}_{t}=\eta_{t} \cdot \mathrm{I}\left(\left|\eta_{t}\right|>\frac{(n h)^{1 / 2}}{(\log n)^{1 / 2}}\right)
$$

where $I(\cdot)$ is an indicator function. Note that

$$
\mathbb{E}\left[\left|\widetilde{\eta}_{t}\right|\right]=\mathbb{E}\left[\left|\eta_{t}\right| \mathrm{I}\left(\left|\eta_{t}\right|>\frac{(n h)^{1 / 2}}{(\log n)^{1 / 2}}\right)\right] \leq \frac{(\log n)^{\left(3+\delta_{0}\right) / 2}}{(n h)^{\left(3+\delta_{0}\right) / 2}} \cdot \mathbb{E}\left[\left|\eta_{t}\right|^{4+\delta_{0}}\right]
$$

which indicates that

$$
\max _{1 \leq k \leq R_{n}^{*}}\left|\sum_{t=1}^{n} \mathbb{E}\left[\widetilde{\eta}_{t}\right] K\left(\frac{t-s_{k}}{n h}\right)\right|=O_{P}\left(\frac{(\log n)^{\left(3+\delta_{0}\right) / 2}}{(n h)^{\left(1+\delta_{0}\right) / 2}}\right)=o_{P}(\sqrt{n h \log n})
$$

Hence, in order to prove

$$
\begin{equation*}
\max _{1 \leq k \leq R_{n}^{*}}\left|\sum_{t=1}^{n}\left(\widetilde{\eta}_{t}-\mathbb{E}\left[\widetilde{\eta}_{t}\right]\right) K\left(\frac{t-s_{k}}{n h}\right)\right|=o_{P}(\sqrt{n h \log n}), \tag{A.11}
\end{equation*}
$$

we need only to show that

$$
\begin{equation*}
\max _{1 \leq k \leq R_{n}^{*}}\left|\sum_{t=1}^{n} \widetilde{\eta}_{t} K\left(\frac{t-s_{k}}{n h}\right)\right|=o_{P}(\sqrt{n h \log n}) . \tag{A.12}
\end{equation*}
$$

Notice that if $\left|\eta_{t}\right| \leq \frac{(n h)^{1 / 2}}{(\log n)^{1 / 2}}$ holds for all $t=1, \cdots, n$, we have $\widetilde{\eta}_{t} \equiv 0$ and thus $\left|\sum_{t=1}^{n} \widetilde{\eta}_{t} K\left(\frac{t-s_{k}}{n h}\right)\right|=$ 0 for any $k=1, \cdots, R_{n}^{*}$, which indicates that

$$
\left\{\max _{1 \leq k \leq R_{n}^{*}}\left|\sum_{t=1}^{n} \widetilde{\eta}_{t} K\left(\frac{t-s_{k}}{n h}\right)\right| \neq 0\right\} \subset\left\{\max _{1 \leq t \leq n}\left|\eta_{t}\right|>\frac{(n h)^{1 / 2}}{(\log n)^{1 / 2}}\right\} .
$$

Using the above fact and noting that

$$
\mathbb{P}\left\{\max _{1 \leq t \leq n}\left|\eta_{t}\right|>\frac{(n h)^{1 / 2}}{(\log n)^{1 / 2}}\right\} \leq C \cdot \frac{n(\log n)^{\left(4+\delta_{0}\right) / 2}}{(n h)^{\left(4+\delta_{0}\right) / 2}}=o(1)
$$

as $\frac{n^{2+\delta_{0}} h^{4+\delta_{0}}}{(\log n)^{++\delta_{0}}} \rightarrow \infty$, we can complete the proof of (A.12).
On the other hand, note that $\left\{\eta_{t}\right\}$ is a sequence of i.i.d. random variables, and the number of non-zero summands in $\sum_{t=1}^{n} \bar{\eta}_{t} K\left(\frac{t-s_{k}}{n h}\right)$ is of order ($n h$) as the compact support of the kernel
function is $[-1,1]$. Let c_{K} be a positive constant which is the upper bound for the kernel function $K(\cdot)$. Letting c_{0} be some positive constant such that

$$
\max _{1 \leq k \leq R_{n}^{*}} \operatorname{Var}\left(\sum_{t=1}^{n} \bar{\eta}_{t} K\left(\frac{t-s_{k}}{n h}\right)\right)=\max _{1 \leq k \leq R_{n}^{*}} \operatorname{Var}\left(\sum_{t=s_{k}-n h}^{s_{k}+n h} \bar{\eta}_{t} K\left(\frac{t-s_{k}}{n h}\right)\right) \leq c_{0} n h
$$

and by using a Bernstein type inequality (e.g., Lemma 2.2.9 in van der Vaart and Wellner, 1996), we have

$$
\begin{aligned}
& \mathbb{P}\left\{\max _{1 \leq k \leq R_{n}^{*}}\left|\sum_{t=1}^{n}\left(\bar{\eta}_{t}-\mathbb{E}\left[\bar{\eta}_{t}\right]\right) K\left(\frac{t-s_{k}}{n h}\right)\right|>M \sqrt{n h \log n}\right\} \\
\leq & \sum_{k=1}^{R_{n}^{*}} \mathbb{P}\left\{\left|\sum_{t=1}^{n}\left(\bar{\eta}_{t}-\mathbb{E}\left[\bar{\eta}_{t}\right]\right) K\left(\frac{t-s_{k}}{n h}\right)\right|>M \sqrt{n h \log n}\right\} \\
\leq & \sum_{k=1}^{R_{n}^{*}} 2 \exp \left\{-\frac{M^{2} n h \log n}{\left(2 c_{0}+4 c_{K} M / 3\right) n h}\right\}=O\left(r_{n}^{-1} n^{-\sqrt{M}}\right)=o(1),
\end{aligned}
$$

where M is chosen such that

$$
M^{3 / 2}>\frac{4 c_{K} M}{3}+2 c_{0}, \quad r_{n}^{-1} n^{-\sqrt{M}}=o(1)
$$

which are possible when M is sufficiently large. The above calculation indicates that

$$
\begin{equation*}
\max _{1 \leq k \leq R_{n}^{*}}\left|\sum_{t=1}^{n}\left(\bar{\eta}_{t}-\mathbb{E}\left[\bar{\eta}_{t}\right]\right) K\left(\frac{t-s_{k}}{n h}\right)\right|=O_{P}(\sqrt{n h \log n}) . \tag{A.13}
\end{equation*}
$$

Then, by (A.11) and (A.13), we can prove (A.10), which together with (A.9), leads to

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left|\sum_{t=1}^{n} \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)\right|=O_{P}(\sqrt{n h \log n}) . \tag{A.14}
\end{equation*}
$$

Noting that $\left|K\left(\frac{t-n z}{n h}\right)-K\left(\frac{t-1-n z}{n h}\right)\right| \leq C \frac{1}{n h}$ and $\left|\widetilde{e}_{t}\right|=o_{P}\left((n h)^{1 / 4}\right)$ uniformly in $t=1, \cdots, n$, by a standard derivation, we can also show that

$$
\begin{align*}
& \sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left|\sum_{t=1}^{n} \widetilde{e}_{t-1}\left[K\left(\frac{t-n z}{n h}\right)-K\left(\frac{t-1-n z}{n h}\right)\right]\right| \\
= & \sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left|\sum_{t=\lfloor n(z-h)\rfloor}^{\lfloor n(z+h)\rfloor+2} \widetilde{e}_{t-1}\left[K\left(\frac{t-n z}{n h}\right)-K\left(\frac{t-1-n z}{n h}\right)\right]\right| \\
\leq & (2\lfloor n h\rfloor+2) \cdot C(n h)^{-1} \cdot \max _{1 \leq t \leq n}\left|\widetilde{e}_{t}\right| \\
= & o p(\sqrt{n h \log n}), \tag{A.15}
\end{align*}
$$

which together with (A.7), (A.8) and (A.14), leads to (A.4).

Proof of (A.5). Using the BN decomposition again, we have

$$
X_{t}-X_{\gamma_{n}(z)}=\sum_{s=\gamma_{n}(z)+1}^{t} v_{s}=\sum_{s=\gamma_{n}(z)+1}^{t} \bar{v}_{s}+\widetilde{v}_{\gamma_{n}(z)}-\widetilde{v}_{t},
$$

where $\bar{v}_{t}=\left(\sum_{j=0}^{\infty} \boldsymbol{\Phi}_{j}\right) \varepsilon_{t}=\boldsymbol{\Phi} \varepsilon_{t}$ and $\widetilde{v}_{t}=\sum_{j=0}^{\infty} \widetilde{\boldsymbol{\Phi}}_{j} \varepsilon_{t-j}$ with $\widetilde{\boldsymbol{\Phi}}_{j}=\sum_{k=j+1}^{\infty} \boldsymbol{\Phi}_{k}$. Hence, in order to prove (A.5), we need only prove that

$$
\begin{align*}
& \sum_{t=1}^{n}\left(\sum_{s=\gamma_{n}(z)+1}^{t} \bar{v}_{s}\right) e_{t} K\left(\frac{t-n z}{n h}\right)=O_{P}(n h \sqrt{\log n}), \tag{A.16}\\
& \widetilde{v}_{\gamma_{n}(z)} \sum_{t=1}^{n} e_{t} K\left(\frac{t-n z}{n h}\right)=o_{P}(n h \sqrt{\log n}), \tag{A.17}\\
& \sum_{t=1}^{n} \widetilde{v}_{t} e_{t} K\left(\frac{t-n z}{n h}\right)=o_{P}(n h \sqrt{\log n}), \tag{A.18}
\end{align*}
$$

uniformly for $\epsilon_{*} \leq z \leq 1-\epsilon_{*}$.
Note that both \widetilde{v}_{t} and e_{t} are well defined stationary linear processes, and the numbers of nonzero summands in both $\sum_{t=1}^{n} \widetilde{v}_{t} e_{t} K\left(\frac{t-n z}{n h}\right)$ and $\sum_{t=1}^{n} e_{t} K\left(\frac{t-n z}{n h}\right)$ are of order ($n h$). We can thus prove (A.17) and (A.18) by arguments similar to those in the proof of (A.4) above. This leaves (A.16), which will be proved next.

In order to prove (A.16) we proceed as follows. Let $\bar{v}_{t}(z)=\sum_{s=\gamma_{n}(z)+1}^{t} \bar{v}_{s}$ and $\bar{v}_{t}(z)=0$ if $t<\gamma_{n}(z)+1$. Using the BN decomposition (A.6) and some basic algebra, we have

$$
\begin{aligned}
\sum_{t=1}^{n} \bar{v}_{t}(z) e_{t} K\left(\frac{t-n z}{n h}\right)= & \sum_{t=1}^{n} \bar{v}_{t}(z) \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)+\sum_{t=1}^{n} \bar{v}_{t}(z) \widetilde{e}_{t-1} K\left(\frac{t-n z}{n h}\right)- \\
& \sum_{t=1}^{n} \bar{v}_{t}(z) \widetilde{e}_{t} K\left(\frac{t-n z}{n h}\right) \\
= & \sum_{t=1}^{n} \bar{v}_{t} \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)+\sum_{t=1}^{n} \bar{v}_{t-1}(z) \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)+ \\
& \sum_{t=1}^{n} \bar{v}_{t-1}(z) \widetilde{e}_{t-1}\left[K\left(\frac{t-n z}{n h}\right)-K\left(\frac{t-1-n z}{n h}\right)\right]- \\
& \bar{v}_{n}(z) \widetilde{e}_{n} K\left(\frac{1-z}{h}\right)+\sum_{t=1}^{n} \bar{v}_{t} \widetilde{e}_{t-1} K\left(\frac{t-n z}{n h}\right) .
\end{aligned}
$$

Similar to the proof of (A.15), noting that $\left|K\left(\frac{t-n z}{n h}\right)-K\left(\frac{t-1-n z}{n h}\right)\right| \leq C \frac{1}{n h}$, and $\left|\widetilde{e}_{t}\right|=o_{P}\left((n h)^{1 / 4}\right)$ and $\left|\bar{v}_{t}(z)\right|=o_{P}\left((n h)^{3 / 4}\right)$ uniformly in $\epsilon_{*} \leq z \leq 1-\epsilon_{*}$ and $n(z-h)<t<n(z+h)$, by a standard
derivation we may show that

$$
\begin{align*}
& \sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\sum_{t=1}^{n} \bar{v}_{t-1}(z) \widetilde{e}_{t-1}\left[K\left(\frac{t-n z}{n h}\right)-K\left(\frac{t-1-n z}{n h}\right)\right]\right\| \\
= & \sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\| \|_{t=\lfloor n(z-h)\rfloor}^{\lfloor n(z+h)\rfloor+2} \bar{v}_{t-1}(z) \widetilde{e}_{t-1}\left[K\left(\frac{t-n z}{n h}\right)-K\left(\frac{t-1-n z}{n h}\right)\right] \| \\
\leq & (2\lfloor n h\rfloor+2) \cdot C(n h)^{-1} \cdot \max _{1 \leq t \leq n}\left(\left|\widetilde{e}_{t}\right| \sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left|\bar{v}_{t-1}(z)\right|\right) \\
= & o_{P}(n h \sqrt{\log n}) . \tag{A.19}
\end{align*}
$$

Note that

$$
\begin{aligned}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\sum_{t=1}^{n} \bar{v}_{t} \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)\right\| \leq & \sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\sum_{t=1}^{n}\left\{\bar{v}_{t} \bar{e}_{t}-\mathbb{E}\left[\bar{v}_{t} \bar{e}_{t}\right]\right\} K\left(\frac{t-n z}{n h}\right)\right\|+ \\
& \sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\sum_{t=1}^{n} \mathbb{E}\left[\bar{v}_{t} \bar{e}_{t}\right] K\left(\frac{t-n z}{n h}\right)\right\| .
\end{aligned}
$$

By Assumptions 1 and 2, we then have

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\sum_{t=1}^{n} \mathbb{E}\left[\bar{v}_{t} \bar{e}_{t}\right] K\left(\frac{t-n z}{n h}\right)\right\|=O(n h)=o(n h \sqrt{\log n}) . \tag{A.20}
\end{equation*}
$$

On the other hand, noting that $\left\{\bar{v}_{t} \bar{e}_{t}-\mathbb{E}\left[\bar{v}_{t} \bar{e}_{t}\right]\right\}$ is a sequence of i.i.d. random vectors with mean zero, and following the proof of (A.10), we can similarly prove that

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\sum_{t=1}^{n}\left\{\bar{v}_{t} \bar{e}_{t}-\mathbb{E}\left[\bar{v}_{t} \bar{e}_{t}\right]\right\} K\left(\frac{t-n z}{n h}\right)\right\|=O_{P}(\sqrt{n h \log n})=o_{P}(n h \sqrt{\log n}) . \tag{A.21}
\end{equation*}
$$

Then, a combination of (A.20) and (A.21) leads to

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\sum_{t=1}^{n} \bar{v}_{t} \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)\right\|=o_{P}(n h \sqrt{\log n}) . \tag{A.22}
\end{equation*}
$$

Noting that $K\left(\frac{1-z}{h}\right) \equiv 0$ for $\epsilon_{*} \leq z \leq 1-\epsilon_{*}$, we have that

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\bar{v}_{n}(z) \widetilde{e}_{n} K\left(\frac{1-z}{h}\right)\right\|=o_{P}(n h \sqrt{\log n}) . \tag{A.23}
\end{equation*}
$$

By Assumption 1(ii), \bar{v}_{t} is independent of \widetilde{e}_{t-1}, which implies that $\left\{\bar{v}_{t} \widetilde{e}_{t-1} K\left(\frac{t-n z}{n h}\right): t=1, \cdots, n\right\}$ forms an array of martingale differences. Following the arguments in the proof of (A.10) with
some modifications (e.g. replacing the i.i.d. Bernstein inequality by the exponential inequality for martingale differences in de la Peña, 1999), it follows that

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\sum_{t=1}^{n} \bar{v}_{t} \widetilde{e}_{t-1} K\left(\frac{t-n z}{n h}\right)\right\|=o_{P}(n h \sqrt{\log n}) . \tag{A.24}
\end{equation*}
$$

By (A.19) and (A.22)-(A.24), in order to complete the proof of (A.16), we need only prove that

$$
\begin{equation*}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\sum_{t=1}^{n} \bar{v}_{t-1}(z) \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)\right\|=O_{P}(n h \sqrt{\log n}) . \tag{A.25}
\end{equation*}
$$

Let \mathbb{S}_{k} and s_{k} be defined as in the proof of (A.4) with r_{n}, R_{n} and R_{n}^{*} replaced by $\bar{r}_{n}=$ $n^{-1} h^{2} \log n, \bar{R}_{n}=\left\lfloor\bar{r}_{n}^{-1}\right\rfloor$ and $\bar{R}_{n}^{*}=\bar{R}_{n}+1$, respectively. By standard arguments, we have

$$
\begin{aligned}
\sup _{\epsilon_{*} \leq z \leq 1-\epsilon_{*}}\left\|\sum_{t=1}^{n} \bar{v}_{t-1}(z) \bar{e}_{t} K\left(\frac{t-n z}{n h}\right)\right\| \leq & \max _{1 \leq k \leq \bar{R}_{n}^{*}} \sup _{s \in \mathbb{S}_{k}}\left\|\sum_{t=1}^{n} \bar{v}_{t-1, *}(s) \bar{e}_{t}\left[K\left(\frac{t-s}{n h}\right)-K\left(\frac{t-s_{k}}{n h}\right)\right]\right\|+ \\
& \max _{1 \leq k \leq \bar{R}_{n}^{*}} \sup _{s \in \mathbb{S}_{k}}\left\|\sum_{t=1}^{n}\left[\bar{v}_{t-1, *}(s)-\bar{v}_{t-1, *}\left(s_{k}\right)\right] \bar{e}_{t} K\left(\frac{t-s_{k}}{n h}\right)\right\|+ \\
& \max _{1 \leq k \leq \bar{R}_{n}^{*}}\left\|\sum_{t=1}^{n} \bar{v}_{t-1, *}\left(s_{k}\right) \bar{e}_{t} K\left(\frac{t-s_{k}}{n h}\right)\right\|, \\
& \equiv \Xi_{n 1}+\Xi_{n 2}+\Xi_{n 3},
\end{aligned}
$$

where $\bar{v}_{t, *}(s)=\bar{v}_{t}(s / n)$. In order to prove (A.25), we need to show that

$$
\begin{align*}
& \Xi_{n 1}=\max _{1 \leq k \leq \bar{R}_{n}^{*}} \sup _{s \in \mathbb{S}_{k}}\left\|\sum_{t=1}^{n} \bar{v}_{t-1, *}(s) \bar{e}_{t}\left[K\left(\frac{t-s}{n h}\right)-K\left(\frac{t-s_{k}}{n h}\right)\right]\right\|=O_{P}(n h \sqrt{\log n}), \tag{A.26}\\
& \Xi_{n 2}=\max _{1 \leq k \leq \bar{R}_{n}^{*}} \sup _{s \in \mathbb{S}_{k}}\left\|\sum_{t=1}^{n}\left[\bar{v}_{t-1, *}(s)-\bar{v}_{t-1, *}\left(s_{k}\right)\right] \bar{e}_{t} K\left(\frac{t-s_{k}}{n h}\right)\right\|=O_{P}(n h \sqrt{\log n}) \tag{A.27}
\end{align*}
$$

and

$$
\begin{equation*}
\Xi_{n 3}=\max _{1 \leq k \leq \bar{R}_{n}^{*}}\left\|\sum_{t=1}^{n} \bar{v}_{t-1, *}\left(s_{k}\right) \bar{e}_{t} K\left(\frac{t-s_{k}}{n h}\right)\right\|=O_{P}(n h \sqrt{\log n}) . \tag{A.28}
\end{equation*}
$$

We next provide the proof of (A.28). By the definition of \bar{e}_{t}, we may prove (A.28) with \bar{e}_{t} in $\Xi_{n 3}$ replaced by η_{t}. Let $w_{t}\left(s_{k}\right)=\bar{v}_{t-1, *}\left(s_{k}\right) \eta_{t}, \mathcal{F}_{t}=\left\{\left(\eta_{s}, \varepsilon_{s}^{\prime}\right): s \leq t\right\}$, and

$$
\bar{w}_{t}\left(s_{k}\right)=w_{t}\left(s_{k}\right) \cdot \mathrm{I}\left(\left\|\bar{v}_{t-1, *}\left(s_{k}\right)\right\| \leq \frac{(n h)^{3 / 4}}{(\log n)^{1 / 4}},\left|\eta_{t}\right| \leq \frac{(n h)^{1 / 4}}{(\log n)^{1 / 4}}\right), \quad \widetilde{w}_{t}\left(s_{k}\right)=w_{t}\left(s_{k}\right)-\bar{w}_{t}\left(s_{k}\right)
$$

Note that

$$
\begin{aligned}
\left\|\mathbb{E}\left[\widetilde{w}_{t}\left(s_{k}\right) \mid \mathcal{F}_{t-1}\right]\right\|= & \| \mathbb{E}\left[\left.\bar{v}_{t-1, *}\left(s_{k}\right) \eta_{t} \cdot \mathrm{I}\left(\left\|\bar{v}_{t-1, *}\left(s_{k}\right)\right\|>\frac{(n h)^{3 / 4}}{(\log n)^{1 / 4}} \text { or }\left|\eta_{t}\right|>\frac{(n h)^{1 / 4}}{(\log n)^{1 / 4}}\right) \right\rvert\, \mathcal{F}_{t-1}\right] \| \\
\leq & {\left[\left\|\bar{v}_{t-1, *}\left(s_{k}\right)\right\| \mathrm{I}\left(\left\|\bar{v}_{t-1, *}\left(s_{k}\right)\right\|>\frac{(n h)^{3 / 4}}{(\log n)^{1 / 4}}\right)\right] \cdot \mathbb{E}\left[\left|\eta_{t}\right|\right] } \\
& +\left\|\bar{v}_{t-1, *}\left(s_{k}\right)\right\| \cdot \mathbb{E}\left[\left|\eta_{t}\right| \mathrm{I}\left(\left|\eta_{t}\right|>\frac{(n h)^{1 / 4}}{(\log n)^{1 / 4}}\right)\right] \\
\equiv & V_{t 1}\left(s_{k}\right)+V_{t 2}\left(s_{k}\right)
\end{aligned}
$$

As

$$
\mathbb{E}\left[\left|\eta_{t}\right| \mathrm{I}\left(\left|\eta_{t}\right|>\frac{(n h)^{1 / 4}}{(\log n)^{1 / 4}}\right)\right] \leq \frac{(\log n)^{\left(3+\delta_{0}\right) / 4}}{(n h)^{\left(3+\delta_{0}\right) / 4}} \mathbb{E}\left[\left|\eta_{t}\right|^{4+\delta_{0}}\right]
$$

and $\left\|\bar{v}_{t-1, *}\left(s_{k}\right)\right\|=o_{P}\left((n h)^{3 / 4}\right)$ uniformly in $k=1, \cdots, \bar{R}_{n}^{*}$ and $s_{k}-n h<t<s_{k}+n h$, we have

$$
\begin{equation*}
\max _{1 \leq k \leq \bar{R}_{n}^{*}}\left\|\sum_{t=1}^{n} V_{t 2}\left(s_{k}\right) K\left(\frac{t-s_{k}}{n h}\right)\right\|=O_{P}\left(\frac{(n h)^{7 / 4}(\log n)^{\left(3+\delta_{0}\right) / 4}}{(n h)^{\left(3+\delta_{0}\right) / 4}}\right)=o_{P}(n h \sqrt{\log n}) . \tag{A.29}
\end{equation*}
$$

On the other hand, as $\frac{n^{\delta_{0}-4} h^{\delta_{0}+12}}{(\log n)^{\delta_{0}}} \rightarrow \infty$, note that

$$
\begin{align*}
& \mathbb{P}\left\{\max _{1 \leq k \leq \bar{R}_{n}^{*} s_{k}-n h \leq t \leq s_{k}+n h} \max _{t-1, *}\left(s_{k}\right) \| \mathrm{I}\left(\left\|\bar{v}_{t-1, *}\left(s_{k}\right)\right\|>\frac{(n h)^{3 / 4}}{(\log n)^{1 / 4}}\right)>0\right\} \\
\leq & \left.\mathbb{P}\left\{\max _{1 \leq k \leq \bar{R}_{n}^{*} s_{k}-n h \leq t \leq s_{k}+n h} \max _{t-1, *} \| \bar{v}_{k}\right) \|>\frac{(n h)^{3 / 4}}{(\log n)^{1 / 4}}\right\} \\
\leq & C \cdot \frac{n \bar{R}_{n}^{*}(\log n)^{\left(4+\delta_{0}\right) / 4}}{(n h)^{\left(4+\delta_{0}\right) / 4}}=o(1), \tag{A.30}
\end{align*}
$$

and

$$
\begin{align*}
& \mathbb{P}\left\{\max _{1 \leq k \leq \bar{R}_{n}^{*} s_{k}-n h \leq t \leq s_{k}+n h} \max _{t}\left\|\widetilde{w}_{t}\left(s_{k}\right)\right\|>0\right\} \\
\leq & \mathbb{P}\left\{\max _{1 \leq k \leq \bar{R}_{n}^{*} s_{k}-n h \leq t \leq s_{k}+n h}\left\|\bar{v}_{t-1, *}\left(s_{k}\right)\right\|>\frac{(n h)^{3 / 4}}{(\log n)^{1 / 4}}\right\}+\mathbb{P}\left\{\max _{1 \leq t \leq n}\left|\eta_{t}\right|>\frac{(n h)^{1 / 4}}{(\log n)^{1 / 4}}\right\} \\
\leq & C \cdot \frac{n \bar{R}_{n}^{*}(\log n)^{\left(4+\delta_{0}\right) / 4}}{(n h)^{\left(4+\delta_{0}\right) / 4}}+C \cdot \frac{n(\log n)^{\left(4+\delta_{0}\right) / 4}}{(n h)^{\left(4+\delta_{0}\right) / 4}}=o(1) . \tag{A.31}
\end{align*}
$$

Then, following the arguments in the proof of (A.12) and by (A.30) and (A.31), it follows that

$$
\begin{equation*}
\max _{1 \leq k \leq \bar{R}_{n}^{*}}\left\|\sum_{t=1}^{n} V_{t 1}\left(s_{k}\right) K\left(\frac{t-s_{k}}{n h}\right)\right\|=o_{P}(n h \sqrt{\log n}) \tag{A.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{1 \leq k \leq \bar{R}_{n}^{*}}\left\|\sum_{t=1}^{n} \widetilde{w}_{t}\left(s_{k}\right) K\left(\frac{t-s_{k}}{n h}\right)\right\|=o_{P}(n h \sqrt{\log n}) . \tag{A.33}
\end{equation*}
$$

Hence, by virtue of (A.29), (A.32) and (A.33),

$$
\begin{equation*}
\max _{1 \leq k \leq \bar{R}_{n}^{*}}\left\|\sum_{t=1}^{n}\left(\widetilde{w}_{t}\left(s_{k}\right)-\mathbb{E}\left[\widetilde{w}_{t}\left(s_{k}\right) \mid \mathcal{F}_{t-1}\right]\right) K\left(\frac{t-s_{k}}{n h}\right)\right\|=o_{P}(n h \sqrt{\log n}) . \tag{A.34}
\end{equation*}
$$

On the other hand, note that $\left\{\left(w_{t}\left(s_{k}\right), \mathcal{F}_{t}\right): t \geq 1\right\}$ is a sequence of martingale differences. Let c_{1} be some positive constant such that

$$
\max _{1 \leq k \leq \bar{R}_{n}^{*}}\left\|\operatorname{Var}\left(\sum_{t=1}^{n}\left(\bar{w}_{t}\left(s_{k}\right)-\mathbb{E}\left[\bar{w}_{t}\left(s_{k}\right) \mid \mathcal{F}_{t-1}\right]\right) K\left(\frac{t-s_{k}}{n h}\right)\right)\right\| \leq c_{1}(n h)^{2} .
$$

Then, by the exponential inequality for martingale differences (c.f., Theorem 1.2A in de la Peña, 1999), we have

$$
\begin{aligned}
& \mathbb{P}\left\{\max _{1 \leq k \leq \bar{R}_{n}^{*}}\left\|\sum_{t=1}^{n}\left(\bar{w}_{t}\left(s_{k}\right)-\mathbb{E}\left[\bar{w}_{t}\left(s_{k}\right) \mid \mathcal{F}_{t-1}\right]\right) K\left(\frac{t-s_{k}}{n h}\right)\right\|>M_{1} n h \sqrt{\log n}\right\} \\
\leq & \sum_{k=1}^{\bar{R}_{n}^{*}} \mathbb{P}\left\{\left\|\sum_{t=1}^{n}\left(\bar{w}_{t}\left(s_{k}\right)-\mathbb{E}\left[\bar{w}_{t}\left(s_{k}\right) \mid \mathcal{F}_{t-1}\right]\right) K\left(\frac{t-s_{k}}{n h}\right)\right\|>M_{1} n h \sqrt{\log n}\right\} \\
\leq & \sum_{k=1}^{\bar{R}_{n}^{*}} \exp \left\{-\frac{M_{1}^{2}(n h)^{2} \log n}{2\left[c_{1}(n h)^{2}+2 c_{K} M_{1}(n h)^{2}\right]}\right\} \\
\leq & O\left(\bar{r}_{n}^{-1} n^{-\sqrt{M_{1}}}\right)=o(1),
\end{aligned}
$$

where M_{1} is chosen such that

$$
M_{1}^{3 / 2}>2 c_{1}+4 c_{K} M_{1} \text { and } \bar{r}_{n}^{-1} n^{-\sqrt{M_{1}}}=o(1) .
$$

This indicates that

$$
\begin{equation*}
\max _{1 \leq k \leq \bar{R}_{n}^{*}}\left\|\sum_{t=1}^{n}\left(\bar{w}_{t}\left(s_{k}\right)-\mathbb{E}\left[\bar{w}_{t}\left(s_{k}\right) \mid \mathcal{F}_{t-1}\right]\right) K\left(\frac{t-s_{k}}{n h}\right)\right\|=O_{P}(n h \sqrt{\log n}) . \tag{A.35}
\end{equation*}
$$

Then, by (A.34) and (A.35), result (A.28) follows.
For $\Xi_{n 1}$, noting that

$$
\sup _{s \in \mathbb{S}_{k}}\left|K\left(\frac{t-s}{n h}\right)-K\left(\frac{t-s_{k}}{n h}\right)\right| \leq C \sup _{s \in \mathbb{S}_{k}}\left|\frac{s-s_{k}}{n h}\right| \leq C \cdot \frac{n \bar{r}_{n}}{n h}=C \bar{r}_{n} h^{-1},
$$

$\left\|\bar{v}_{t-1, *}(s)\right\|=o_{P}\left((n h)^{3 / 4}\right)$ uniformly in $s \in \mathbb{S}_{k}$ for $k=1, \cdots, \bar{R}_{n}^{*}$ and $s_{k}-n h<t<s+n h$, and $\left|\bar{e}_{t}\right|=O_{P}(1)$, we have

$$
\begin{aligned}
\Xi_{n 1} & =\max _{1 \leq k \leq \bar{R}_{n}^{*}} \sup _{s \in \mathbb{S}_{k}}\left\|\sum_{t=1}^{n} \bar{v}_{t-1, *}(s) \bar{e}_{t}\left[K\left(\frac{t-s}{n h}\right)-K\left(\frac{t-s_{k}}{n h}\right)\right]\right\| \\
& =o_{P}\left(n(n h)^{3 / 4} \bar{r}_{n} h^{-1}\right)=o_{P}(n h \sqrt{\log n})
\end{aligned}
$$

which completes the proof of (A.26). For $\Xi_{n 2}$, noting that $K(\cdot)$ is bounded, $\left|\bar{e}_{t}\right|=O_{P}(1)$ and

$$
\max _{1 \leq k \leq \bar{R}_{n}^{*}} \sup _{s \in \mathbb{S}_{k}}\left\|\bar{v}_{t-1, *}(s)-\bar{v}_{t-1, *}\left(s_{k}\right)\right\|=O_{P}\left(\sqrt{n \bar{r}_{n}}\right)
$$

for any $s_{k}-n h<t<s+n h$, we then have

$$
\begin{align*}
\Xi_{n 2} & =\max _{1 \leq k \leq \bar{R}_{n}^{*}} \sup _{s \in \mathbb{S}_{k}}\left\|\sum_{t=1}^{n}\left[\bar{v}_{t-1, *}(s)-\bar{v}_{t-1, *}\left(s_{k}\right)\right] \bar{e}_{t} K\left(\frac{t-s_{k}}{n h}\right)\right\| \\
& =O_{P}\left(n \sqrt{n \bar{r}_{n}}\right)=O_{P}(n h \sqrt{\log n}), \tag{A.36}
\end{align*}
$$

which completes the proof of (A.27). Thus, (A.25) and then (A.16) have been proved. We have finally completed the proof of (A.5), and Theorem 2.1 then follows.

Proof of Theorem 3.1. Note that

$$
\begin{align*}
Q_{n}(z) & =\sum_{t=1}^{n} K\left(\frac{Z_{t}-z}{h}\right) X_{t-1} e_{t}+\sum_{t=1}^{n} K\left(\frac{Z_{t}-z}{h}\right) v_{t} e_{t} \\
& \equiv Q_{n 1}(z)+Q_{n 2}(z) . \tag{A.37}
\end{align*}
$$

First consider $Q_{n 1}(z)$, which is the leading term of $Q_{n}(z)$. Decompose $Q_{n 1}(z)$ as

$$
\begin{align*}
Q_{n 1}(z) & =\sum_{t=1}^{n} \mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right] X_{t-1} e_{t}+\sum_{t=1}^{n}\left\{K\left(\frac{Z_{t}-z}{h}\right)-\mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right]\right\} X_{t-1} e_{t} \\
& \equiv Q_{n 3}(z)+Q_{n 4}(z) . \tag{A.38}
\end{align*}
$$

Noting that by Assumptions 2 and 3,

$$
\mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right]=\int K\left(\frac{z_{1}-z}{h}\right) f_{Z}\left(z_{1}\right) d z_{1}=h \int K\left(z_{2}\right) f_{Z}\left(z+z_{2} h\right) d z_{2}=h f_{Z}(z) \mu_{0}+O\left(h^{2}\right),
$$

uniformly for $0 \leq z \leq 1$, and by using the functional limit theorem for the partial sum of the linear process (Phillips and Solo, 1992) and Theorem 3.1 in Ibragimov and Phillips (2008), we have

$$
\sum_{t=1}^{n} X_{t-1} e_{t}=O_{P}(n) .
$$

We deduce that

$$
\begin{equation*}
\sup _{0 \leq z \leq 1}\left\|Q_{n 3}(z)\right\|=O_{P}(n h)=o_{P}(n \sqrt{h \log n}) . \tag{A.39}
\end{equation*}
$$

For $Q_{n 4}(z)$, it is easy to check that $\left\{\left(u_{t}(K, z) X_{t-1} e_{t}, \mathcal{F}_{t}^{*}\right)\right\}$ is a sequence of martingale differences, where

$$
u_{t}(K, z)=K\left(\frac{Z_{t}-z}{h}\right)-\mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right], \quad \mathcal{F}_{t}^{*}=\sigma\left\{\eta_{t+1},\left(Z_{s}, \eta_{s}, \varepsilon_{s}\right): s \leq t\right\} .
$$

The following proof is similar to the proof of (A.25) with some modifications. We cover the interval $[0,1]$ by a finite number of disjoint intervals \mathbb{Z}_{k} with centre point z_{k} and radius r_{n} defined in the proof of Theorem 2.1, and the number of these intervals is $N_{n}=O\left(r_{n}^{-1}\right)$. By some standard arguments, we have

$$
\begin{aligned}
\sup _{0 \leq z \leq 1}\left\|\sum_{t=1}^{n} u_{t}(K, z) X_{t-1} e_{t}\right\| \leq & \max _{1 \leq k \leq N_{n}} \sup _{z \in \mathbb{Z}_{k}}\left\|\sum_{t=1}^{n} X_{t-1} e_{t}\left[u_{t}(K, z)-u_{t}\left(K, z_{k}\right)\right]\right\|+ \\
& \max _{1 \leq k \leq N_{n}}\left\|\sum_{t=1}^{n} u_{t}\left(K, z_{k}\right) X_{t-1} e_{t}\right\| .
\end{aligned}
$$

Noting that by Assumption 2(i)

$$
\left|u_{t}(K, z)-u_{t}\left(K, z_{k}\right)\right| \leq 2\left|K\left(\frac{Z_{t}-z}{h}\right)-K\left(\frac{Z_{t}-z_{k}}{h}\right)\right|=O_{P}\left(r_{n} h^{-1}\right),
$$

and $\max _{1 \leq t \leq n}\left\|X_{t}\right\|=O_{P}(\sqrt{n})$, we have

$$
\begin{equation*}
\max _{1 \leq k \leq N_{n}} \sup _{z \in \mathbb{Z}_{k}}\left\|\sum_{t=1}^{n} X_{t-1} e_{t}\left[u_{t}(K, z)-u_{t}\left(K, z_{k}\right)\right]\right\|=O_{P}\left(n^{3 / 2} r_{n} h^{-1}\right)=O_{P}(n \sqrt{h \log n}) . \tag{A.40}
\end{equation*}
$$

We next prove that

$$
\begin{equation*}
\max _{1 \leq k \leq N_{n}}\left\|\sum_{t=1}^{n} u_{t}\left(K, z_{k}\right) X_{t-1} e_{t}\right\|=O_{P}(n \sqrt{h \log n}) . \tag{A.41}
\end{equation*}
$$

As $\frac{n^{2+\delta_{0}} h^{4+\delta_{0}}}{(\log n)^{4+\delta_{0}}} \rightarrow \infty$, there exists a positive function $l(n)$ such that

$$
\begin{equation*}
l(n) \rightarrow \infty \quad \text { and } \quad \frac{n^{2+\delta_{0}} h^{4+\delta_{0}}}{l(n)(\log n)^{4+\delta_{0}}} \rightarrow \infty \tag{A.42}
\end{equation*}
$$

Let $W_{t}\left(z_{k}\right)=u_{t}\left(K, z_{k}\right) X_{t-1} e_{t}, L(n)=[l(n)]^{\frac{1}{4+\delta_{0}}}$, and

$$
\bar{W}_{t}\left(z_{k}\right)=W_{t}\left(z_{k}\right) \cdot \mathrm{I}\left(\left\|X_{t-1}\right\| \leq \sqrt{n L(n)},\left|e_{t}\right| \leq \sqrt{\frac{n h}{L(n) \log n}}\right), \quad \widetilde{W}_{t}\left(z_{k}\right)=W_{t}\left(z_{k}\right)-\bar{W}_{t}\left(z_{k}\right)
$$

From the definition of $\widetilde{W}_{t}\left(z_{k}\right)$, it is easy to see that if the two events $\left\{\left\|X_{t-1}\right\| \leq \sqrt{n L(n)}, t=1, \cdots, n\right\}$ and $\left\{\left|e_{t}\right| \leq \sqrt{\frac{n h}{L(n) \log n}}, t=1, \cdots, n\right\}$ hold simultaneously, $\left\|\sum_{t=1}^{n} \widetilde{W}_{t}\left(z_{k}\right)\right\|=0$ for any $1 \leq k \leq N_{n}$.

In other words, if $\left\|\sum_{t=1}^{n} \widetilde{W}_{t}\left(z_{k}\right)\right\|>0$, we must have either $\left\{\left\|X_{t-1}\right\|>\sqrt{n L(n)}\right\}$ for at least one $1 \leq t \leq n$, or $\left\{\left|e_{t}\right|>\sqrt{\frac{n h}{L(n) \log n}}\right\}$ for at least one $1 \leq t \leq n$. Hence, we have for any $\epsilon>0$,

$$
\begin{align*}
& \mathbb{P}\left\{\max _{1 \leq k \leq N_{n}}\left\|\sum_{t=1}^{n} \widetilde{W}_{t}\left(z_{k}\right)\right\|>\epsilon n \sqrt{h \log n}\right\} \\
\leq & \mathbb{P}\left\{\max _{1 \leq t \leq n}\left\|X_{t-1}\right\|>\sqrt{n L(n)}\right\}+\mathbb{P}\left\{\max _{1 \leq t \leq n}\left|e_{t}\right|>\sqrt{\frac{n h}{L(n) \log n}}\right\} \\
= & o(1)+O\left(\frac{n[L(n) \log n]^{\left(4+\delta_{0}\right) / 2}}{(n h)^{\left(4+\delta_{0}\right) / 2}}\right)=o(1), \tag{A.43}
\end{align*}
$$

by (A.42), and (A.43) leads to

$$
\begin{equation*}
\max _{1 \leq k \leq N_{n}}\left\|\sum_{t=1}^{n} \widetilde{W}_{t}\left(z_{k}\right)\right\|=o_{P}(n \sqrt{h \log n}) . \tag{A.44}
\end{equation*}
$$

Let c_{2} be some positive constant such that

$$
\max _{1 \leq k \leq N_{n}}\left\|\operatorname{Var}\left(\sum_{t=1}^{n} \bar{W}_{t}\left(z_{k}\right)\right)\right\| \leq c_{2} n^{2} h .
$$

Then, by the exponential inequality for martingale differences again (c.f., Theorem 1.2A in de la Peña, 1999), we have

$$
\begin{aligned}
& \mathbb{P}\left\{\max _{1 \leq k \leq N_{n}}\left\|\sum_{t=1}^{n} \bar{W}_{t}\left(z_{k}\right)\right\|>M_{2} n \sqrt{h \log n}\right\} \leq \sum_{k=1}^{N_{n}} \mathbb{P}\left\{\left\|\sum_{t=1}^{n} \bar{W}_{t}\left(z_{k}\right)\right\|>M_{2} n \sqrt{h \log n}\right\} \\
\leq & \sum_{k=1}^{N_{n}} \exp \left\{-\frac{M_{2}^{2} n^{2} h \log n}{2\left(c_{2} n^{2} h+2 c_{K} M_{2} n^{2} h\right)}\right\}=O\left(r_{n}^{-1} n^{-\sqrt{M_{2}}}\right)=o(1),
\end{aligned}
$$

where M_{2} is chosen such that

$$
M_{2}^{3 / 2}>2 c_{2}+4 c_{K} M_{2}, \quad r_{n}^{-1} n^{-\sqrt{M_{2}}}=o(1) .
$$

This indicates that

$$
\begin{equation*}
\max _{1 \leq k \leq N_{n}}\left\|\sum_{t=1}^{n} \bar{W}_{t}\left(z_{k}\right)\right\|=O_{P}(n \sqrt{h \log n}) . \tag{A.45}
\end{equation*}
$$

In view of (A.44) and (A.45), we can complete the proof of (A.41), which together with (A.40), indicates that

$$
\begin{equation*}
\sup _{0 \leq z \leq 1}\left\|Q_{n 4}(z)\right\|=O_{P}(n \sqrt{h \log n}) . \tag{A.46}
\end{equation*}
$$

Then, by (A.39) and (A.46), we deduce that

$$
\begin{equation*}
\sup _{0 \leq z \leq 1}\left\|Q_{n 1}(z)\right\|=\sup _{0 \leq z \leq 1}\left\|Q_{n 3}(z)\right\|+\sup _{0 \leq z \leq 1}\left\|Q_{n 4}(z)\right\|=O_{P}(n \sqrt{h \log n}) \tag{A.47}
\end{equation*}
$$

We next consider $Q_{n 2}(z)$, which is relatively simpler. Let $v_{t}=\sum_{j=0}^{\infty} \boldsymbol{\Phi}_{j} \varepsilon_{t-j}=\varepsilon_{t}+\sum_{j=1}^{\infty} \boldsymbol{\Phi}_{j} \varepsilon_{t-j} \equiv$ $\varepsilon_{t}+\widehat{v}_{t}$ and $e_{t}=\sum_{j=0}^{\infty} \phi_{j} \eta_{t-j}=\eta_{t}+\sum_{j=1}^{\infty} \phi_{j} \eta_{t-j} \equiv \eta_{t}+\widehat{e}_{t}$. Note that

$$
\begin{align*}
Q_{n 2}(z)= & \sum_{t=1}^{n} K\left(\frac{Z_{t}-z}{h}\right) \varepsilon_{t} \eta_{t}+\sum_{t=1}^{n} K\left(\frac{Z_{t}-z}{h}\right) \widehat{v}_{t} \eta_{t}+ \\
& \sum_{t=1}^{n} K\left(\frac{Z_{t}-z}{h}\right) \varepsilon_{t} \widehat{e}_{t}+\sum_{t=1}^{n} K\left(\frac{Z_{t}-z}{h}\right) \widehat{v}_{t} \widehat{e}_{t} \\
\equiv & \sum_{k=5}^{8} Q_{n k}(z) \tag{A.48}
\end{align*}
$$

We next prove that

$$
\begin{equation*}
\sup _{0 \leq z \leq 1}\left\|Q_{n k}(z)\right\|=o_{P}(n \sqrt{h \log n}), \quad k=5,6,7,8 \tag{A.49}
\end{equation*}
$$

For $k=8$, note the decompositions:

$$
Q_{n 8}(z)=\sum_{t=1}^{n} \mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right] \widehat{v}_{t} \widehat{e}_{t}+\sum_{t=1}^{n}\left\{K\left(\frac{Z_{t}-z}{h}\right)-\mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right]\right\} \widehat{v}_{t} \widehat{e}_{t}
$$

By the fact that $\mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right]=h f_{Z}(z) \mu_{0}+O\left(h^{2}\right)$ uniformly in $0 \leq z \leq 1$ and $\left\{\widehat{v}_{t} \widehat{e}_{t}\right\}$ is a sequence of stationary random vectors, and using the ergodic theorem, we have

$$
\begin{equation*}
\sup _{0 \leq z \leq 1}\left\|\sum_{t=1}^{n} \mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right] \widehat{v}_{t} \widehat{e}_{t}\right\|=O_{P}(n h)=o_{P}(n \sqrt{h \log n}) \tag{A.50}
\end{equation*}
$$

On the other hand, note that $\left\{\left(u_{t}(K, z) \widehat{v}_{t} \widehat{e}_{t}, \mathcal{F}_{t}^{*}\right)\right\}$ is a sequence of martingale differences, where $u_{t}(K, z)=K\left(\frac{Z_{t}-z}{h}\right)-\mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right]$ and $\mathcal{F}_{t}^{*}=\sigma\left\{\eta_{t+1},\left(Z_{s}, \eta_{s}, \varepsilon_{s}\right): s \leq t\right\}$ are defined as above. Then following the argument in the proof of (A.46) with some modification, we can prove that

$$
\begin{equation*}
\sup _{0 \leq z \leq 1}\left\|\sum_{t=1}^{n}\left\{K\left(\frac{Z_{t}-z}{h}\right)-\mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right]\right\} \widehat{v}_{t} \widehat{e}_{t}\right\|=o_{P}(n \sqrt{h \log n}) \tag{A.51}
\end{equation*}
$$

By (A.50) and (A.51), we have completed the proof of (A.49) with $k=8$. The proof for other cases of $k=5,6,7$ is analogous and thus the details are omitted here. Then, by (A.49), we have

$$
\begin{equation*}
\sup _{0 \leq z \leq 1}\left\|Q_{n 2}(z)\right\| \leq \sum_{k=5}^{8} \sup _{0 \leq z \leq 1}\left\|Q_{n k}(z)\right\|=o_{P}(n \sqrt{h \log n}) \tag{A.52}
\end{equation*}
$$

By (A.37), (A.47) and (A.52), we can prove (3.2). Then, the proof of Theorem 3.1 can be completed.

Proof of Theorem 4.1. Note that

$$
\begin{align*}
& \widehat{\beta}_{n}(z)-\beta(z)= {\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)\right]^{+}\left\{\sum_{t=1}^{n} X_{t} X_{t}^{\prime}\left[\beta\left(\frac{t}{n}\right)-\beta(z)\right] K\left(\frac{t-n z}{n h}\right)\right\}+} \\
& {\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)\right]^{+}\left[\sum_{t=1}^{n} X_{t} e_{t} K\left(\frac{t-n z}{n h}\right)\right] } \\
& \equiv \Pi_{n 1}(z)+\Pi_{n 2}(z) . \tag{A.53}
\end{align*}
$$

We first prove that the matrix

$$
\mathbf{R}_{n}^{-1} \mathbf{D}_{n}(z)^{\prime}\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)\right] \mathbf{D}_{n}(z) \mathbf{R}_{n}^{-1}
$$

is asymptotically non-singular for all $z \in\left[\epsilon_{\diamond}, 1-\epsilon_{\diamond}\right]$, where ϵ_{\diamond} is defined in Assumption 5. This can be proved by combining Proposition A. 1 and Lemma B. 4 in Phillips et al (2013). In order to keep the paper self-contained, we outline the proof. Recall that $q_{z}=q_{\gamma_{n}(z)}$ and $q_{z}^{\perp}=q_{\gamma_{n}(z)}^{\perp}$, and observe that

$$
\begin{align*}
& \mathbf{R}_{n}^{-1} \mathbf{D}_{n}(z)^{\prime}\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)\right] \mathbf{D}_{n}(z) \mathbf{R}_{n}^{-1} \\
= & {\left[\begin{array}{cc}
q_{z}^{\prime}\left[\frac{1}{n^{2} h} \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)\right] q_{z} & q_{z}^{\prime}\left[\frac{1}{n^{2} h^{3 / 2}} \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)\right] q_{z}^{\perp} \\
\left(q_{z}^{\perp}\right)^{\prime}\left[\frac{1}{n^{2} h^{3 / 2}} \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)\right] q_{z} & \left(q_{z}^{\perp}\right)^{\prime}\left[\frac{1}{n^{2} h^{2}} \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)\right] q_{z}^{\perp}
\end{array}\right] } \\
\equiv & {\left[\begin{array}{cc}
\Delta_{n 1}(z) & \Delta_{n 2}(z) \\
\Delta_{n 2}(z)^{\prime} & \Delta_{n 3}(z)
\end{array}\right] . } \tag{A.54}
\end{align*}
$$

For $\Delta_{n 1}(z)$, following the argument in the proof of Proposition A. 1 in Phillips et al (2013) and using the definitions of $b_{\gamma_{n}(z)}$ and q_{z}, we can claim that

$$
\begin{align*}
\frac{1}{n^{2} h} \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right) & =\left(\frac{1}{\sqrt{n}} X_{\gamma_{n}(z)}\right)\left(\frac{1}{\sqrt{n}} X_{\gamma_{n}(z)^{\prime}}\right)\left[\frac{1}{n h} \sum_{t=1}^{n} K\left(\frac{t-n z}{n h}\right)\right]+o_{P}(1) \\
& =b_{\gamma_{n}(z)} b_{\gamma_{n}(z)}^{\prime}+o_{P}(1)=\left\|b_{\gamma_{n}(z)}\right\|^{2} q_{z} q_{z}^{\prime}+o_{P}(1) \tag{A.55}
\end{align*}
$$

uniformly in z. Then, by Assumption 1(i), the BN decomposition, and the strong approximation result (e.g. Csörgö and Révész, 1981), there exists $B_{z}\left(\boldsymbol{\Omega}_{\varepsilon}\right)$ such that

$$
\begin{equation*}
\sup _{\epsilon_{0} \leq z \leq \epsilon_{\odot}}\left\|q_{z}-\bar{q}_{z}\right\|+\sup _{\epsilon_{0} \leq z \leq \epsilon_{\odot}}\left\|b_{z}-\bar{b}_{z}\right\|=o_{P}(1) \tag{A.56}
\end{equation*}
$$

where $\bar{b}_{z}=B_{z}\left(\boldsymbol{\Omega}_{\varepsilon}\right)$ and $\bar{q}_{z}=\bar{b}_{z} /\left\|\bar{b}_{z}\right\|$. Then, by (A.55), (A.56) and the definition of $\Delta_{n 1}(z)$, we can prove that

$$
\begin{equation*}
\sup _{\epsilon_{\diamond} \leq z \leq \epsilon_{\diamond}}\left|\Delta_{n 1}(z)-\Delta_{1}(z)\right|=o_{P}(1) \tag{A.57}
\end{equation*}
$$

where $\Delta_{1}(z)$ is defined in Section 4.
For $\Delta_{n 2}(z)$, following the argument in the proof of Proposition A. 1 in Phillips et al (2013) again and using the orthogonality condition (2.4), the asymptotic leading term of $\Delta_{n 2}(z)$ is:

$$
\begin{equation*}
q_{z}^{\prime} q_{z}\left[\frac{1}{n^{3 / 2} h^{3 / 2}} \sum_{t=1}^{n} \bar{v}_{t}(z)^{\prime} K\left(\frac{t-n z}{n h}\right)\right] q_{z}^{\perp} \tag{A.58}
\end{equation*}
$$

where $\bar{v}_{t}(z)$ is defined in the proof of (A.5) and independent of q_{z} and q_{z}^{\perp}. Then, by Assumption 1 (i) and the strong approximation result again, there exists $B_{z, *}\left(\boldsymbol{\Omega}_{\varepsilon}\right)$ (which is also independent of q_{z} and $\left.q_{z}^{\perp}\right)$ such that

$$
\begin{equation*}
\sup _{\epsilon_{\diamond} \leq z \leq \epsilon_{\diamond} \gamma_{n}(z) \leq t \leq \gamma_{n}(z)+2 n h} \sup \left\|\frac{1}{\sqrt{2 n h}} \bar{v}_{t}(z)-B_{m(t, z), *}\left(\boldsymbol{\Omega}_{\varepsilon}\right)\right\|=o_{P}(1) \tag{A.59}
\end{equation*}
$$

where $m(t, z)=\frac{t-\gamma_{n}(z)}{2 n h}$. Then, by (A.56), (A.58) and (A.59), we have

$$
\begin{equation*}
\sup _{\epsilon_{\diamond} \leq z \leq \epsilon_{\diamond}}\left|\Delta_{n 2}(z)-\Delta_{2}(z)\right|=o_{P}(1) \tag{A.60}
\end{equation*}
$$

where $\Delta_{2}(z)$ is defined in Section 4. By an analogous argument and using the orthogonality condition (2.4), we can also show that

$$
\begin{equation*}
\sup _{\epsilon_{\diamond} \leq z \leq \epsilon_{\diamond}}\left|\Delta_{n 3}(z)-\Delta_{3}(z)\right|=o_{P}(1) \tag{A.61}
\end{equation*}
$$

where $\Delta_{3}(z)$ is defined in Section 4. Then, by the asymptotic non-singularity of $\boldsymbol{\Delta}_{z}$ in Assumption 5 , (A.57), (A.60) and (A.61), we can prove that $\mathbf{R}_{n}^{-1} \mathbf{D}_{n}(z)^{\prime}\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)\right] \mathbf{D}_{n}(z) \mathbf{R}_{n}^{-1}$ is asymptotically non-singular for all $\epsilon_{\diamond} \leq z \leq \epsilon_{\diamond}$, which together with Theorem 2.1 , implies that

$$
\begin{equation*}
\sup _{\epsilon_{\diamond} \leq z \leq \epsilon_{\diamond}}\left\|\mathbf{R}_{n} \mathbf{D}_{n}(z)^{\prime} \Pi_{n 2}(z)\right\|=O_{P}(\sqrt{\log n}) \tag{A.62}
\end{equation*}
$$

The above convergence result leads to

$$
\begin{equation*}
\sup _{\epsilon_{\diamond} \leq z \leq \epsilon_{\diamond}}\left|q_{z}^{\prime} \Pi_{n 2}(z)\right|=O_{P}\left(\sqrt{\frac{\log n}{n^{2} h}}\right), \sup _{\epsilon_{\diamond} \leq z \leq \epsilon_{\diamond}}\left\|\left(q_{z}^{\perp}\right)^{\prime} \Pi_{n 2}(z)\right\|=O_{P}\left(\frac{\sqrt{\log n}}{n h}\right) \tag{A.63}
\end{equation*}
$$

By Assumption 4, we can show that

$$
\begin{equation*}
\left\|\beta\left(\frac{t}{n}\right)-\beta(z)\right\|=O\left(h^{\alpha_{0}}\right), \quad\left|\frac{t}{n}-z\right| \leq h \tag{A.64}
\end{equation*}
$$

Following the argument above and using (A.64), we can prove that the asymptotic order of

$$
\mathbf{R}_{n}^{-1} \mathbf{D}_{n}(z)^{\prime}\left\{\sum_{t=1}^{n} X_{t} X_{t}^{\prime}\left[\beta\left(\frac{t}{n}\right)-\beta(z)\right] K\left(\frac{t-n z}{n h}\right)\right\} \mathbf{D}_{n}(z) \mathbf{R}_{n}^{-1}
$$

is $O_{P}\left(h^{\alpha_{0}}\right)$, which together with the fact that $\mathbf{R}_{n}^{-1} \mathbf{D}_{n}(z)^{\prime}\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{t-n z}{n h}\right)\right] \mathbf{D}_{n}(z) \mathbf{R}_{n}^{-1}$ is asymptotically non-singular, implies that

$$
\begin{equation*}
\sup _{\epsilon_{0} \leq z \leq \epsilon_{\odot}}\left\|\Pi_{n 1}(z)\right\|=O_{P}\left(h^{\alpha_{0}}\right) . \tag{A.65}
\end{equation*}
$$

The proof of Theorem 4.1 can be completed in view of (A.53), (A.63), and (A.65) in conjunction with the definitions of \mathbf{R}_{n} and $\mathbf{D}_{n}(z)$.

Proof of Theorem 4.2. The proof is similar to the proof of Theorem 4.1 above. As in (A.45), we have

$$
\begin{align*}
& \widehat{\beta}_{n}(z)-\beta(z)= {\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{Z_{t}-z}{h}\right)\right]^{+}\left\{\sum_{t=1}^{n} X_{t} X_{t}^{\prime}\left[\beta\left(Z_{t}\right)-\beta(z)\right] K\left(\frac{Z_{t}-z}{h}\right)\right\}+} \\
& {\left[\sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{Z_{t}-z}{h}\right)\right]^{+}\left[\sum_{t=1}^{n} X_{t} e_{t} K\left(\frac{Z_{t}-z}{h}\right)\right] } \\
& \equiv \Pi_{n 3}(z)+\Pi_{n 4}(z) . \tag{A.66}
\end{align*}
$$

Following the proof of Proposition A. 1 in Li et al (2014), we can show that the random denominator $\frac{1}{n^{2} h} \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{Z_{t}-z}{h}\right)$ is non-singular with probability 1 for all $z \in[0,1]$. We next give an outline of this proof. Note that

$$
\begin{align*}
\frac{1}{n^{2} h} \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{Z_{t}-z}{h}\right)= & \frac{1}{n^{2} h} \sum_{t=1}^{n} X_{t} X_{t}^{\prime}\left\{K\left(\frac{Z_{t}-z}{h}\right)-\mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right]\right\}+ \\
& \frac{1}{n^{2} h} \sum_{t=1}^{n} X_{t} X_{t}^{\prime} \mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right] \\
\equiv & \Pi_{n 5}(z)+\Pi_{n 6}(z) \tag{A.67}
\end{align*}
$$

By the fact that $\mathbb{E}\left[K\left(\frac{Z_{t}-z}{h}\right)\right]=h f_{Z}(z) \mu_{0}+o\left(h^{2}\right)$ and using continuous mapping, it follows that uniformly for $z \in[0,1]$,

$$
\begin{equation*}
\Pi_{n 6}(z)=\frac{f_{Z}(z)}{n} \sum_{t=1}^{n} \frac{X_{t}}{\sqrt{n}} \cdot \frac{X_{t}^{\prime}}{\sqrt{n}}+O_{P}(h) \Rightarrow f_{Z}(z) \int_{0}^{1} B_{r}\left(\boldsymbol{\Omega}_{\varepsilon}\right) B_{r}\left(\boldsymbol{\Omega}_{\varepsilon}\right)^{\prime} d r \tag{A.68}
\end{equation*}
$$

On the other hand, following the technical argument in Li et al (2014), we can prove that

$$
\begin{equation*}
\sup _{0 \leq z \leq 1}\left\|\Pi_{n 5}(z)\right\|=o_{P}(1) \tag{A.69}
\end{equation*}
$$

which together with (A.67) and (A.68), implies that

$$
\begin{equation*}
\frac{1}{n^{2} h} \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{Z_{t}-z}{h}\right) \Rightarrow f_{Z}(z) \int_{0}^{1} B_{r}\left(\boldsymbol{\Omega}_{\varepsilon}\right) B_{r}\left(\boldsymbol{\Omega}_{\varepsilon}\right)^{\prime} d r \tag{A.70}
\end{equation*}
$$

uniformly for $z \in[0,1]$. As $\inf _{0 \leq z \leq 1} f_{Z}(z)>0$ and using the fact that $\int_{0}^{1} B_{r}\left(\boldsymbol{\Omega}_{\varepsilon}\right) B_{r}\left(\boldsymbol{\Omega}_{\varepsilon}\right)^{\prime} d r$ is positive definite with probability 1 by Lemma A2 in Phillips and Hansen (1990), we can claim that $\frac{1}{n^{2} h} \sum_{t=1}^{n} X_{t} X_{t}^{\prime} K\left(\frac{Z_{t}-z}{h}\right)$ is asymptotically non-singular over $z \in[0,1]$, which together with Theorem 3.1, implies that

$$
\begin{equation*}
\sup _{0 \leq z \leq 1}\left\|\Pi_{n 4}(z)\right\|=O_{P}\left(\sqrt{\frac{\log n}{n^{2} h}}\right) \tag{A.71}
\end{equation*}
$$

On the other hand, by Assumption 4 and following the proof of (A.65), it follows easily that

$$
\begin{equation*}
\sup _{0 \leq z \leq 1}\left\|\Pi_{n 3}(z)\right\|=O_{P}\left(h^{\alpha_{0}}\right) . \tag{A.72}
\end{equation*}
$$

Then, (4.7) can be proved by using (A.66), (A.71) and (A.72) and the proof of Theorem 4.2 is thus completed.

[^0]: *University of York
 ${ }^{\dagger}$ Yale University, University of Auckland, Southampton University, and Singapore Management University
 ${ }^{\ddagger}$ Monash University

