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Abstract
Microbubble generation by a novel fluidic oscillator driven approach is analyzed, with a view to identifying the 

key design elements and their differences from standard approaches to airlift loop bioreactor design.  The 

microbubble generation mechanism has been shown to achieve high mass transfer rates by the decrease of the 

bubble diameter, by hydrodynamic stabilization that avoids coalescence increasing the bubble diameter, and by 

longer residence times offsetting slower convection.  The fluidic oscillator approach also decreases the friction 

losses in pipe networks and in nozzles / diffusers due to boundary layer disruption, so there is actually an 

energetic consumption savings in using this approach over steady flow.  These dual advantages make the 

microbubble generation approach a promising component of a novel airlift loop bioreactor whose design is 

presented here.  The equipment, control system for flow and temperature, and the optimization of the nozzle 

bank for the gas distribution system are presented.

§1 Introduction
Airlift reactors are perceived to have performance advantages over bubble columns and 

stirred tank bioreactors for many applications, biorenewables production in particular.  

Where the product is a commodity biochemical or biofuel, energy efficiency is the primary 

concern.  There are multiple objectives for the optimization of energy efficiency, however.  

The hydrodynamics of stirring is an important consideration, as are the phase transfer of 

nutrient influx and the efflux of inhibitor products and byproducts.  Finally, the metabolism 

of cells or microbes engaged in the biochemical production are a major constraining factor –

mass transfer from the bulk liquid to the bioculture must be maintained.  There are two 

important reasons to use airlift loop bioreactors (ALB) that arise from the airlift effects: 

flotation and flocculation.  Small bubbles attached to particles or droplets significantly lower 

the density of the aggregrate.  Grammatika and Zimmerman (2001) describe these

generalized flotation effects.  Such aggregates are susceptible to floc formation.  Typically, 

microbes or cells that sediment out of the suspension accumulate in stagnation zones at the 

bottom expire.

Given the importance of energy usage in the operation of ALBs, it is surprising that the 

sparging system, which is the central power consumption feature of the ALB, has not 

received more attention.  Jones (2007) gives a good review of the major features of ALB, 

including the conventional types of sparger design.  Chisti and Moo-Young (1987) classify 

the spargers used in the ALB as dynamic and static.  Dynamic spargers use injection through 

nozzles to disperse the gas introduced.  Static spargers are typically less reliant on the 

momentum of the jet, and the gas is introduced typically through a perforated plate (see 

Deshpande and Zimmerman, 2005a,b) or less commonly, through a porous baffle (Heijnen 

and Van’t Riet, 1984).  This study was motivated by the development of a novel microbubble 

generation technique based on fluidic oscillation diverting jets used in sparging (Zimmerman 

et al. 2008).

* Manuscript
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The paper is organized as follows.  In  §2, the microbubble generation mechanism by fluidic 

oscillation is discussed, leading to design criteria for sparging systems and nozzle banks that 

achieve high energy efficiency.  In §3, aspects of the design of ALBs that are influenced by 

the incorporation of the microbubble generator by fluidic oscillation, the design itself, and 

simulation of an such an ALB are presented.  In §4, a summary is given and conclusions are 

drawn. 

§2 Microbubble generation

The concept for the fluidic oscillator driven microbubble generation mechanism 

(Zimmerman et al. 2008) stems from the systems biology objective of using oscillatory 

nutrient feed streams in a conventional fermentor or chemostat to investigate the kinetics of 

metabolic pathways.  Zimmerman (2005) demonstrated from the simulation of the glycolytic 

pathway in yeast that oscillating the glucose feed stream could create information-rich time 

series responses in extracellular metabolic production, such as excreted ethanol.  Specifically, 

it was shown that three kinetics coefficients of the Michaelis-Menten kinetics of the branch 

point of succinic acid production could be inferred by data assimilation with high fidelity due 

to the presence of strong nonlinearity excited at one of two resonant frequencies of the 

pathway.  The eigensystem analysis of the pathway showed natural (but decaying) 

frequencies in the pathway at 15Hz and 52Hz.  The latter was identified by eigenvector 

analysis as AMP-ATP, NAD-NADH co-metabolite oscillations.   The former involved four 

reactions to which pyruvate was essential.

As such oscillations are not observable in unforced chemostats, in order to test the 

hypothesis, the first author sought an approach for designing a bioreactor which would have 

an easily controllable and oscillating nutrient stream.  As liquid phase oscillation is difficult 

to achieve at low flowrates, the obvious stream to control would be pneumatic.  Thus the 

introduction a gas stream with a nutrient in the gaseous phase would be ideal.  The easiest 

nutrient to introduce for most biocultures is oxygen, so the target switched from yeast 

fermentation to processes controlled by aeration rate, an important example of which is 

wastewater treatment.

Purification, treatment, or removal of contaminants from water is often associated with their 

decomposition. An important method, the biological treatment of water, is essentially an 

intensification of the naturally occurring decomposition of contaminant by action of micro-

organisms, mainly bacteria. Though this method alone cannot remove all possible 

contaminants (and especially for treatment of various industrial wastewaters has to be often 

combined with other methods) it is effective and commonly applied method for breaking 

down the major pollutants: organic matter, nitrates and phosphates (Stevenson, 1997). The 

efficiency of the process – or, more specifically of the aerobic stage of the biological 

decomposition – is limited by availability of oxygen needed for growth and activity of 

aerobic micro-organisms.  

We proposed to combine a fluidic oscillator with a nozzle bank with the intention of 

producing an oscillatory stream of bubbles. Tesar et al. (2006) had previously developed a 

simple and inexpensive no-moving part fluidic device with adjustable frequency in the range 

of 1-100Hz, controllable by changing the length of the feedback loop, but for essentially high 

Reynolds number flows achievable even a low air flow rates.  This range of frequencies 

includes the target range of the natural biochemical pathways oscillations of glycolysis in 

yeast, so are likely to be excited by bacterial cultures which exhibit glycolytic cycles in 

aerobic metabolism.  However, it also occurred to us that there was the potential to generate 
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microbubbles by a novel mechanism using fluidic oscillation.  Typically, bubbles generated 

from a rigid aperture are approximately an order of magnitude larger than the aperture.  

Unfortunately, even using extremely small holes does not necessarily ensure generating small 

air bubbles. Bubbles grow during the process of their formation and when finally separated 

from the aperture exit, their diameter is often many times larger than the hole diameter. The 

separation is controlled by surface tension of the water; and an important negative factor is 

the fact that many contaminants – especially organic – present in wastewater are known to 

increase the surface tension.  The final bubble size is commonly determined by the 

overcoming of the wetting force of the pre-bubble on the solid walls by buoyant forces or by 

currents in the liquid.  The fluidic oscillation, if appropriately configured and tuned, could 

interfere with this balance of forces as the pre-bubble reaches sizes not much larger than the 

aperture diameter, since the acceleration force of the oscillation can be made arbitrarily large 

by using high frequencies and large amplitude oscillation from jet diversion.  Such a 

microbubble generator would have the benefit of very little additional energy (pumping head 

loss) to break off the bubble, so should be highly energy efficient in formation.

In this section, we discuss the potential design benefits of microbubbles so produced and the 

methodologies of their production that we have engineered, primarily with the target of 

increasing the mass transfer for aeration in bioreactors, but the principle applies to just about 

any nutrient introducible in the gaseous phase.  

§2.1 The benefits of microbubbles 

Why is that when blowing a continuous stream of air through a small opening that we do not 

typically get small bubbles?  For instance, when a bubble is formed from a single opening, 

the liquid attached to its perimeter provides an anchoring effect as the wetting force attaches 

the growing bubble to the solid surface.  Unless this anchoring force is disturbed, the bubble 

will grow until the buoyant force on the bubble  exceeds the anchoring restraint on the 

bubble, causing it to pinch off.  Typically,  the buoyant force does not exceed that of the 

wetting anchor until the bubble is about an order of magnitude larger than the diameter of the 

hole.  The process is sensitive to the wetting properties of the solid surface as well.  If the 

bubble contacts the surface over a larger region than the aperture perimeter, or if the solid 

surface is hydrophobic, the gas phase of the growing bubble will form a second anchor force 

with the solid surface over a wider area, increasing the buoyant force and thus bubble volume 

required to overcome it.  If the surface is hydrophilic, then this attractive force is absent. In 

the next subsection, the generation mechanism for microbubbles by fluidic oscillation is 

discussed.  In this section, the desirability of small bubbles is discussed.

The major advantage of small bubbles is the surface area to volume ratio.  Nearly all 

interfacial transport processes – heat, mass, momentum – are dependent on the surface area 

of the interface between the phases.  It is geometrically clear that the surface area to volume 

ratio of a spherical bubble increases inversely proportionate to its radius or diameter:
2
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is the surface area that the total phase exhibits.  For instance, if one litre of air is distributed 

in 100 micron size bubbles, there are 10m
2

of interfacial area, easily comparable or greater 

than a reasonable sized air-liquid interface of the continuous phases in a tank open to the 

atmosphere.   Furthermore, the bubbles are moving.  The mass transfer coefficient of a single 

bubble or droplet may be difficult to assess, as it depends on the hydrodynamics of bubble 

rise, its environment, and the constitutive properties of the medium and material transferred 

(see Deshpande and Zimmerman, 2005ab), but in most flows it is dominated by convection 

forces and can be globally fitted to a mass transfer coefficient phenomenological equation, 

where the overall flux is proportional to the interfacial area S of the dispersed phase.  Thus 

transfer dynamics, mass or, by analogy, heat flux, are rapidly enhanced by decreasing the 

bubble size.  The above argument for the benefit in transfer efficiency is typified by the 

common chemical engineering phenomenological description of interphase mass transfer 

flux J (moles per second):

! "l g lJ K S c c # (3)

where Kl is the mass transfer coefficient (units of velocity), S is the interfacial area, and cg

and cl are molar concentrations.  Mass flux J, all things being equal, increases proportionate 

to S, and therefore inversely proportionate to the diameter d of the microbubble.  Bredwell 

and Worden (1997) inferred Kl in an oxygen microbubble column from a plug flow 

concentration model for the dissolved oxygen.   A laser diffraction technique was used to 

compute the interfacial area  S.  Worden and Bredwell (1997) demonstrate that the very high 

mass transfer rates of microbubbles require modeling of an intrinsically transient nature.  

They found that the presence of non-transferred gas in the microbubble limited the mass 

transfer rates.

But one might argue that this flux enhancement effect is balanced by the cost of producing 

microbubbles.  As we pointed out in the beginning of this section, one would think that to 

produce smaller bubbles requires smaller holes or pores.  Therefore, with continuous flow 

through these smaller openings, the friction force would be expected to be proportionately 

larger.  As friction increases with surface area of pores or channels, one would expect the 

head loss on the pump due to hydraulic resistance to rise inversely proportionate to the 

opening diameter.  So the transfer performance increase is offset by the energetic decrease, 

and no expected overall efficiency is likely.  This argument, however, argues against seeking 

to produce smaller bubbles by miniaturizing the hole.  The “win” can only occur if the 

friction loss remains about the same, but the bubble size is reduced.  A different mechanism 

for bubble production is required.  The next section discusses the fluidic oscillator driven 

microbubble formation mechanism reported by Zimmerman et al. (2008), and the following 

section reports its surprising decrease in friction loss against the control of continuous flow 

through a pipework network and distributed diffuser aeration system in pilot trials.

As an aside, the argument given above for mass and heat transfer enhancement by smaller 

bubbles with equivalent volume of dispersed phase holds for momentum transport too, with 

some modification.    The classical Stokes law serves as a guide for the residence time of a 

microbubble in a viscous liquid:
22
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Due to the square, it is clear that the residence times of small bubbles is markedly longer for 

the same height of liquid than for larger bubbles.  Thus smaller bubbles have much longer to 

transfer their momentum from the bubble to the liquid dragged along with them, even though 

they have less momentum to transfer.  These two effects would balance, but for the surface 
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area to volume ratio – momentum is also transferred, by shear stress, across the surface area 

of the bubble.  Therefore the flux of momentum is markedly increased by the decrease in 

bubble size, by the same ratio of equation (2).   It follows that microbubbles have a higher 

“dragging ability” when rising or flotation capability with the same volume of fluid holdup.  

This effect is potentially very important for improved mixing in a riser region of an airlift 

loop bioreactor, provided the bubbles can be produced energetically efficiently, i.e. the cost 

of the microbubble production per unit volume does not rise due to rising friction factor.  For 

design purposes, if the goal is to achieve the same mixing level or riser performance with 

microbubbles, then potentially this can be achieved by a lower volumetric flow rate, since the 

longer residence time in the height of liquid permits higher holdup at lower volumetric flow 

rates.   

These benefits have been tested in laboratory and pilot scale experiments.  Shi (2006) 

demonstrated 8-fold smaller bubbles with oscillatory flow than with the same volumetric 

flow rate steady flow through the same nozzle bank, measuring an 8-fold increase in 

dissolved oxygen transfer efficiency according to the standard ASCE test.  In a recently 

completed pilot scale trial, Zimmerman and co-workers (internal report) have found 3-fold 

increase in aeration rates using the fastest frequency oscillation possible in their fluidic 

oscillator system over steady flow through the same flexible membrane diffuser array with 

the same volumetric flow rate (~2m
3
/hr per diffuser).  They also recorded a decrease in 

power draw on the blower to achieve this flow rate of 13%, which will be discussed in §2.3.

§2.2 Microbubble generation by fluidic oscillation

§2.2.1      Instability of parallel percolation 

        The desirable aerator would produce simultaneously a large number of very small air 

bubbles. This would result in a large total air/water interface area and therefore high rate of 

oxygen transport into water across this interface. In the various attempts at reaching this 

sought after situation, the aerators have been made with a large number of parallel tiny 

apertures exiting air into water. Unfortunately, the desirable bubble formation has never been 

obtained – because of the fundamental instability property of the bubble growth mechanism. 

At the beginning of the bubble formation, the distribution of air flow into the apertures is 

stable. This, however, ceases to be once one of the growing bubbles surpasses the 

hemispherical limit shape. Immediately, its further growth then becomes easier. The air 

entering into it meets a lower pressure difference $P to overcome than in the other apertures. 

As a result, this particular bubble starts growing faster at the expense of the other bubbles, 

which may even completely cease to grow.

        This is demonstrated in Figure 1, which shows photographs taken when watching a 

steady air flow into an aerator positioned at the bottom of a shallow water-filled tank. The 

aerator – actually the same as in the other experiments described here - has the air exit 

apertures in the form of a row of 0.6mm diameter parallel holes. Despite the air flow path 

being equally easy in all the holes, the bubbles are formed in only one of them. The 

exceptional case is chosen by mere chance – in the two photographs in Figure 2 under 

nominally identical conditions, different orifice are seen to be active. In this aperture, the 

bubbles grow to sizes substantially larger – by more than a decimal order of magnitude -  

than the hole diameter. All the other orifices are inactive, no bubbles are formed in them. 

        This failure to obtain the desirable parallel formation of tiny bubbles is very 

fundamental – it is the very basic Young-Laplace law of surface tension  %  that governs the 

bubble formation. According to it, the pressure difference $p across the air/water surface is 

inversely proportional to the curvature radius R of the surface:
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When a bubble is formed in a round orifice exit, its curvature radius is initially extremely 

large, but decreases fast. The pressure needed for the bubble growth increases. The critical 

situation is reached once the growing bubble attains the hemispherical shape. Thereafter, its 

radius R  increases with increasing volume and, consequently, the pressure difference $p

decreases. All the air then enters into the particular bubble that first forms a bubble where it 

meets less opposition to flow. This makes its further growth easier. This instability is 

essentially the same mechanism as Saffman-Taylor viscous fingering (Zimmerman, 1991).

   

Figure 1: Examples of large bubble generation by steady blowing of air through small submerged orifices. The 

aerator is provided with an array of 600& parallel holes having their axes oriented vertically. Instead of the 

expected stream of many parallel small bubbles, the parallel percolation instability leads to generation of large 

bubbles - of size more than 10-fold larger (most bubbles on the top left are ~10mm). The top right is an image 

from the same system but with the fluidic oscillator active.  The flow rates are comparable but not equal, 2.5:1 

in ratio.  The steady flow does not have steady bubble production at the lower flow rate of the right hand image.  

At the higher flow rate of the steady flow, the oscillator induced bubbles are too closely spaced and coalesce.  

Eight images taken from the oscillator driven experiment in a 8.5mm by 7.4mm window were used to collect 

237 bubble sizes (diameter of equivalent area circular section).  It should be noted that the nozzle block is 12cm 

long.  The mean bubble size of the distribution of frequency is 700 ± 25&.  

§2.2.2      Jet diversion fluidic oscillation

       The key idea of the microbubble generation method as described by Zimmerman et al.  

(2008), is to limit the bubble growth time by the duration of the period of an oscillator that 
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supplies air into the bubble-formation apertures – which may be nozzles, diffusers, porous 

baffles, perforated plates or microporous materials. The growth is terminated at the end of 

each oscillation half-period. The bubble is then removed from the aperture so that the growth 

of the next bubble has to start anew in the next period. No bubble can reach the large size 

typical for steady blowing.

        The essential part of the aeration system is therefore a fluidic oscillator – preferably, due 

to the advantages of reliability, robustness, and low price, an oscillator of the no-moving-part 

type - !"#$!%$&'#$()*+#&,$-#./*+0#-1$#2321$0,$4#.) $(2007). Shown in Figure 2 is an example of 

a particularly suitable fluidic flow-diverting oscillator design. Its main component is the

fluidic amplifier (originally designed for another application) shown in the left part of Figure 

2. Details of its geometry and properties are described by Tesa et al. (2005). Steady air flow 

is supplied into the terminal S and its flow into one the two output terminals Y1 and Y2 is 

controlled by the control action applied to the control terminals X1 and X2. The control action 

deflects the jet of the air issuing from the main nozzle, which is connected to S.  The device 

is described as an amplifier because the powerful output flow through the output terminals Y1

or Y2  is controlled by much weaker control flows input into the control terminals X1 and X2. 

This particular amplifier is bistable – it uses the Coanda effect to remain in one of its two 

stable states when the control action is absent.

         The oscillator is made from the amplifier by providing it with a feedback loop. There 

are several possible feedback alternatives even for this jet-diverter type of amplifiers (as 

-+./5..#-$ +"$4#.) 1$677892$4'#$ feedback loop shown at the right-hand part of Fig. 2 is the 

particularly simple one, consisting of nothing more than just a tube of suitable (or, in Fig. 2, 

adjustable) length, connecting the two control terminals X1 and X2. As shown in the right-

hand part of Fig. 2, the jet issuing from the main nozzle attaches to either one of the two 

attachment walls due to the Coanda effect of jet attachment to a nearby wall and is thereby 

led into one of the two output terminals. Because of the change of direction due to the 

deflection, air flow trajectories inside the jet in the vicinity of the control nozzles are curved. 

This curvature creates a radial pressure gradient across the jet. In the situation shown in Fig. 

2, this causes a decrease in pressure at the control port X1, which then draws air through the 

feedback loop from the opposite control terminal X2 where the pressure is higher. It takes 

some time for the flow in the feedback loop tube to gain momentum, but when this happens, 

the control flow in X1 suffices, because of the amplification effect, for switching the main jet 

from the terminal Y1 and diverting it into to the other terminal Y2.  As the device is 

symmetric, this jet switching is – after a delay needed for the feedback flow to gain 

momentum into the opposite direction - then reproduced in the opposite way, thus leading to 

a periodic switching process.  Tesar et al. (2005) demonstrate that the frequency of the 

oscillation is controlled primarily by the length of the feedback loop and the supply flow rate. 

The acoustic regime of frequencies between 1-100Hz could be readily achieved in a model 

consisting of the plate stacks shown in Fig. 2. 
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Figure 2.  Left: The model of the fluidic jet-deflection amplifier used in the tests. It is a stack of PMMA plates 

with laser-cut cavities -  containing no moving mechanical parts.   The screws are ¼ inch heads. Right: The 

fluidic oscillator is made from the amplifier by providing it with the feedback loop (shown here of adjustable 

length for tuning the oscillation frequency) connecting its two control terminals.  

Tesar (2007) reviews, apart from this jet deflection type, many other alternative types of 

fluidic oscillators that may be use to drive ALBs.  All of them when used in this application, 

are supplied with steady air flow and produce self-excited air-flow oscillation. Essentially, 

the oscillation due to an intrinsic hydrodynamic instability caused by the presence of the 

feedback action - the change in the large output flow due to the return flow of a small 

fraction of the fluid into a location where it can act against the cause which generated the 

output effect. The principles underlying the fluidic oscillators can be classified into  three  

groups:

1) Twin valve oscillators with mutual – phase shifted – blockage by fluidic  amplifiers 

capable of producing the flow turn down effect. This is a rather rarely used principle.

2) An external feedback loop added to a single amplifier valve (or several valves 

forming an amplifying cascade). This is the very obvious and also very common 

operating principle, mostly used to generate an oscillatory or pulsatile fluid flow in a 

connected load with the jet-deflection amplifiers. Because of the symmetry of the 

amplifier, the oscillators usually posses two feedback channels, one connecting Y1 with 

X1 and the other connecting Y2 with X2.  It is the principle used here, having the less 

obvious single loop layout.

3) Internal feedback oscillator, sometimes using a geometry reminiscent of a fluidic 

valve, sometimes with rather remote from it and perhaps retaining only topological 

similarity. Also used to generate an output fluid flow.
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Figure 3:  Schematic representation of the fluidic diverter oscillator driving the microbubble generation system 

with two nozzle banks fed by alternate oscillation “strokes”.

        

         

Figure 4:  Left: Configuration for the blow-off mechanism for bubble detachment.  While the same diverter 

oscillator as in Fig. 3 is used, only one of its outputs, A,  is used to deliver the air to the aeration apertures 

during the half-period. The other, B, delivers a water flow pulse into a system of adjacent water-flow nozzles. 

Centre: The bubble formation half of the period. Right: Water flow pulse removes the nascent bubbles from 

their apertures.

        Any of these principles can be used to design an oscillator for generation of the  

oscillatory air flow for ALB. The diverter configuration adopted here is particularly useful 

when employed for the flow diversion, as it can feed alternately one bank or the other of 

aerator nozzles, as these are shown in the schematic Figure 3. The switching provides short 

pulses of momentum in the nozzles, which arrive with regular frequency at the exit apertures. 
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      Applying the fluidic oscillator to the task of generation of the microbubbles rises is, 

however, not necessarily straightforward. The problem encountered is the removal of the 

nascent microbubble from its air inlet aperture while it is still smaller than the size of the 

critical, hemispherical cap.          

       Naturally grown bubbles separate from their apertures due to the hydrostatic lift force. 

This, however, reaches the necessary level only when the bubble is relatively very large. The 

small bubbles, not yet having reached the critical hemisphere shape, need not and often do 

not separate. When supplied with the oscillatory air flow, they may stay attached increasing 

and decreasing in size in the rhythm of the oscillation.  

       One possible solution is applying the oscillatory input air flow pulses with considerable 

momentum, sufficient to dislodge the nascent microbubbles. Adjusting the proper momentum 

is, however, rather difficult and experience shows it may need re-adjustments with changing 

operating conditions. 

        A rather less sensitive solution is the original concept of the authors to blow-off the 

nascent microbubbles by an adjacent water flow pulse in the other half of the oscillation 

period. In particular, this was demonstrated in a model presented in Figure 4. The water and 

air orifices are arranged in a grooved channel so that they form two rows, with their axes 

mutually at right angles. The bubbles that have grown during the first half of the oscillation 

period on the air side are blown off from their apertures in the second half of the period, 

during which the water flow pulse is admitted to the water side of the groove.   Figure 5

shows the success of this method, where the oscillatory flow generates microbubbles from 

the 600& holes of submillimetre size, whereas those generated by the steady flow are 

dominated by >6mm bubbles.  One observation from Figure 5 (see bubble size distribution in 

Figure 1) is that the small bubbles are approximately monodisperse and regularly spaced, and 

therefore do not suffer from coalescence.  Crabtree and Bridgwater (1969) provide a 

mechanistic argument for the non-coalescence of chains of bubbles being hydrodynamically 

stabilized as they rise.

        Additionally, another method of microbubble formation was demonstrated in a layout in 

which short small-diameter holes connect the exit orifice with a larger-diameter manifold. 

The aerator is supplied with the oscillatory flow delivered by the fluidic oscillator and 

operates in a periodic manner, during which alternating air and water columns move back 

and forth through the manifold. During the first half of the period, the small holes are filled 

with air from an air column moving  past them. In the following half-period, the liquid 

column comes and moves by. It enters the small holes and dislodges the air from them. This 

may seem to be a somewhat complex mechanism, but the formation of the alternating water 

and air columns in the manifold was observed to be automatic, new water columns forming 

and gradually progressing down the manifold as the air columns between them diminished, 

having lost their air by filling the small holes. An certain advantage of this method is the 

rather low required oscillation frequency, corresponding to the reciprocating motions of the 

liquid and air columns.

Although the “blow-off” configuration succeeds in creating small bubbles on the scale of the 

aperture, the price paid is that it uses half the momentum for air flow and bleeds off half the 

volumetric flowrate.  It is a reasonable question to ask as to whether this price is essential.  

So the test of the same configuration but without the water flow – air flow in both adjacent 

banks – was conducted, with the observation that small bubbles form from both banks of 

holes.  Therefore, the essential feature is the orientation effect – a horizontal component is 

necessary.   An artist’s conception of how horizontal orientation is necessary for only air 

flow is shown in Figure 6.
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Figure 5:  Tiny bubbles generated in an experiment with the aerator system model corresponding to Fig. 4. 

Actually, the same nozzle bank is used as the one generating the large bubbles with the steady (non-oscillated) 

air flow through the 0.6mm holes as shown in Fig. 1. 

Figure 6   An schematic of the microbubble generation from a horizontally oriented nozzle / gas flow path.  

There are four distinct phases: (1) pushing out of a hemispherical cap at the beginning of the upstroke of the 

fluidic oscillator; (2) buoyant rise of the growing bubble during the remainder of the upstroke; (3) suction of the 

bubble to collide against the solid surface; (4) recoil of the bubble from the solid surface and breakoff of the 

bubble.

The key element in this mechanism is the recoil of the nascent microbubble against the solid 

wall, and particularly the wetting properties of the microbubble.  For instance, we fabricated 

nozzlebanks from microchannels wet etched in both glass and PDMS microchips.  The glass 

microchips formed small bubbles of the size of the aperture with the microchannel apertures 

(60& characteristic size) oriented horizontally, but ~500& bubbles when oriented vertically 

(Varma, 2007).   The PDMS analogues only formed large bubbles.  The bubble attaches to 

the PDMS surface and grows along the microchip exterior surface.  As bubbles wet the 

PDMS surface but not the glass surface, it is clear that wetting properties of the orifice and 
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adjacent solid wall are extremely important for the formation of microbubbles by the fluidic 

oscillation mechanism.

§2.3 Energy efficiency

One of the unexpected outcomes of an ongoing set of pilot scale trials in wastewater 

treatment with a pneumatic distributor system for two banks of conventional aerators, called 

membrane diffusers, was the decrease in power consumption by the fluidic oscillator inserted 

as the splitter between the two banks (see Figure 3).  Typically, one expects that the insertion 

of a fitting into a flow distribution system, such as a bend, valve, or splitter will add an 

additional hydraulic resistance to the system.  So the design trade-off for microbubble 

generation driven by a fluidic oscillator would be expected to be increased mass transfer 

performance scaling with the ratio of the diameter typical bubble generated by free stream 

steady flow and the microbubble diameter generated by fluidic oscillation, and the expected 

additional head loss at a constant volumetric flow rate.  Clearly, the unexpected hydraulic 

resistance decrease of oscillatory flow requires an explanation.  We believe there are two 

components to the decrease.

Coanda effect friction reduction

The fluidic oscillator in Figure 3, on time average, serves as a splitter.  The aggregate flow 

rate through each exit channel is equal, yet the flow never flows down both channels 

simultaneously.  If the feedback loop were omitted, i.e. the control ports closed off (Figure 

2), then it would be expected that the fluid would fill the ducts on both sides due to the 

splitter action.  This is exactly what happens in our control experiment, where the fluidic 

oscillator is replaced by tee-splitter.  The tee-splitter and the closed-off control ports on the 

oscillator achieved almost exactly the same energy consumption at constant volumetric flow 

rate.  In both cases, the splitter action results in the mean flow having a stagnation point at 

the geometric point of the split, regardless of the design of the splitter.  Conversely, when the 

jet flows through either channel in the fluidic oscillator driven flow, the jet attaches to the 

curved sidewall in Figure 1 according to the Coanda effect.  Although this flow smoothly 

curves toward the outlet port, the diverted jet has no stagnation point.  The friction loss along 

the wall at and near a stagnation point is appreciable, and is completely avoided by either 

diverted jet in a fluidic oscillator.  

Boundary layer effects

Turbulent flow in ducts experiences a viscous sublayer near the wall in which dissipation is 

largest, exceeding the interior dissipation from eddy motions in the bulk.  It is well known 

that solid bounding surfaces induce most of the dissipation loss in statistically stationary 

turbulent flows.  But what about oscillatory flows with the same average volumetric flow 

rate?  Since our oscillation is a “positive displacement” synthetic jet, it is conceptually useful 

to view it as a series of momentum pulses separated by momentum “gaps”.  The fluid is 

suddenly accelerated by the momentum pulse, and then its inertia trails off until the next 

momentum pulse is excited.  A conceptual model for this is the classical boundary layer 

problem of the suddenly accelerated plate, for which the frame of reference is changed to the 

stationary plate with the fluid suddenly accelerated.  The laminar result is presented in the 

classical work by Rosenhead (1963).  The thickness of the laminar boundary layer ' and the 

skin friction coefficient fC are given, in dimensionless form, by

5 0.664

Re Re
f

x x

C
x

$
  (5)



13

where x is the downstream coordinate from the start of the pulse.  With a laminar boundary 

layer at high Reynolds number, one could argue that the time to set up the boundary layer 

should be inversely related to the dimensionless boundary layer thickness, and thus scaling 

with the square-root of the Reynolds number.  So the time to set up a boundary layer is large.  

What if the period of the fluidic oscillator switches before the boundary layer is set up?  That 

problem for dual laminar impingent jets has been studied by Hewakandamby (2008).  The 

heat transfer coefficient for the oscillating impingent jet was found to be much higher than 

under steady dual impingent jets, as the oscillation disrupts the formation of the boundary 

layer that limits the transfer to the surface to conduction through the boundary layer.  This 

principle works as well for mass and momentum transfer.  The transfer rate to the impingent 

surface is much higher due to the disruption in setting up the boundary layer in the direction 

opposite of the impingent jets.  Clearly, the argument works as well for a single impingent 

jet.  Tesar et al. (2007) show a similar conclusion experimentally for turbulent heat transfer.

The speculation here is that oscillatory flow reduces skin friction since the viscous boundary 

layer is disrupted in forming in the direction perpendicular to the flow.  The momentum 

pulses find much less resistance in pushing down the center of the channel than from the 

slower moving fluid near the wall, as the viscous friction has not had time to “diffuse” 

outward from the sink of momentum at the wall.

This argument for skin friction reduction works as well for turbulent flow, but the time scales 

for turbulent wall boundary layer establishment are shorter in scaling factor, but given the 

much higher Reynolds number achievable in turbulent flow, this feature can be overcome 

with higher flowrates (or faster oscillation).  The classical estimates for turbulent boundary 

thickness and skin friction are:

1/ 2 1/ 2

0.385 0.0594

Re Re
f

x x

C
x

$
  (6)

Without any detailed experimental study, the results from our pilot trials suggest that these 

two resistance reduction effects – Coanda effect removing the stagnation point of the splitter 

and skin friction reduction by slow boundary layer formation – are estimated to be about 

equal in importance, about 6-7% reduction each with one volumetric flow rate, with the 

inference based on a roughly linear decrease in energy consumption with increasing 

oscillation frequency at high frequencies, but a plateau in reduction at low frequencies, but 

too little data for a more accurate assessment.  Higher flow rates led to greater energy 

consumption savings, consistent with the implication of equation (2) and our assumption 

about the scaling of the time to set up a turbulent boundary layer.

§3 Design aspects of an airlift loop bioreactor

In the previous section, the design aspects of a microbubble generator component of an airlift 

loop bioreactor were discussed, demonstrating that the usual design trade-off between 

friction losses with small apertures and distributor channels and performance gains in transfer 

efficiency with small bubbles can be “triangulated” with the fluidic oscillator principle, with 

the oscillatory flow resulting in less friction loss while still generating small bubbles.  This 

argument poses the advantage of using such a fluidic oscillator driven microbubble generator 

in many chemical engineering processes, but still leaves many design questions.  Before a 

design can be confidently implemented, information must be collected on performance 

aspects that are affected by inclusion of the novel element in the design.  In this section, we 

will address the likely influence of the microbubble generator on the typical performance of 

an ALB.   However, this is recognized as no substitute for actual performance observation 

and results of operational studies.  There is a “chicken-and-the-egg” problem here that in 
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order to design an ALB properly with this novel component, it is necessary to construct, 

commission and operate a prototype.  But the prototype must be designed.  The scope of this 

article is the design of the prototype, whose operational performance variation can then be 

reported on in due course.

§3.1 Key design features of an ALB

In this subsection, we will review key design features of the ALB with a view to the 

influence of the microbubble generation mechanism.  A fuller review is given by Jones 

(2006).

Figure 7  Schematic diagram of an internal ALB with draught tube configured with a tailor made grooved 

nozzle bank fed from the two outlets of the fluidic oscillator.  The microbubble generator is expected to achieve 

nearly monodisperse, uniformly spaced, non-coalescent small bubbles of the scale of the drilled apertures.

Figure 7 shows the schematic diagram of the internal draught tube ALB configured with a 

tailor-made grooved nozzle bank such as demonstrated in Figure 4.  This is expected to to 

achieve nearly monodisperse, uniformly spaced, non-coalescent small bubbles of the scale of 

the drilled apertures.  The cloud of dispersed microbubbles should resemble Figure 5.  This is 

the major modification of the ALB proposed here.  The remaining features of the internal 

draught tube, riser, and downcomer regions are conceptually the same as the standard design, 

which drives the recirculating flow from buoyant effects – a combined forced and free 

convection flow, as there is an injection of momentum, but also of density difference.  The 

bubbly flow region has lower density, and rises due to a combination of buoyant and 

hydrodynamic forces (Grammatika and Zimmerman; 1999, 2001).  The downcomer flow is 

assured by the kinematics – if fluid rises in the riser, then the bottom of the riser is a mass 

sink and the top is a mass source due to continuity.   Consequently, this drives a flow from 

the top of the riser to the bottom, shown by the arrows in Figure 7.

ALB Base

Merchuk and Gluz (1999) have the most promising work on the ALB base area, but until 

their contribution, it would be fair to state that most researchers have viewed the base as of 
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little consequence to ALB performance.  As the gas sparger and the bubble distribution are 

located in the base, this is the major focus of our design, as can be seen in Figure 7, where 

our fluidic oscillator and tailored grooved nozzle bank distribution system has been 

substituted for the traditional base.  The only hydrodynamic issue otherwise about the base 

how the liquid from the downcomer region is drawn in through the base to the riser region.  

Sufficient clear space for this drawing in should be available so that friction losses are not 

appreciable.  As the free and forced convection flow in Figure 7 has only a finite amount of 

kinetic energy available, as supplied by the injection flow and contributed by the dragging of 

the liquid by the rising bubbles, friction losses should be minimized everywhere, as the flow 

is holistic throughout the ALB – changes in one section are propagated throughout.  In this 

respect, the oscillatory flow which was responsible for lower friction in the pipework of the 

wastewater treatment experiment mentioned in §2.3 may contribute within the ALB as well

to lower friction losses.  In the underwater visualizations of microbubble cloud formation, a 

concerted, periodic motion of toroidal shaped clouds of bubbles were observed, indicating 

that the oscillatory effect can extend beyond the microbubble generation in the base.  These 

toroidal clouds were observed at relatively low frequencies, 1-5Hz, i.e. long feedback loops 

~25m.  

ALB Riser

The riser is the phase transfer work-horse of the ALB.  The gas-liquid mass transfer and 

liquid-bioculture mass transfer are the dominant features of this region.  The gas sparger is 

usually at the bottom of the riser, and the bubbly flow is responsible for the lowest density in 

the fluid mixture, and for the co-current flotation effect in the ALB.  This section is the major 

target for performance enhancement for the introduction of microbubbles.  If nutrients are 

introduced in the gas phase, such as oxygen for aerobic metabolism, the higher mass transfer 

flux should lead to greater bioculture activity, or conversely, low gas flow rates could be 

introduced to save energy consumption while achieving the same oxygen transfer rate, due to 

the higher oxygen transfer efficiency as discussed in §2.1.  According to the hydrodynamic 

bubble chain stabilization hypothesis by Crabtree and Bridgwater (1969), we expect, as in 

Figure 5 and illustrated in Figure 7, that the microbubbles generate will be nearly 

monodisperse and uniformly spaced as they rise.  This should significantly change the 

multiphase flow dynamics with more uniform profiles and predictable mass transfer 

coefficients.  It is the deformability and polydispersity of bubble clouds that makes mass 

transfer and momentum transfer effects from gas to liquid phase reliant on empirical 

correlations.  With uniformly spaced, monodisperse bubbles, the mass transfer coefficient 

can be predicted from level set method modelling such as those of Deshpande and 

Zimmerman (2005a,b), and the hydrodynamic effects by the concerted multibody 

microhydrodynamics analysis of Grammatika and Zimmerman (2001).  The generalized 

flotation analysis of this paper is particularly important as the introduction of smaller bubbles 

in the riser region can lead to a much greater flotation effect from the collection, by 

microbes, of sufficient microbubbles on their surfaces to have an appreciably larger flotation 

efficiency, such as the major feature of dissolved air flotation separations.   The tailoring of 

the microbubble scale to achieve the desired level of fluidization of the bioculture without 

collecting the whole of the phase at the gas-liquid interface at the head space is a major 

design problem for this novel ALB.  Performance data at the moment is required, as previous 

studies on the effect of changing the geometric parameters of the perforated plate distributor 

system have largely been about the uncovered area of the plate, not the size distribution of 

the bubble clouds generated.
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Typically gas-liquid multiphase flow may have a wide range of regimes, but dispersed or 

bubbly flow is common in all applications.  These possible flow regimes are dependent on 

the geometrical configuration and the gas and liquid superficial volumetric flow rates.  The 

influence on flow regime of the microbubble generation system is not known a priori.  

Nevertheless, it would seem highly likely that it will have a strong influence, for instance, the 

toroidal mode of bubble cloud formation observed in air diffuser trials discussed before have 

no analogue in the standard pipeline flow regimes as the bubbles are practically 

monodisperse and non-coalescent, yet otherwise expected to be in the heterogeneous flow 

regime.  Clearly, the observed flow regimes will depend on the liquid viscosity for low 

loading of microbes, and on the effective rheology of the suspension when there is a large

volume fraction of microbes.  The robustness of the flow diagram in Figure 7 must be tested 

experimentally, particularly with regard to entrainment in the downcomer region and 

channelling in the riser.

The performance of an ALB is likely to be affected by the modification of the flow regimes, 

as the biological growth has been shown to be sensitive to flow regime (Vial et al. 2000).  

Our own biological growth studies focussed on the yield of yeast biomass from microbubble 

generation with fluidic oscillation, which was shown to be 15% higher than growth under 

steady flow (Zhang, 2007).  However, we limited our growth study to the bubbly 

homogeneous flow under low flow rate conditions, where the higher growth rate could be 

attributed to higher dissolved oxygen levels from higher mass transfer coefficients, not the 

flow regime itself.

ALB Downcomer

This is probably the least dynamically important region of the ALB, as the downcomer flow 

is determined by kinematic considerations, and its composition and bioculture occupation are 

dependent on the particulars of the riser design.  This region has the highest multiphase 

density, largely occupied with liquid, perhaps with high dissolved oxygen (gas) 

concentration, but the gas phase hold up is expected to be large only if microbubbles are 

small enough to be entrained in the liquid flow as passive scalars.  Such entrainment is 

unlikely, for instance, with purely free convection driven flow, as none of the bubbles should 

be sufficiently large to disrupt the orderly flow as depicted in Figure 7.  However, if there is a 

strong forced convection component, it is possible that the bubble rise will sufficiently 

transfer momentum to the liquid that the liquid phase flow will be strong enough to entrain 

some of the microbubbles in the downcomer.  Clearly, this aspect of the novel ALB design 

posed here is much different than in conventional ALBs.
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Figure 8. Process flow diagram of the air-lift bioreactor

Gas separator

The region at the top of the riser to the top of the downcomer is termed the gas separator.  It 

is not our intention to change anything in the design of this sensitive area, but it is commonly 

accepted that this is the most sensitive part of the ALB design.  Residence time of fluid in the 

gas separator depends globally on the design and on the conditions, particular gas holdup, in 

the riser and downcomer.    Merchuk and Siegel (1988) discusses many of the key aspects of 

gas separator design. 

§3.2 Flow circuit design and instrumentation 

In the equipment design, the process flow into the bioreactor has been considered carefully 

for tight control of the temperature and air flow. This is deemed necessary for the comparison 

of the performance with and without oscillations. The temperature control is to be achieved 

through a cooling fluid, preferably water, and utilization of a copper coil. The coil is placed 

inside the bioreactor to support the internal baffle that acts as the flow guide. The 

temperature and the pressure/flow rate of the coolant are to be monitored continuously to 

control the flow. A thermocouple is placed inside the bioreactor as the control probe that 

regulates the coolant control valve using an external controller (LabView PCI control card). 

The flow in the temperature regulation circuit is designed to switch between hot and cold 

coolant streams, adding the flexibility to use the same circuit to heat the system if necessary.    

The compressed air stream comes from a constant head compressor is connected to the 

diffuser through a fluidic oscillator that can be tuned to adjust the oscillation frequency in the 

range of 1-100Hz. The novelty in the process is the inclusion of the oscillator to generate 

smaller bubbles. As a comparison of aeration levels between oscillated and the steady air 

flow has to be made, the control and the measurements of the air flow circuit is crucial to the 

experiments. Both the pressure and the temperature are to be measured upstream and 

downstream from the fluidic oscillator. The oscillator has the nozzle effect that expands the 

flow and the temperature change and the pressure loss across it has to be considered carefully 

in the comparison.  This means that a slightly higher pressure has to be employed when the 

oscillator is in place as the time averaged pressure head to the diffuser should be same for 

both cases. To this end, a pressure regulator is used between the mains and the oscillator.  

Temperature of the compressed air, which is difficult to control, is to be measured prior to 
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the diffuser and the surface tension and the volume expansion/contraction are to be 

compensated in the calculation.

Figure 9. The design of the bioreactor (dimensions are centimeters).

The bioreactor discharges its load to a holdup tank at the base level for further processing. A 

centrifugal or a positive displacement pump is to be used to pump the slurry to the tank 

depending on the thickness. For thin slurry, the gravity flow would be sufficient. 

§3.3 Bioreactor design

The capacity of the tank is 250 liters and an excess of 10% is provided as a safety measure to 

prevent spills. It consists of a conical bottom with an angle of 75( a cylindrical section and a 

bolted end plate with a vent. If the anaerobic conditions are to be maintained the flow 

through the vent could be regulated using a valve.  2mm stainless steel (SS 405 general 

purpose) is used to fabricate the vessel. Two optical ports are provided for imaging and 

observation with fitted borosilicate glass.

The baffles are fitted into the bioreactor with a nut and bolt mechanism with support guides. 

These can be dismantled for cleaning purposes. The baffle attachments also support the 

diffuser plate. The rationale is to allow complete dismantling of the parts to clean between 

different batches where the microorganisms in action are of different types. The temperature 

is controlled by pumping a coolant through a copper coil that encompasses a circular area of 

diameter of 0.55m. Copper tubing with 1cm OD is used to fabricate the coil. The pitch of the 

coil is 1.8cm. The coil is self supported and fixed to the top endplate. A cylindrical baffle 

made of Perspex (to enable optical access) goes around the coil. This baffle is fitted to the top 

endplate. A rubber gasket between the vessel flange and the endplate provide an airtight seal. 

Figure 9 shows the assembled bioreactor.
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Figure 10. Flow field within the distributor when a pressure gradient of 10 Pa 

applied across it. A negative pressure develops near the inlet.

§3.4 Diffuser flow distribution

The design of the channel arrangement follows the rationale given in §2.2.2. The design 

requires placing an optimum number of nozzles in one manifold without hindering the 

formation of monodispersed bubble arrays. The minimum distance between two nozzles 

should be greater than one bubble diameter in order to prevent coalescence of bubbles to 

form bigger bubbles. Larger distances minimise the lift leading to poor internal circulation. 

To design a bubble swarm, that does not affect the transportation of relevant gasses, 

providing maximum lift is an experimental process that will be undertaken as the part of the 

proposed experiments. However, as a starting point, the nozzles are placed two nozzle 

diameters apart along the manifold axis. 

Figure 11. Pressure distribution in the nozzle manifolds. Nozzle count is from left 

to right (of the arrangement shown in Figure 10). The negative pressure is due to 

the nozzle effect at the inlet area.
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Each manifold is connected to a common distributor. The distributer is connected to the 

compressed air main supply (with or without the oscillator depending on the configuration). 

The position of the inlet port and the distributor geometry affects the flow distribution to the 

nozzle manifolds. The distribution patterns are examined before the design stage using CFD. 

The 2D study using simple k-) turbulent flow model with varying inlet position is carried 

out. The size of the diffuser plate and the possible channel/chamber geometries are limited by 

the tank dimensions as well as fabrication techniques available to us at the moment. With 

these restrictions the best possible distribution is to be achieved using CFD as a design tool. 

Figure 10 shows the maldistribution of air to the manifolds when the inlet port is placed on 

the side of the distributor. Figure 11 shows the average pressure within the nozzle manifolds 

for two pressure drops; 1 Pa and 10 Pa across the diffuser. Pressure within the channels 

closer to the inlet become increasingly negative as the pressure drop increases.  This has an 

adverse effect as the flow in the nozzle manifolds inverts. This indicates the possibility of 

flooding of the distributor leading to operational problems. Modifications to the distributor 

geometry have minimised the maldistribution. Figure 12 shows a different geometry and the 

flow induced by applying 10 Pa pressure drop across the diffuser. Figure 13 shows the 

pressure distribution in the nozzle manifolds. This geometry guarantees a positive pressure 

head in all channels eliminating the possibility of flooding of the diffuser.

Figure 12. Flow field within the distributor when the inlet is place at the centre 

parallel to the nozzle manifolds. Pressure gradient across the distributor is 10 Pa. 
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Figure 13. Pressure distribution in the nozzle manifolds for the geometry shown in 

Figure 12. Nozzle count is from left to right.

§4 Discussion and Conclusions

This paper presents the many advantages of a microbubble generation mechanism actuated 

by fluidic oscillation – potential low energy consumption, high heat, mass, and momentum 

transfer rates, flotation and flocculation potential – and argued for its inclusion in a standard 

design of a draught tube internal loop airlift bioreactor.  The expected impact on the 

canonical design for such an ALB is discussed, particularly with regard to the expected 

nearly monodisperse, non-coalescent bubbly flow regime that should be maintained to high 

gas flow rates.  These qualitative features are combined into the altered ALB design 

presented in §3, for which the dynamics are simulated and the design is collated. The design 

of the nozzle bank of the distributor was optimized using CFD to achieve best uniformity of 

flow.  Future works will assess the operational performance of this design, particularly with 

a view towards operating guidelines and design knowledge.
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