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Abstract: Experimental data revealed that drivers performing a visual secondary task exhibited 

deteriorated lane keeping performance, but that the same drivers performing a cognitive secondary 

exhibited an improvement in lane keeping compared to baseline driving. In this paper we present a 

computational cybernetic driver model that characterizes the effect of difference in eye fixation durations 

between on and off road glances across the three task conditions on straight lane keeping performance. 

The model uses perceptual cues as control input, maintains internal representations of these cues across 

fixations through Bayesian updating, and each time a change in cue magnitude is perceived based on 

mechanisms akin to signal detection theory a change in control is applied. The model is shown to be able 

to capture the experimental results encouragingly well. The model also sheds light on the relative 

magnitude of lane keeping performance degradation caused by glancing away from the road and the fact 

that internal representations are degraded each time a saccade takes place. The adopted approach to 

modeling driver perception during and across fixations is expected to lead to new insights into the effects 

that various in-vehicle activities have on driving performance and risk.  

Keywords: Driver Distraction, Driver Model, Cybernetics, Perceptual Motor Control, Driver Assessment. 

 

1. INTRODUCTION 

Driver multitasking has been shown to not always result in 

degraded performance on some performance metrics. For 

example, when drivers drive on a relatively low demand road, 

their standard deviation of lateral position (SDLP) has been 

shown to decrease when they engage in a low demand 

cognitive secondary task (Kountouriotis and Merat, 2015; He, 

McCarley and Kramer, 2015). A purely cognitive distraction 

is defined as a secondary task that does not require any eye or 

hand movements to obtain/manipulate task information; the 

secondary task only requires cognitive resources (memory 

and attention). On the other hand, when drivers engage in a 

low demand visual distraction secondary tasks, their SDLP 

increases (Ibid.). While this phenomenon has long been 

known, the mechanism underlying this opposite performance 

effect of cognitive and visual distraction remains debated. 

Here we propose a simple visual motor control theory that 

may help shed additional light on this phenomenon.  

A visual secondary task by definition requires eye 

movements away from the driving task. During normal or 

baseline driving without performing any secondary tasks 

drivers naturally move their eyes around the scene as well as 

to the side and rear view mirrors. During a cognitive 

secondary task, it is well known that drivers� eye gaze 

distribution narrows to primarily forward and is often 

referred to as tunnel vision ((Kountouriotis and Merat, 2015).  

Here we entertain the hypothesis that this tunnel vision is one 

source of the improved lateral driving performance. The 

underlying mechanism is that eye fixations on stable 

elements in the environment improve sensitivity with which 

changes in vehicle state can be perceived and therefore 

improve the ability to control the vehicle more accurately. To 

the best of our knowledge a computational model that links 

gaze stability to control stability has not been previously 

established except in postural control (Morimoto et al., 2011).  

Cognitive architecture and queuing network based driver 

models have been developed and shown degraded lateral 

control while engaged in secondary tasks (Bi et al. 2012); 

they have not shown an improvement in lateral position when 

engaged in a purely cognitive task.  

Before presenting details of the eye fixation mediated control 

improvement it is important to note that while low-level 

vehicle control improves this does not mean that situation 

awareness improves and that drivers are also more responsive 

to unexpected events � to the contrary, cognitive distraction 

increases risk to unexpected events (Strayer et al., 2006).  

2. CYBERNETIC HYPOTHESIS 

Straight lane keeping is a control task to keep the state of the 

vehicle between constraining lane boundaries. The relevant 

vehicle states are lateral position and heading. The relevant 

constraints are spatial and temporal proximity to the lane 

boundaries. Many different control algorithms ranging from 

classical to optimal control and satisficing control have been 

proposed and many more can be devised. The goal here is not 

to discuss or develop a driver control model but to show how 

an increase in forward eye fixations can improve control.  



 

 

   

 

The straight lane keeping control driver model is defined as a 

simple PD control of lateral position and heading. Drivers 

can not perceive lateral position and heading directly but 

indirectly perceive them through different perceptual cues. In 

straight lane keeping these cues are splay angle and splay rate 

as well as focus of expansion relative to the road�s vanishing 

point. The assumption is that lateral position and heading are 

perceived separately and independently to simplify the 

explanatory value of the model and simulation results.  

Human perception is not one hundred percent accurate nor 

instantaneous. When the driver perceives changes in lateral 

position and heading she generates a control action that is 

represented as a new target steering angle that is reached 

much like a new hand position is reached in a reaching task 

(ref). This means that the targeted steering angle change is 

constrained by neuromuscular dynamics that cause the 

change in steering wheel position to essentially follow a 

velocity profile that resembles a raised cosine (smooth 

increase in steering wheel velocity followed by a smooth 

decrease as the target angle is reached).  

3. COMPARATIVE DATA 

The computational simulations presented herein are grounded 

in and compared against data collected in the University of 

Leeds Driving Simulator (UoLDS) in the European 

FORWARN (Kountouriotis and Merat, 2015). The UoLDS is 

a full Jaguar S-Type cabin inside a dome with surround 

visuals on top of a hexapod/xy-table motion base.  

15 participants each drove a two lane, rural road consisting of 

both straight and curved road segments. Each segment was 

approximately 7.5 Km long. For this paper only straight road 

segments were taken into consideration; each segment was 

30s long. Participants drove on average 27mps and their 

lateral position and eye gaze direction was recorded (v4.5 

Seeing Machines faceLAB at 60Hz). The standard deviation 

of lateral position (SDLP) was computed as well as the 

duration of glances at the road and the duration of glances at 

the dashboard or secondary task display. These eye 

movement data are used to parameterize the model and the 

SDLP data is used to assess whether the model is capable of 

replicating the experimental data.  

FORWARN studied the effect of two distraction tasks; a 

visual search task and a counting backwards task. The former 

�Arrows task� originally developed for the HASTE project 

(Jamson and Merat, 2005) presents participants a 4x4 grid of 

left and right orientation arrows on a touch screen high in the 

central console. Participants needed to press a YES or NO 

button on the touchscreen to indicate the existence of an 

upwards pointing arrow in the grid. The experiment was 

designed so that half of the grids would contain the target 

arrow. An auditory notification was given when the trial 

started and when it ended 30 seconds later.  

The counting backwards task is a non-visual/cognitively 

demanding task (�Count Back�) where each participant heard 

a 3-digit numbers through the speakers of the vehicle and had 

to count backwards in increments of seven starting from that 

3-digit number. The task was terminated when a �beep� sound 

was heard. The duration of the task, i.e. time from the 

presentation of a random 3-digit number until the �beep� was 

also 30 seconds. Apart from these two distraction tasks, 30s 

segments of baseline data were also collected (�Baseline), 

where the driver would simply drive.  

For each straight road drive, participants performed the two 

secondary task conditions for two 30s periods and baseline 

driving for four 30s periods all interleaved.  

The experimental data showed that the �Arrows Task� 

produced an increase in SDLP but that the �Count Back� task 

produced a decrease in SDLP (coloured disks in Fig. 8) for 

the average glance behaviour in Table 1. In this paper we 

explore in simulation whether a simple driver model can 

explain the differences in SDLP given the different glance 

behaviours observed in each task; we do not model the glance 

behaviour itself only its effect on perception of relevant cues.  

4. MODEL 

The driver model is divided into a perceptual and a control 

component. The model is made as simple as possible to 

highlight the benefits of prolonged eye fixations at perceptual 

cues that inform about vehicle states as well as to 

demonstrate the effect of different eye glance patterns on lane 

keeping performance.  

4.1 Perceptual Model 

A change in cue magnitude is easier to detect during 

continued fixation at the cue than across saccades away from 

the cue (Sec. 2). Here we describe how we modelled this 

effect using Bayesian combining and signal detection theory.  

Perception Dynamics 

To keep the model relatively simple at this stage we ignored 

the neural dynamics of differencing new sensory input 

against an array of delayed past sensory inputs. Instead we 

assumed that only a single internal representation is 

maintained that is a Bayesian combination of past 

perceptions. Furthermore, we assumed that a new perception 

is made every 50ms (Salvucci, Boer and Liu 2001; Salvucci 

and Taatgen, 2010). This new cue perception (represented by 

a Gaussian distribution) is compared against the internal 

representation (Gaussian distribution) and depending on 

whether a change is detected a different event occurs. If a 

change is not detected, then the cue perception is combined 

with the internal representation of the cue magnitude in a 

Bayesian fashion. This yields a narrower internal 

representation distribution that makes detection of change 

more accurate and is the mechanism underlying the improved 

detection of change sensitivity due to prolonged fixation on a 

cue. If, on the other hand, a change is detected, then the 

internal representation is replaced by the new percept. This 

means in general that the standard deviation of the internal 

representation temporarily increases.  

As soon as a saccade is made to a different fixation point, the 

internal representation is erased and only a rough internal 

representation remains of the cue magnitude (assumed at 10 

times the standard deviation of the distribution associated 

with a single perception). This assumption is based on the 

fact that humans are blind during a saccade (Burr, Morrone & 



 

 

   

 

Ross 1994). When the fixation returns to the original spot, a 

comparison is made against this rough internal representation 

and the process of Bayesian combination and signal detection 

mediated comparing repeats.  

The question is what type of uncertainty or standard deviation 

should be assumed for a cue perception. Here we refer to the 

well-known concept of Just Noticeable Difference (JND).  

JND Based Distribution of a Cue Perception 

JND in human perception is related to the fact that a physical 

signal needs to change by about 10% (some more, some less) 

in order for the human to perceive that a change has occurred 

in a pairwise comparison. The assumption is that the 10% is 

the difference between the larger and the smaller magnitude 

divided by the larger magnitude to avoid singularity when 

comparing against zero. As in all signal detection tasks, the 

accuracy depends on the confidence required to make the 

judgment that a change took place (ref SDT). We assume 

here that the simulated human driver adopts a 95% 

confidence or hit rate in judging whether a change in cue-

magnitude took place or not. To yield a 95% hit rate (5% 

false alarm rate) for a 10% change in cue magnitude, the 

standard deviation around a nominal cue magnitude can 

easily be computed; see below for computation of the 

nominal cue magnitude for lateral position (-1.3333) and 

heading (-2.1333). The associated standard deviation for 

lateral position is 0.0023 and for heading is 0.0032.  

Vehicle State Change Perception 

A change in vehicle state is detected when the driver is 95% 

confident that the current cue percept differs from the current 

internal representation of that cue (Fig 1).  

Perceptual Vehicle State Cues 

Drivers do not perceive lateral position and heading directly. 

They perceive many cues that are mathematically related to 

these relevant vehicle states. Here we assume that lateral 

position is defined as the angle of the lane marking (assume, 

without loss of argument, the right side) relative to a vertical 

lane marking which is perceived when the eye point is above 

the lane marking. Adopting a simple camera model of the 

human eye defined by a focal length f and camera height h, 

the angle of the right lane making in camera coordinates is  

 c
h

δ
δ

= −  

where 1.5h m= and δ  is the distance from the eye point to 

the right lane boundary. Using the same camera model and 

the assumption that the road is viewed through a vertical 

rectangular 1.6w m=
 

meter wide windscreen placed 

symmetrically around the eye point at a distance 0.75d m= , 

the heading is perceived as the difference between where the 

right lane marking cuts through the horizon and where the 

right pillar or the windscreen cuts through the horizon 

 
w

c f
d

φ φ =− − 
 

 

With the assumption that the lane width is 4m, the nominal 

values of these cues at the target lateral position 2m to the left 

of the right lane boundary at a zero heading are respectively 
0 1.3333cδ = −  and 0 2.1333cφ = − .  

 

Fig. 1. Depiction of how signal detection theory is used to 

model when a current perception of a cue leads to the 

realization that a change in cue magnitude has occurred 

relative to the continually updated internal representation. 

Top panel shows that the two distributions (perception and 

internal representation) are not sufficiently different yet to 

yield a 5% false alarm rate for detection. Bottom panel shows 

when the distributions do differ sufficiently to register a 

change-detection with a 5% confidence or better.  

4.2 Control Model 

The vehicle speed v  is assumed constant at the average 

speed of the drivers in FORWARN, namely 27mps.  

Vehicle Model 

The vehicle is represented as a point mass with simple 3
rd

 

order dynamics (Fig. 2). The vehicle yaw rate γ  is assumed 

to be the output of this 3
rd

 order vehicle dynamics filter with 

as input the control command (target yaw rate) based on 

perceived lateral position and heading cues (see below).  

 

Fig. 2. Dynamic response of a simple vehicle model captured 

in a 3
rd

 order Butterworth filter with a 1.0Hz cut-off 

frequency. Note the 0.5s lag at the 50% response magnitude.  

Controller  

Each time a change in vehicle state is detected, a new 

steering control action is issued. An important question is 

why drivers do not simply issue a new control action every 

50ms but instead wait for a detected change in vehicle state. 

The reason is two-fold. First and foremost, in order to be able 
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to learn the response characteristics of a system it is 

beneficial to wait for responses to issued control actions. 

Second, if the system is sluggish and the driver continues to 

issue corrective control actions the risk is that too much 

control is applied and instability results. Future models will 

distinguish between these closed loop control corrections 

around a steady state and open loop control actions to reach a 

particular state (e.g. upon curve entry or exit or upon return 

from a long glance away from the road when the state of the 

vehicle is critical or outside the satisficing set).  

Control is obtained in two steps: i) a new target yaw-rate is 

computed from a PD controller (see below), ii) the new target 

yaw-rate *

1n
θ −  

is passed through a 3
rd

 order filter that 

represents the vehicle plus neural dynamics (Fig. 2).   

car

τv

δ'

φ
'

R

τv

 

Fig. 3. Depiction of predicted and target vehicle states for the 

design of a geometric PD-controller.  

The car lateral position 'δ  is predicted 3sτ =  seconds ahead 

which is the settling time of the vehicle�s dynamic response 

(Fig. 2). The controller is configured to bring the car�s 

predicted lateral position 'δ  back to zero in 3s under the 

assumption of a zero heading at the predicted point. This 

means that the radius of the green arc target car path equals 

the length of the blue straight line in Fig 3. Simple geometry 

shows that the radius is obtained by with Pythagoras theorem 

 ( ) ( )
2 2 2

2 2 2 '
'

2 '

v
R v R R

δ τδ τ
δ

+
− + = ⇒ =  

and that the target yaw-rate is therefore  

 
( )*

2 2 2 2 2 2 2

1 2 ' 2 v 2 v
'

'

v
v v

R v v v

δγ δ δ τ φ
δ τ τ τ

= = ≈ = +
+  

which is a PD-controller is disguise. This yaw-rate is passed 

through the vehicle dynamics (Fig. 2) and integrated to 

heading and the heading is integrated to update vehicle x and 

y positions in the world. The x-position is equal to the lateral 

position because the centre of the lane is aligned with the y-

axis. Of course a better controller can be designed but the 

purpose here it to show the effect of gaze fixation patterns on 

driving performance, not to establish an accurate 

representation of human straight lane keeping.  

Optimization of PD-Controller Coefficients 

The assumption is that drivers optimize their control gains for 

each driving condition. Ideally the optimization should 

minimize a meaningful risk or safety margin metric such as 

the mean inverse time-to-line-crossing over the duration of 

the task. At the current stage of this work, we assumed the 

fixed controller coefficients detailed above across the three 

task conditions and performed the optimization on different 

model parameters only to produce a match in SDLP with 

experimental data (see Sec. 5). The response of the driver 

model without execution noise to an initial lateral position 

and initial heading offset is shown in Fig. 4.  

 

Fig. 4. Vehicle control response to a 0.5m lateral position 

offset (top panel) and a 10deg heading offset (bottom panel).  

Control Noise 

Manual vehicle control is plagued by execution noise and 

road noise, both of which are lumped into one noise signal 

that acts on the front wheel angles and thus controls yaw-rate 

directly. The effect of this 0.5Hz band limited Gaussian noise 

with the final optimal magnitude (Sec. 5) is shown for six 

noise incarnations in Fig. 5 where the car is only controlled 

by the noise while no control is applied. It is clear that within 

10s the vehicle can drift almost out of the lane.  

 

Fig. 5. Set of different trajectory of the vehicle when only 

execution and road noise are driving the vehicle (i.e. as if 

eyes are closed); different noise incarnations.  

4.5 Eye Movements across Conditions 

The FORWARN experimental eye fixation data were 

analysed and summarized in Table 1. For the driver model 

simulations we assume that all fixations away from the road 

are of the same duration as the experimentally observed 

mean. We also assume that drivers attempt to look away from 

the road after a fixed time has elapsed again equal to the 

observed mean; however if the risk is too high (i.e. lateral 

position predicted 3s ahead with straight heading prediction 
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exceeding 1m) then the driver continues control and waits 

until the risk becomes acceptable before glancing away.  

Table 1. Glance Statistics for experimental FORWARN 

data for five subjects with clean eye tracking data. 

Mean Eye Glance Durations Baseline Count Back Arrows Task 

Look Away  0.50s 0.22s 1.34s 

Look at Road  2.62s 9.20s 1.05s 

Time Between Look Away 
Glances 

3.12s 9.44s 2.39s 

Each of the three task conditions� eye glance pattern are 

assumed to switch between two glance locations. The first is 

on-road to a location where the car state can be perceived 

(lateral position and heading); in reality these two vehicle 

states may require different cues and thus attention and 

fixation is shifted between them. At the moment we assume 

that both cues are fully attended to when fixation is on the 

road. The second glance location is off-road to a location 

where the visual secondary task can be performed (Arrows 

Task) or where the speedometer can be read (Baseline and 

Count Back). These three mean eye movement characteristics 

are used in the simulations below to quantify the effect of eye 

gaze profiles on lane keeping; i.e. simply cycle eye gaze 

location from on-road to off-road based on times in Table 1.  

5. SIMULATION RESULTS AND DISCUSSION 

The driver model (Sec. 4) was run for the eye movement 

profiles associated with the three task conditions (Baseline, 

Count Back and Arrows Task) detailed in Table 1 and 

compared against experimental data from the FORWARN 

project subjects (Kountouriotis & Merat, 2016). The two free 

model parameters discussed next are manually tuned to 

minimize the difference between model produced and 

experimentally observed mean SDLP values. The results in 

Fig. 8 show that the model produced SDLP (diamonds) 

closely match those observed experimentally (disks).  

 

Fig. 6. Lateral position profiles for the three task conditions. 

The driver model has a number of parameters most of which 

were fixed based on rational assumption discussed in Sec. 4. 

Two of the parameters were kept free to explore whether that 

would suffice to fit the experimental data. The first is the 

magnitude of the noise (i.e. execution plus road noise). The 

spectral shape of the noise was white noise limited to a 0.5Hz 

bandwidth (Gaussian noise passed through a 7
th

 order 

Butterworth filter). This parameter shapes the magnitude of 

the SDLP. The second free parameter is the threshold in 

predicted lateral position 3s ahead beyond which eyes are not 

diverted away from the road. This risk parameter shapes the 

non-linear increase in SDLP when eyes are taken off the road 

more frequently and longer as is the case in the Arrows Task. 

In that case the driver often does not have enough time to 

fully control the vehicle back to stable forward state before 

looking down at the task display again. The driver essentially 

has to adopt a threshold in risk below which he will divert his 

eyes away from the road. The optimal value of this risk 

threshold is 1.0m; thus if the straight heading predicted 

lateral position 3s ahead exceeds 1.0m, then eyes are not 

diverted yet and control is continued to bring the car to a 

safer state before diverting eyes.  

The time series of lateral position for each of the three task 

conditions for a 30s period is shown in Fig. 6. Model 

produced SDLP results are compared against experimentally 

obtained mean SDLP in Fig. 8. An important point to make 

in reference to Fig. 6 is that the number of peaks in the lateral 

position within a 30s period are on the order of 10 which is 

the same as in the experimental data. This is important 

because it indicates that vehicle dynamics, noise bandwidth 

and control updates that are driven by the time interval 

between detection of changes in cues are all reasonable. In 

future models these assessments will be extended to actual 

control input at the torque level to provide more conclusive 

support for model validity.  

A key element of the model is the fact that control is changed 

only when a change in lateral position or heading cue is 

detected (Fig. 7). It is clear from Fig. 7 that the frequency of 

cue change detections (density of yellow or green diamonds) 

is low immediately following a glance away (red) and that it 

then increases quickly as the gaze remains fixated on the 

perceptual cue until the next glance away. This is the result of 

the Bayesian combining discussing in Sec. 4.1.  

Interestingly and unexpected, the frequency with which 

changes in lateral position are detected is much greater (more 

yellow diamonds) than for heading (green diamonds). This 

means that the adopted heading cue is less salient and 

informative than the lateral position cue. Arguably, there are 

many cues that drivers can use that are sensitive to lateral 

position and heading changes and we plan to explore a 

number of them analytically in future research.  

 

Fig. 7. Indication of when a change in lateral position 

(yellow) or heading (green) is perceived and when the eyes 

were off the road (red).  

The other results in Fig. 8 (i.e. yellow, cyan and magenta) are 

generated to explore the effect of brief 50ms (one time step) 
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away eye glance alone. We assume that a glance away has 

two effects on driving (Sec. 4): i) during the eye diversion 

away from the road the driver does not perceive visual 

control cues and thus cannot detect changes in vehicle state, 

and ii) when the driver makes a saccade, no matter how short 

(minimal one brain update duration of 50ms) the internal-

representation of the cues used for control degrades. The 

relative effect of these two effects on SDLP is exposed in the 

yellow, cyan and magenta results in Fig. 8.  

 

Fig. 8. Simulation results (diamonds) compared to 

experimental data (circles). The blue, green and red markers 

reflect the effect of the observed eye glance behaviour for 

each of the three task conditions. The yellow and cyan filled 

diamonds show the effect of glances that only disrupt the 

internal representation but have no off-road duration.  

The �No Glances� yellow diamonds shows the SDLP when 

eyes are never diverted away from the road and thus the 

internal representation is never reset to a wider distribution. 

On the other end of the spectrum the �Quick Glances� yellow 

diamond shows the SDLP when a saccade is made every 

second but that 50ms later the eyes are back on the driving 

task. In this case the internal representation is reset but eyes 

are effectively continuously on the road. If the frequency of 

these �Quick Glances� is increases from every second to 

every 100ms (magenta diamond) we see a huge increase in 

SDLP exceeding that of the Arrows Task. This is due to the 

fact that the driver now never has the benefit of combining 

perceptions to improve the internal representation that boost 

detection of change performance.  

From the simulation results it is clear that the effect of 

�Quick Glances� is about a 15% increase in SDLP compared 

to �No Glances�. This �Quick Glances� SDLP falls between 

the impact of �Count Back� which is close to �No Glances� 

performance because of the very few look away glances and 

�Baseline� with more but relatively short away glances. The 

�Arrows Task� shows the worst performance because of the 

frequent relatively long away glances as detailed in Table 1.  

The cyan diamonds associated with each task condition show 

what the effect on SDLP is if the frequency of eye glances is 

kept the same as for the task but the duration is set to one 

time step so as to only reset the internal representation. We 

see again that this greatly improves performance to a level 

about 5-10% worse than �No Glances�.  

6. CONCLUSIONS 

The relatively simple cybernetic driver model shows that the 

protective effect of a cognitive secondary task can be 

reproduced by accounting for the reduced eye glance 

frequency and fixation durations away from the road 

compared to baseline driving. The other hypothesis explored 

was that the effect of fixating longer on the control cue 

without glancing away would yield an increased sensitivity in 

detecting cue changes that would lead to a substantial 

improvement in driving stability. While an effect of 15% was 

indeed observed, not surprisingly it is much smaller than that 

of frequently looking down for extended periods of time.  

This paper demonstrates encouragingly that the proposed 

mechanism by which a saccade disrupts the internal 

representation of a visual cue may explain some of the 

apparently protective effects observed when drivers decrease 

their glance frequency and fixate on key visual control cues.  

The paper also presents a simple model for explaining and 

exploring the effects of different visual scanning strategies on 

lane keeping performance. The model was capable of 

accurately replicating the experimental results that a purely 

cognitive task can indeed improve driving performance 

purely based on a change in glance behaviour.  
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