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Abstract

Successful detection and localisation of pedestrians is an important goal in computer vision which is a core area in Artificial

Intelligence. State-of-the-art pedestrian detectors proposed in literature have reached impressive performance on certain datasets.

However, it has been pointed out that these detectors tend not to perform very well when applied to specific scenes that differ

from the training datasets in some ways. Due to this, domain adaptation approaches have recently become popular in order to

adapt existing detectors to new domains to improve the performance in those domains. There is a real need to review and analyse

critically the state-of-the-art domain adaptation algorithms, especially in the area of object and pedestrian detection. In this paper,

we survey the most relevant and important state-of-the-art results for domain adaptation for image and video data, with a particular

focus on pedestrian detection. Related areas to domain adaptation are also included in our review and we make observations and

draw conclusions from the representative papers and give practical recommendations on which methods should be preferred in

different situations that practitioners may encounter in real-life.

Keywords: domain adaptation; pedestrian detection; feature learning; scene-specific detector; transfer learning

1. Introduction

Due to the fact that visual perception is vital to most intel-

ligent life forms, computer vision has become one of the most

important and active research areas in the field of Artificial In-

telligence. Computer vision is about automatic analysis and

understanding of visual data (such as images and videos) to ex-

tract useful information.

There are many sub-areas within the field of computer vision,

one of which is object detection which forms the foundation

of many intelligent scene understanding systems. Due to its

significance, object detection has received a lot of attention in

computer vision [1].

Pedestrian detection in particular plays an important role

in real world outdoor scenes, especially in urban areas. Al-

though many proposed domain adaptation algorithms in litera-

ture could potentially be used for learning detectors for a va-

riety of different object categories (such as pedestrians, cars,

buses and bicycles), we focus on the task of domain adaptation

for pedestrian detection since pedestrians are of most interest in

many applications of computer vision.

2. Motivation

Pedestrian detection in monocular images is a challenging

task and a lot of progress has been made in this area [2, 3, 4].

Most state-of-the-art pedestrian detectors require a supervised

training stage based on a labelled dataset that is obtained from

manual annotation of pedestrians (e.g. delineation of pedes-

trians by bounding boxes) and a sufficient number of non-

pedestrian images [5, 2, 6].

2.1. Training & Generalisation

The objective of the labelled dataset is to provide the classi-

fier (being learnt) with large intra-class variations of pedestri-

ans and non-pedestrians so that the resulting classifier is gen-

eralisable to never-before-seen test data. This generalisation

property is a sought-after property for most machine learning

classification and regression tasks.

When training a pedestrian detector, the goal is often: “Given

any unseen test image, the detector should locate all the pedes-

trians in the image”. In this paper, we term such a detector as a

generic (pedestrian) detector and the training data from which

the detector was trained as a generic (pedestrian) dataset.

2.2. Generic Datasets

For a generic dataset, collected positive and negative ex-

amples are not (deliberately) limited to a particular scene and

viewpoint and the aim of such a dataset is to collect as many

variations of pedestrians as possible to produce detectors which

should ideally perform well for any unseen test data. Examples

of generic pedestrian datasets are INRIA Person Dataset [5],

Daimler Mono Pedestrian Detection Benchmark Dataset [3]
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and Caltech Pedestrian Dataset [7]. The INRIA dataset consists

of images of upright people taken from a variety of personal im-

age collections. Pedestrian training data of the Daimler and the

Caltech datasets are extracted from videos recorded with on-

board cameras in vehicles being driven around various places

in urban traffic. All these datasets consist of training data from

a variety of scenes and places, and as a result, the intra-class

variations of pedestrians in such datasets is large. Figure 1 il-

lustrates this observation.

2.3. Problems with Generic Datasets

Despite the large intra-class variations present in such

generic datasets, each of these datasets still has its own inher-

ent bias. For example, since the INRIA dataset is taken from

mostly personal digital image collections, many of the people

in the training dataset are likely to be intentionally posing for

cameras. This may be different from natural pedestrian poses

and activities in real-life situations. For the Daimler and Cal-

tech datasets, the pedestrians in the training set are biased to

view-points and angles that cameras on-board vehicles could

capture. Moreover, pedestrians from these datasets are taken

from static images that have been captured using cameras fixed

near the same ground plane as the captured pedestrians. This

may be considerably different from situations where images of

pedestrians are captured by video cameras looking down on a

scene (e.g. surveillance videos).

2.4. Dataset Bias

This dataset bias has been recently studied by Torralba and

Efros [8]. No dataset can possibly cover a representative set

of all the possible variations of pedestrians and non-pedestrians

the detector is likely to face at test time. As shown by [7,

9], detectors may fail to perform satisfactorily when applied to

scenes that differ from the original training data in many aspects

such as:

• Pedestrian pose

• Image or video resolution

• View-point

• Lighting condition

• Image or video compression effects

• Presence of motion blur

2.5. Non-trivial Nature of Classifier Training

Furthermore, apart from this dataset problem, even assuming

that there is a perfect generic dataset, it is non-trivial to learn

a classifier that is “good” enough to capture all these highly

complex and multi-modal variations of the dataset whilst at the

same time not over-fit on the training data. In addition, for most

of the pedestrian detectors, the speed of the detector is an im-

portant criterion that has to be taken into consideration, par-

ticulary since a classifier must be applied on many (typically

millions of) multi-scale sliding windows in each image. This

rules out time-consuming feature extraction mechanisms and

complex classifiers.

2.6. Scene-specific Detectors

It is, however, crucial to ask the question of whether, de-

ployed pedestrian detectors in real-life actually need to work

well across any test data. The short answer is that for most sit-

uations, they do not. Each deployed pedestrian detector needs

to work well only for the specific scene and conditions that it is

applied to.

Given a particular scene, the intra-class variation of the

pedestrians being captured by a fixed camera is limited com-

pared to general situations. For example, due to the fixed cam-

era angle, the view-point is fixed and the space of possible poses

that a pedestrian can exhibit is a small subset of all the possi-

ble pedestrian poses. Furthermore, the lighting variation is also

smaller and the image compression effects are similar for all

the pedestrians captured by the same camera. In addition, the

environment, the background and the surroundings are fixed

which translate to less variation in non-pedestrian classes of

data. Moreover, there are geographical, cultural and social con-

straints under a fixed location which, for example, may make

pedestrians more likely to conform to similar styles of clothing.

Further, most state-of-the-art detectors work by extracting

features from a rectangular window and applying the learnt

classifier. This means that pixels that do not correspond to

pedestrians (also known as “scene context”) are also inside the

window. For a particular scene, this scene context can be cap-

tured effectively. Overall, the intra-class variation of pedestri-

ans (or non-pedestrians) in a specific scene is smaller than the

intra-class variation of pedestrians (or non-pedestrians) across

all possible scenarios as shown in Figure 2.

Therefore, it seems that the solution then is to collect labelled

data for each new scene specifically tailored for that scene. The

resulting detector can be termed as a scene-specific detector

since the detector is tuned and specialised to work well in a

particular type of scene. The task is now clearly simpler: given

any unseen test image in this scene, the detector should locate

all the pedestrians in the image. This is a simpler task than

building a generic detector.

There are two observations that can be made. Firstly, with the

feature extraction mechanism and the classifier type held fixed,

a scene-specific detector can be more accurate than a generic

detector. Secondly, with the detector accuracy held fixed, the

feature extraction mechanism and the classifier of the scene-

specific detector can be simpler and faster than a generic detec-

tor due to having to learn to perform classification for a simpler

task. This is clearly critical in real-time or embedded-processor

applications. In this paper, we survey methods that makes use

of the first observation.

Although training a scene-specific detector that is specialised

to each new scene seems like a good idea, in practice, it can

be labour-intensive especially when considering the number of

different scenes and applications for which we need pedestrian

detectors. In this paper, we survey papers that address this prob-

lem by domain adaptation techniques that reduce the human su-

pervision effort involved in learning scene-specific pedestrian

detectors.
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(a) INRIA dataset [5] (b) Daimler dataset [3] (c) Caltech dataset [7]

Figure 1: Random samples from some generic pedestrian datasets (only pedestrians, i.e. positive examples, are shown).

(a) CUHK Square dataset [10] (b) MIT Traffic dataset [11] (c) PETS 2009 dataset[12]

Figure 2: Random samples from scene-specific pedestrian datasets (only pedestrians, i.e. positive examples, are shown).
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3. Background

In this section, we give an introduction to the basic concepts

of transfer learning and domain adaptation that are needed to

understand the terms used in this paper.

3.1. Transfer Learning

Stated informally, the concept of transfer learning, in the field

of machine learning, is mainly relevant when we have related

tasks, and knowledge about some of those tasks; having knowl-

edge about some tasks can be used to learn about other related

tasks in an easier, faster or improved manner. This is useful be-

cause, for many tasks in machine learning, we may have a large

amount of labelled data for a task A but may not have suffi-

cient labelled data (or even no labelled data) for a task B which

is related to task A in some way. Using transfer learning, we

can transfer the knowledge that we have about task A to task

B using some commonality between task A and task B. This is

illustrated in Figure 3.

Task B Learning 
Model for 

Task B 

(a) Without transfer learning

Transfer 

learning 

Task B 

Learning 

Learning 

Knowledge 

of Task A 

Model for 

Task B 

Task A 

(b) With transfer learning

Figure 3: Transfer learning between two tasks. Given two related tasks A and

B, exploiting and transferring the knowledge about task A to task B can help

learn a better model for task B.

Another useful benefit of transfer learning is when deploy-

ing trained models (e.g. classifiers) for prediction at test time

in real-life systems. There is one assumption common to most

machine learning algorithms: the distribution and the feature

space of the training data are the same as those of the test data.

Generally, if the feature space of the test data is different from

that of the training data, the current model cannot be applied

to the test data and a new model would have to be trained in

the feature space that is the same as the test data. If the fea-

ture spaces of the training and the test data are the same but the

distributions of the training and the test data are different, the

model that was trained on the training data may perform poorly

on the test data depending on the extent of the difference be-

tween the training and test data distributions. If this difference

is large enough, the model might not even give any meaningful

predictions and a new model would then need to be trained.

Having to train new models in this way can be computation-

ally expensive and with traditional machine learning methods,

this is usually necessary because for many deployed machine

learning systems, the test data distributions are different from

those of the training data. Transfer learning can help here to a

certain extent by considering the training and test data as data

for two related tasks.

We now discuss two commonly used terms in the transfer

learning literature [13]: a domain and a task. Furthermore,

when discussing transfer learning below, we would do it in the

context of classification although transfer learning can also be

used for regression and density estimation.

A domain D is defined by a feature space X and a probability

distribution P(x) over the data associated with D. A task T is

specified by a label space Y and a distribution over the label

space P(y).

To give an example of a domain and a task, consider train-

ing a pedestrian classifier using the INRIA dataset. To sim-

plify the explanation, assume that we are given cropped patches

of pedestrians and non-pedestrians (also referred to as positive

patches and negative patches respectively). For each patch, we

extract features using any feature extraction algorithm to ob-

tain a feature vector. The feature extraction mechanism de-

fines the feature space X . For instance, if we are using the

HOG feature extraction algorithm which results in feature vec-

tors of length 4608 and each dimension of a feature vector is

a real number within the range of [0,0.2], then X is a 4608-

dimensional space for which the values of each dimension has

the range [0,0.2]. After extracting features from each patch,

we now have the training data X = {x1, . . . ,xN} where the N

number of training data are samples from the underlying dis-

tribution P(x), i.e. X ∼ P(x). For classification, each training

datum xi ∈ X is also associated with a label yi. There are N la-

bels Y = {y1, . . . ,yN} for the training data. For pedestrian clas-

sification, the label is either pedestrian or non-pedestrian, i.e.

yi ∈ {pedestrian,non-pedestrian}. The training data X together

with the labels Y is usually called a labelled (training) dataset.

After obtaining the labelled dataset, a classifier can be trained

using a supervised machine learning algorithm which produces

a model that can be written as a function of x: it takes in a

feature vector x as input and produces a classification score as

output. This can also be probabilistically interpreted as P(y|x),
i.e. the (posterior) probability of the class labels y given a fea-

ture vector x. In summary, the domain and the task for this

pedestrian classification setting is given by D = {X ,P(x)} and

T = {Y,P(y)} respectively.

Source Target

Domain Xs,P(xs) Xt ,P(xt)
Task Ys,P(ys) Yt ,P(yt)

Table 1: Annotation summary for transfer learning

The annotation summary for transfer learning is given in Ta-

ble 1. Given a source domain Ds = {Xs,P(xs)} and a source

task Ts = {Ys,P(ys)}, the aim of transfer learning is to trans-

fer the “knowledge” in Ds and Ts to a target domain Dt =
{Xt ,P(xt)} and a target task Tt = {Yt ,P(yt)} so that the learn-

ing of P(yt |xt) is improved. Although multiple sources and tar-

gets can be used for transfer learning, in this paper, we focus

only on one source and one target since this situation is preva-

lent in real-life situations.

As an example application of transfer learning, consider a

scenario in which datasets of cats and dogs are given (shown
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(a) Samples from cat dataset

(b) Samples from dog dataset

Figure 4: Some samples of cats and dogs from the PASCAL VOC dataset [14].

Localisation of cats and dogs is shown with bounding boxes.

in Figure 4) and the source task is the detection of cats and the

target task is the detection of dogs. We would like to exploit the

knowledge that we have about cats (assuming the availability

of a large amount of labelled data for cats) and transfer it to

the process of learning a dog classifier (assuming insufficient

labelled dog data) to help obtain a better dog classifier. This is

possible because even though detection of cats and detection of

dogs are different tasks, they are related in that cats and dogs

share some similarities in appearance, shape and structure (as

can be seen in Figure 4). The feature spaces of cats and dogs,

Xs and Xt respectively, may or may not be the same, but P(xs)
and P(xt) would be different. In addition, the label spaces of the

source and target tasks, Ys and Yt respectively, are also different

since Ys = {cat,non-cat} and Yt = {dog,non-dog} and Ys ,Yt .

The example given above is a problem of supervised trans-

fer learning because there is some labelled data available from

the target dataset. An alternative setting is unsupervised trans-

fer learning where there is no labelled data available from the

target dataset.

3.2. Domain Adaptation

We now discuss a special case of transfer learning in

which the source and target tasks are the same (i.e. Ys =
Yt and P(ys) = P(yt)) and the source and target domains are

different. Moreover, even though the domains are different,

the feature spaces of the source and target are the same (i.e.

Xs = Xs and P(xs) , P(xt)). This is known as domain adap-

tation which is actually a type of transductive transfer learn-

ing [13] and is simpler than the general transfer learning set-

ting.

The reason for highlighting this particular form of transfer

learning is that it can efficiently tackle the type of problem

that we are interested in, which is adapting pedestrian detec-

tors trained on a generic dataset (e.g. INRIA pedestrian dataset)

to a specific scene (e.g. a surveillance video camera recording

a traffic junction). This can be placed in a domain adaptation

framework by assuming that the source domain is the data from

the generic pedestrian dataset and the target domain is data that

can be obtained from the specific scene. To show that this is

a domain adaptation setting, the following observations can be

made:

1. Xs =Xt : The source feature space is the same as the target

feature space. This is because it is assumed that the same

feature extraction mechanism is used for both the generic

dataset and the specific scene.

2. Ys = Yt : The source label space is the same as the target

label space. This is because for both the generic dataset

and data from the specific scene, the label space is given

by {pedestrian,non-pedestrian}.

3. P(ys) = P(yt): The (prior) distributions on the labels for

the generic dataset and specific scene are assumed equal.

4. P(xs) , P(xt): The pedestrian distribution of the generic

dataset is not the same as that of the specific scene. This

is due to differences in image resolutions, illumination,

pedestrian poses, camera angles, motion blur, etc. Even

though P(xs) , P(xt), there is still some relation between

P(xs) and P(xt), and P(xt) can be considered as an (un-

known) transformation of P(xs).

As can be seen, this is exactly a domain adaptation setting

where the tasks for the source and target are the same and do-

mains are different. Many computer vision problems can be

placed in this domain adaptation framework.

Another example scenario where domain adaptation may be

helpful is when having a face detector that is trained using a

generic face dataset (such as the Faces in the Wild dataset [15]

which contains over ten thousand images of faces collected

from the Internet) and wanting to apply the detector to images

taken in a more specific and controlled environment (such as the

Yale Face Database [16]). Random samples from these datasets

are shown in Figure 5. Although the face detector trained on the

generic dataset may work reasonably well on the target dataset,

it is expected that adapting the detector to specialise it to the

target dataset (which may have much less intra-class variation

of faces) might improve the detection performance in the target

dataset. This is a domain adaptation problem because the fea-

ture spaces of the source and target datasets are the same since

faces are represented by the same feature extraction mechanism

(such as HOG or Haar features). Moreover, the tasks are the

same since the label spaces and the prior label probabilisties

are the same (both aims at face/non-face classification).

As with transfer learning, there are two main types of domain

adaptation. In both types, we assume that we have a sufficiently

large number of labelled data for the source dataset. The first

type is unsupervised domain adaptation. In this type, we do

not have any labelled data in the target dataset. In the second

type, we assume that we have some labelled data in the target

domain. This is known as supervised domain adaptation. In
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(a) Face samples from Faces in the

Wild dataset [15]

(b) Face samples from Yale Face

Database [16]

Figure 5: Samples of faces from source and target domains. Note that for Yale

dataset (on the right), only greyscale images could be obtained. Therefore, both

of these datasets are shown in grayscale.

this paper, we are concerned with only unsupervised domain

adaptation, which is a more difficult problem.

4. Survey

Domain adaptation is a relatively new research area and a

fundamental topic in Artificial Intelligence. Early works on do-

main adaptation were published in the field of text and Natural

Language Processing (NLP) [17, 18, 19, 20].

Hwa [20] proposes an adaptation approach for grammar

structure induction using sparsely annotated training data (i.e.

data with limited constituent information) to obtain results that

are almost as good as using a fully annotated textual corpus.

Roark and Bacchian [19] make use of a maximum a poste-

rior framework to adapt probabilistic context-free grammars to

new domains. McClosky et al. [18] propose a parser adaptation

system using self-training and re-ranking.

Blitzer et al. [17] propose an unsupervised domain adapta-

tion for part-of-speech tagging by projecting the source dataset

to a real-valued low-dimensional feature representation that is

shared across the source and the target domains. This represen-

tation is learnt using structural correspondence learning which

works by firstly defining a set of pivot features. Pivot features

are frequently-occurring features that are invariant and discrim-

inative across both domains. Secondly, correspondences among

features of source and target domains are learnt with the help

of these pivot features. Their proposed algorithm assumes that

features from the domains are binary and also requires defin-

ing pivot features, which is not trivial especially in applications

other than text.

In fact, most of the algorithms used for domain adaptation for

NLP are not suitable for vision applications. Therefore, in this

paper, we will focus on prior work about domain adaptation for

computer vision rather than NLP.

Research for domain adaptation for vision is even more re-

cent than NLP. There are mainly two areas of research in do-

main adaptation for vision: image classification and object de-

tection. For image classification, the majority of the approaches

for domain adaptation turn out to be metric learning or feature

projection approaches.

Object detection is a harder and a more general task than

image classification. Similarly, domain adaptation for object

detection is generally a more challenging problem than domain

adaptation for image classification. Some of these challenges

are:

1. Extreme class imbalance: Object detection involves hav-

ing to model the positive and negative class. The num-

ber of data in the negative class is much larger than that

of the positive class and the positive class can easily get

swamped with the negative class.

2. The adaptation algorithm not only has to deal with the

intra-class variation of the positive class but also the much

larger “sea” of intra-class variation of the negative class.

3. Due to object detection having different requirements as

compared to image classification (such as needing to eval-

uate hundreds of thousands of candidate windows), ob-

ject detection systems usually use a different set of fea-

tures (such as Histogram of Oriented Gradients or Haar

features) than image classification systems (which tend to

use features such as “Bag of Visual Words”). Object de-

tectors typically use very high dimensional and dense fea-

tures whereas many image classification systems tend to

use lower-dimensional and sparser features. This makes

a difference in the required domain adaptation techniques.

For example, generative models may be suitable for do-

main adaptation for image classification but ill-suited for

domain adaptation for object detection.

It is therefore not straightforward or trivial to apply existing

domain adaptation methods for image classification to the task

of object detection.

Furthermore, domain adaptation for object detection in

videos brings with it a unique set of challenges and opportu-

nities which is different from that of image classification or

even object detection in static images. Some of these oppor-

tunities include availability of spatio-temporal smoothness and

other types of information that can be learnt and exploited from

videos. This means that even if adopting existing domain adap-

tation techniques for image classification for object detection is

easy, it may be more desirable to research and develop algo-

rithms that exploit these cues in the videos for improved per-

formance. Moreover, for far-field videos, pedestrians are of

small resolution which further increases the challenge of do-

main adaptation. Therefore it is crucial to differentiate domain

adaptation approaches for image classification from those for

object detection (especially in videos).

Due to its unique challenges and opportunities, it turns out

that different variations of self-training is the most popular ap-

proach for state-of-the-art domain adaptation for object detec-
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Figure 6: The need for domain adaptation for image classification. Figure taken

from [21].

tion in video. The popularity is due to the fact that the self-

training framework is flexible, can work with a variety of dis-

criminative classifiers and can incorporate different types of

prior knowledge in a natural and easy way. For object detection,

we will mainly focus on domain adaptation of object detectors

trained on image datasets to videos.

4.1. Structure of Survey

We begin by discussing research related to domain adaptation

for image classification (Section 4.2). Then we review domain

adaptation for object detection for videos in Section 4.3. For

the sake of completeness, in Section 4.4, this is followed by re-

viewing three areas that are not directly relevant but somewhat

related to the topic of domain adaptation:

• Learning moving object detectors in videos (Sec-

tion 4.4.1): In this section, we discuss approaches that

learn class-agnostic moving object detectors in videos.

• Semi-supervised learning for object detection in videos

(Section 4.4.2): Here, we review algorithms that learn

object detectors in videos using semi-supervised learning

(given a small amount of labelled data in the target domain

with no notion of a source domain).

• Weakly-supervised learning of object detectors (Sec-

tion 4.4.3): Methods based on weaker form of supervi-

sion than the standard (bounding box) supervision are dis-

cussed. Here, there is no true concept of source and tar-

get datasets. With weakly supervised learning, for a spe-

cific scene, only the target dataset can be considered to be

present. The prior information comes from weak supervi-

sion on the target scene rather than in the form of a source

dataset.

4.2. Domain Adaptation for Image Classification

The need for domain adaptation for image classification is

illustrated in Figure 6. Most of the research in this area is based

on learning a common feature representation across the source

and target domains.

One of the earliest domain adaptation approaches for image

classification is the work by Saenko et al. [21]. They provide

a supervised domain adaptation algorithm that learns a reg-

ularised non-linear transformation that is invariant across the

source and target domains. Learning such a transformation al-

lows modelling of changes resulting from the difference in the

Figure 7: Multi-domain object database to study and evaluate domain adapta-

tion algorithms for image classification proposed by [21]. The database con-

tains 31 object categories and for each category, there are 3 domains: images

taken from Amazon.com, a high resolution digital SLR camera and a simple

low resolution webcam. Figure taken from [21].

source and target domains. They also introduce a multi-domain

object database (shown in Figure 7) to evaluate domain adapta-

tion algorithms for image classification. Their method requires

exact manual mapping of samples from the source and target

domains which can be very time-consuming.

An extension of [21] is proposed by Kulis et al. [22]. This

time, instead of learning a single transformation as in [21], the

authors propose learning asymmetric linear transforms, i.e. two

linear transformations: one for the source domain and the other

for the target domain, to respectively project the source and tar-

get data to a common subspace. In order to deal with non-linear

asymmetric transformations, they kernalize the algorithm (by

running the algorithm in the kernel space instead of the original

feature space). Their approach however shares the same limita-

tion as [21]: they require manual specification of pairs of source

and target data examples that are similar semantically (e.g. two

very similar cups (or even the same cup) taken from the source

and target domains may form such a pair).

Before going further, we digress to provide a brief explana-

tion on the concept of geodesic subspaces. Euclidean geometry,

which many people are familiar with, is about flat spaces which

can be demonstrated by drawing on a whiteboard. In the Eu-

clidean space, a number of properties are preserved, such as “a

straight line going through two points is the shortest distance

between these two points” and “in a triangle, the addition of

angles totals up to 180 degrees”. The Euclidean subspace has

been in use for a long time, after which non-Euclidean geome-

try (such as Riemannian [23] or Grassmannian [24] geometry)

became popular since it is more natural and suitable for certain

problems in mathematics and related areas such as computer vi-

sion and Artificial Intelligence. Moreover, the Euclidean space

is not appropriate for working with non-linear manifolds due to

the fact that Euclidean distance does not capture the intrinsic
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Figure 8: Illustration of sampling points between the subspaces of the source

and target domains on the Grassmann manifold. In the figure, the Grassmann

manifold is represented by GN,d which is basically the space of d-dimensional

subspaces in R
N and S1 and S2 are two points on GN,d corresponding to the

source and target domains respectively. The ones in between S1 and S2 can be

considered as intermediate subspaces (i.e. intermediate points on the Grassman

manifold) going from the source point to the target point. Figure taken from

[25].

Figure 9: Geodesic flow kernel to model the gradual change from the source

domain, Φ(0), to the target domain, Φ(1). Φ(t) gives the subspace at any point,

i.e. 0 ≤ t ≤ 1, along the geodesic. Figure taken from [27].

nonlinear geometric structure of data. In a non-flat (or curved)

space, betwen any two points (i.e. a geodesic), there can be

more than one shortest distance path. For example, there are

several geodesics between the Earth’s south and north poles.

Unlike Euclidean distance, the geodesic distance takes into con-

sideration the global nonlinear structure of data. This is highly

useful for domain adaptation purposes in computer vision since

visual data (raw image data in particular) often exist in a very

high-dimensional space which actually lies in a much lower di-

mensional manifold (which corresponds to high level features

and meaningful concepts in the image). This can be used to

help with the domain adaptation.

Gopolan et al. [25] propose an unsupervised domain adapta-

tion method that models the domain shift by gradual changes

in the representation from the source to target domain. This is

achieved by modelling the subspaces in the source and target

domains and then generating intermediate subspaces between

them as sampled points along the geodesic on the Grassmann

manifold [26]. This is shown in Figure 8. Their approach re-

quires tuning of many parameters including determining the fi-

nite number of subspaces to sample.

Gong et al. [27] present a system similar to [25]. They pro-

pose a method called “geodesic flow kernel” (illustrated in Fig-

ure 9) which is an improvement on [25] in that it eliminates

the need to sample a finite number of subspaces and to tune as

many parameters as [25] by “kernalizing” the approach of [25]

and considering an infinite number of subspaces.

Mirrashed and Rastergari [28] approach unsupervised do-

main adaptation by learning a set of discriminative and invari-

ant feature projections (into binary space) that models the class

structures across source and target domains. Each of these pro-

jections is essentially a hyperplane in the feature space and a

binary “attribute” is obtained by looking at which side of the hy-

perplane the data falls on. Using this set of projections (i.e. hy-

perplanes), the source dataset is projected into the binary space

to get the binary attributes and the target classifier is obtained by

training a classifier using the projected data. There is however

no proper justification as to why the space should be binary in

the first place and the proposed optimization algorithm is prone

to local optima.

4.3. Domain Adaptation for Object Detection in Videos

Bose and Grimson [29] propose an unsupervised domain

adaptation system for adapting a (baseline) detector trained on

a far-field video (or a set of far-field videos) towards a different

far-field video by a two-step self-training algorithm. In the first

step, the baseline detector is used to score and label the unla-

belled data (i.e. all sliding windows of frames in the video). A

new classifier is then trained on the combination of the orig-

inal data (from which the baseline detector was trained) and

the most confidently scored data of the unlabelled data. In the

second step, this newly trained detector is applied to the video

and scene-specific features (e.g. silhouette height obtained by

background subtraction) are extracted from the detections and

a new classifier is trained with these features. There are a few

limitations with this domain adaptation approach:

1. There is a need to determine the threshold for the “most

confident” detections.

2. It is not known for sure whether the classifier obtained at

the end of the first step is good enough. If it is not, then the

second step will carry on the errors and may even make it

worse. In other words, the second step is completely de-

pendent on the outcome of the first step and has no chance

of correcting any errors of the first step.

3. The final detector (at test time) is (still) dependent upon

the results of background subtraction (in order to extract

the scene-specific features). This can be a problem if the

background subtraction is very noisy, especially for com-

plex and cluttered scenes.

In addition, in the paper, it is not clear whether the perfor-

mance improvement comes from the actual detector adaptation

or from using a better (i.e. higher level) feature extraction mech-

anism.

A system that adapts a set of general part detectors to spe-

cific video scenes is proposed by Wu and Nevatia [30]. This

is achieved by using a self-training framework where the “or-

acle”1 is the (global) combination of the part detections; the

1The “oracle” is the verification process that selects which examples to in-

clude for each self-training iteration. It is often the most important component

of a self-training algorithm. In order to maximise the efficiency and effective-

ness of the self-training process and to minimise drifting, the oracle should be

as independent as possible from the original (i.e. source) dataset and should

offer complementary information to the information already contained in the

source dataset.
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Figure 10: Detector adaptation approach of Kemhavi et al. [31] by combining

the predictions of a fixed global detector and an online updated local detector.

Figure taken from [31].

global shape model given by the configuration of parts provides

an additional and complementary source of information com-

pared to the (local) part detectors. The approach is limited to

boosting-type classifiers and to object detection systems that

explicitly model objects with parts.

A Multiple Kernel Learning based self-training algorithm is

used by Kemhavi et al. [31] to tune a generic vehicle detector to

a traffic intersection. Their adapted detector is a combination of

two separate detectors: one is termed a “global detector” which

is the detector trained on the generic dataset and fixed (i.e. no

updates are performed), and the other is an online detector up-

dated with a simple self-training approach: most confident pos-

itive and negative examples scored by the global detector are

added in each round. This is shown in Figure 10. For adding

negative examples, examples are added that are both confident

and have high positional entropy relative to the positions (in the

image plane) of the currently collected negative image patches.

This is to prevent too many negative patches from the same

background position from being added.

The process of using the global detector as an oracle in this

way may not be very effective because the online classifier may

never get better if the global detector (which is fixed) does not

perform very well in the first place and additionally, the global

detector does not provide any new complementary information

to the online detector (since the online classifier is obtained

from the global detector). Moreover, their method only applies

to a particular type of classifier (i.e. Multiple Kernel Learning).

Another potential problem is due to the final classifier being

the combination of the global detector and the online classifier:

there is a limit to the amount of adaptation the final classifier

can undergo. For example, if the generic detector has a lot of

false positives, it would still influence the final classifier to a

large extent. And finally it is non-trivial to manually specify

the best combination of the global detector and the online de-

tector.

Wang et al. [32] propose a self-training algorithm to adapt

a generic pedestrian detector to a specific scene. Their algo-

rithm does not utilise background subtraction or (explicit) ob-

ject tracking and it works as follows. Firstly the detector is ap-

plied on frames of the video with a high recall and low precision

setting. Then a hierarchical k-means tree is constructed using

the features of these detections. Thirdly, the most positive and

negative detections are identified and they are encoded using

the learnt tree to obtain binary codes and a classifier is trained

on this binary feature space. This is the scene-specific detector

Figure 11: System overview of the algorithm of Wang et al. [32]. Figure taken

from [32].

(illustrated in Figure 11). The performance is sensitive to set-

ting and manual tuning of many parameters such as choosing a

suitable low precision and high recall setting, thresholds for col-

lecting confident positive and negative examples, the depth of

the hierarchical k-means clustering and parameters for similar-

ity measure for the binary features. It is uncertain whether the

improvement of the scene-specific detector over the generic de-

tector comes from the adaptation stage or the non-linear feature

encoding stage (two unrelated steps). Furthermore, it is highly

likely for the first step to fail to collect sufficient labelled data

(due to collecting only the most confident positive and nega-

tive examples) to train a scene-specific detector that has good

generalisation properties in the target domain.

Another self-training method is proposed by Sharma et

al. [33] to adapt a generic detector to specific scenes for the

task of pedestrian detection. The classifier used is Real Ad-

aboost [34] with Multiple Instance Learning [35] loss function.

The self-training approach works by applying the current de-

tector to frames and then associating the detections into tracks.

Then successfully tracked detections are added as new positive

examples, and detections that do not belong to any of the tracks,

are considered as new negative examples. For each detection

to be added as a positive example, instead of directly adding

the patch corresponding to the detection, the original patch and

multiple patches surrounding the patch are treated as samples

in a positive bag with the assumption that one of these patches

contain the correctly localised positive example (as in the stan-

dard Multiple Instance Learning framework) . This is used to

reduce the patch alignment errors commonly associated with

collecting examples from detections.

Their approach however is limited to Real Adaboost classi-

fiers and the datasets that they are evaluating their algorithms

on are high resolution datasets and only one type of moving

object (i.e. pedestrian) is present in the scene. The Multiple In-

stance Learning approach that they have adopted is not likely
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to work well for low resolution videos such as far-field surveil-

lance scenes.

Tang et al. [36] adapts a detector trained on an image dataset

to a video based on a variation of iterative self-training which

they term “self-paced domain adaptation”. It works by adding

easiest examples to the dataset first followed by increasingly

more challenging ones. However, the self-paced domain adap-

tation technique is not much different from the traditional self-

training approaches which seek to iteratively add the most con-

fident detections in each round to slowly adapt the classifier to

minimise the risk of drifting. For selecting examples to add in

each round, instead of scoring individual detections, they score

tracks in order to average out noise associated with individual

detections. They assume that negative examples are known in

the scene which means that their approach requires partial su-

pervision.

To adapt a face detector in the form of a pre-trained cascade

of classifiers to a new domain, Jain and Farfade [37] use a su-

pervised domain adaptation algorithm. Their approach is es-

sentially a type of self-training method where the oracle is a

generative appearance model. They tested their algorithm by

adapting a generic frontal face detector (such as the one avail-

able in the OpenCV library) to images containing baby faces.

The approach however is limited to classifier cascades, requires

a few hundreds of labelled annotation in the target domain and

therefore is labour-intensive.

Sharma and Nevatia [38] present a self-training approach to

adapt a pedestrian detector to video scenes. In order to col-

lect samples for self-training, they apply the baseline detector

and keep only the most confident detections. Then the detec-

tions are placed into tracks using appearance, size and position

cues. After the samples are collected, the positive examples are

divided into different subcategories by applying a pre-trained

pose classifier. Then they train a random fern classifier [39]

for each positive subcategory to increase the precision of the

baseline detector.

From the evaluation in [38], it is not clear whether the de-

tection improvement comes from the subcategory division and

training nonlinear random fern classifiers or the actual adap-

tation algorithm itself. Moreover, the method requires a pose

classifier for pedestrians to be trained and also involves non-

trivial tuning of multiple parameters such as the thresholds for

applying the detector in “high precision setting” for collecting

samples during the adaptation stage and “high recall setting”

at test time. Lastly, the adapted algorithm only reduces false

positives and does not increase recall.

A co-training approach is adopted by Mirrashed et al. [40]

to adapt vehicle detectors from multiple source domains to a

target domain. Classifiers trained on different source domains

iteratively train and improve each other by teaching, in each

iteration, the most confident detections of one classifier to the

other classifier(s). The algorithm makes use of Transfer Com-

ponent Analysis [41] in order to reduce the effects of domain

shifts between the datasets. As with other iterative self-training

algorithms, the algorithm requires setting the threshold for se-

lecting confident detections. Moreover, the system requires the

use of multiple source domains which may not be feasible in

Figure 12: An iterative self-training technique of Wang and Wang [11]. In each

iteration, positive and negative examples are collected by filtering with a variety

of cues, added to the current dataset and a new classifier is trained. Figure taken

from [11].

many situations.

Shu et al. [42] propose a self-training approach to adapt a

generic pedestrian to specific videos. Firstly, the generic detec-

tor is applied on frames and then the most confident detections

are collected as positive examples. Negative examples are col-

lected from the scene background. Then super-pixels are ex-

tracted and patches corresponding to the super-pixels are clus-

tered to form a visual dictionary. This is used to encode the

examples using a Bag of Words (BOW) approach. Then a clas-

sifier is trained using the encoded examples. Next, the classifier

is applied on frames and this process repeats until convergence.

The approach also requires setting of several sensitive hyper-

parameters such as the parameters of super-pixel generation,

the number of clusters for building the dictionary and the con-

fidence threshold for positive sample collection. Since the neg-

ative examples come only from the scene background, the al-

gorithm may not work well for videos where there are multi-

ple moving objects. The evaluation is performed only on quite

straightforward datasets where there are only pedestrians mov-

ing about. Furthermore, the super-pixel extraction may not

work well for videos where pedestrians are medium or small-

sized. Most importantly, it is again not clear whether the adap-

tation performance actually comes from the adaptation algo-

rithm or from using a better feature extraction mechanism than

the baseline detector. This is important because if the base-

line classifier uses the same feature extraction mechanism (i.e.

super-pixel generation and BOW encoding) then it may be as

good as the final classifier. If this is the case, then it would

imply that the major part of the novelty is not in detector adap-

tation but in feature engineering.

The method proposed by Wang and Wang [11] iteratively im-

proves a generic pedestrian detector by selecting new confident

examples to add to the current dataset for retraining at every

iteration. In order to collect examples for each self-training it-

eration, their oracle is a combination of vehicle and pedestrian

paths, multiple different cues such as bounding box locations

and sizes, background subtraction, thresholds, filters and hier-
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archical clustering. To obtain vehicle and pedestrian paths, they

use the method of [43] which discovers motion patterns in long-

term videos using topic models such as Hierarchical Dirichlet

Processes [44]. The motion patterns are discovered in a bottom-

up manner by treating quantized optical flow velocity and posi-

tion (in the image plane) as low-level features, small video clips

as documents and then co-clustering using the topic models.

The approach requires quite extensive parameter setting and

tuning such as deciding the length of a video segment (for

topic modelling), setting the hyper-parameters for optimizing

the topic model and determining various parameters for differ-

ent filtering steps, clustering and background subtraction and

thresholds for object sizes. There is also a need to manually

label the discovered paths and an assumption that pedestrians

and vehicle paths are not overlapped to a certain degree. Lastly,

the number of iterations for self-training is also required to be

set and there is a possibility of drifting if too many iterations are

performed. The overview of their system is shown in Figure 12.

The method is extended in [10] by incorporating techniques

such as reweighting the source data, confidence propagation

and using the confidence when retraining rather than hard

thresholding. Using a much simpler and a more efficient non-

iterative algorithm, an improvement in state-of-the-art results

on these datasets was proposed by [45].

Recently, methods based on deep learning have also been at-

tempted for the purpose of domain adaptation [46, 47, 48, 49].

However, as most of them are using different datasets with var-

ious network configurations, architectures and parameter set-

tings and tunings. Thus, it is not possible, at this point in time,

to compare their approaches and the corresponding results in

a fair and transparent manner and it is unclear how well deep

learning really performs for use in domain adaptation. It is an

open and interesting research question that could be addressed

in the future.

4.4. Areas Related to Domain Adaptation

We now describe three areas of study somewhat related to

domain adaptation for object detection in videos. Firstly, in

Section 4.4.1, we highlight research on learning general mov-

ing object detectors in video. Secondly, in Section 4.4.2, we

discuss semi-supervised learning of object detectors in video.

And finally in Section 4.4.3, we end with weakly supervised

learning of object detectors.

4.4.1. Learning moving object detectors

The most common way of detecting foreground objects in

video is to use background subtraction followed by a grouping

technique such as Connected Component Analysis [50]. For

more information on different approaches to background sub-

traction, the reader is referred to various surveys [51, 52, 53].

In this subsection, we focus on approaches based on train-

ing (i.e. learning) classifiers to model and detect general fore-

grounds (i.e. significant objects) in the scene, often improving

the results of traditional background subtraction approaches by

utilising the generalising (and noise-reduction) power afforded

by the classifier training stage.

Figure 13: Office corridor scene used in [54]. Figure taken from [54].

Figure 14: Indoor scene for pedestrian detection in [56]. Figure taken from

[56].

The research problem tackled by these approaches is differ-

ent from domain adaptation explored in this paper. Moreover,

their goal is to “blindly” detect any foreground object in the

scene as opposed to being aware of specific object classes and

detecting them in the scene. However, we review these papers

for the sake of completeness since some of these methods do

use self-training-like algorithms.

Nair and Clark [54] propose an approach for online learning

of a moving object detector for an office corridor scene. An

online Winndow classifier is trained on features extracted from

foreground blobs obtained by background subtraction if fore-

ground blobs have the correct aspect ratio and size correspond-

ing to pedestrians. They evaluate their approach only on indoor

scenes (shown in Figure 13) where there is only one type of

moving object (i.e. pedestrian) for which background subtrac-

tion already performs quite well due to the restricted environ-

ment, where there are no major problems such as background

clutter, multiple categories of objects, large illumination vari-

ation and large cast shadows (which would change the aspect

ratios and sizes of detected blobs) that would be common in a

lot of outdoor surveillance type scenarios. The (intra-class vari-

ation of) background clutter of their indoor scene is quite small,

making the dataset not particularly challenging. A similar sys-

tem using online Adaboost is proposed by Roth et al. [55].

Grabner et al. [56] propose a “grid-based” pedestrian detec-

tion2 system based on training one classifier for each image lo-

cation (in the form of a pedestrian-sized window) and updating

2As will be explained later, their approach actually reduces to a foreground

detection system in scenes where there is more than one category of moving

objects. This is why we discuss their approach here.
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them independently online based on a simple update heuris-

tic. The update strategy works as follows: they fix the positive

class (with a small number of pedestrian examples) for all the

classifiers without any update and always update the negatives

with the assumption that the probability of wrongly updating

the negatives is very small. The method assumes that the intra-

class variation of the negative class (i.e. non-pedestrian patches)

at each image location is extremely small and takes advantage

of this to simplify the complexity of each classifier. While this

may be the case for some scenes, it is not true for many scenes

especially those where there is more than one class of objects.

In those types of scenes, many image locations would still have

to handle large intra-class variations (given by the combination

of intra-class variations of the background at that image loca-

tion and other object categories that may occupy the image lo-

cation at any time), rendering the original intention of simplify-

ing the task of the classifier ineffective. There are a number of

additional potential problems associated with the approach:

1. The positive class is fixed and never updated, which means

that the system may never detect some pedestrians which

are not well represented by the initial set of pedestrian ex-

amples.

2. The negative class is always updated, which means that

the negative class of each classifier will be dominated by

the background of the image location corresponding to

the classifier. This means that other (i.e. non-pedestrian)

classes of objects that occasionally move inside the im-

age location would most likely be erroneously classified as

“pedestrian” since the classifier will be quite certain that it

does not belong to the negative class (dominated by the

background).

3. If a pedestrian stays in a particular image location for a

long time, all the pedestrian patches in this duration will

be incorporated as “non-pedestrian” data and the resulting

classifier at that image location would then learn to clas-

sify pedestrians as “non-pedestrians” with high probability

(thereby decreasing the recall of the system).

4. Even though training one classifier per image location sim-

plifies the task of each classifier, the combined complexity

of all the classifiers is still much higher. And due to the

fact that negative data are not shared among the individual

classifiers, it can result in overfitting at the system level

(even if there is no overfitting at the individual classifier

level).

Because of these problems, the system may result in low re-

call and low precision simultaneously, especially in complex

surveillance-type scenes with multiple object categories. Coin-

cidentally, they evaluate their method only on relatively simple

indoor scenes where there is only one class of moving objects

as shown in Figure 14. In fact, rather than “pedestrian detec-

tion”, the system is more similar to the traditional background

subtraction and if applied to more complex scenes, it would not

be much different than block-based background subtraction ap-

proaches such as [57]. A similar system is also proposed by

Roth et al. [9].

Stalder et al. [58] extend [56] by updating both the positive

and negative classes in each image location (i.e. for each clas-

sifier) and proposing different update strategies than [56]. The

positive class for each image location is updated using the cur-

rent patch if it is verified by a fixed generic detector (which is

a global detector independent from the grid classifiers) or 3D

context (e.g. assumption of a common ground plane). Negative

class for each image location is updated by background images

at that location obtained by a long-term generative (pixel-based)

background subtraction algorithm.

Although the paper proposes more complex update heuris-

tics than [56] for the classifiers, it also somewhat defeats the

original purpose of having these grid-based classifiers, which is

to make the task of each classifier simple and robust to drift-

ing (at least for the positive class) by adopting fixed updating

strategies. Compared to [56], their approach opens up the pos-

sibility of positive class drifting. Moreover, updating the nega-

tive class with the results of background subtraction introduces

errors associated with most pixel-based and generative back-

ground subtraction methods. This problem is minimised in [56]

by avoiding pixel-wise background modelling and instead, by

modelling the large neighbourhood of pixels in a discriminative

fashion. Therefore, in [58], the need for grid-based classifiers

is no longer obvious. Furthermore, it also still shares a few

limitations of [56]. And lastly, it requires the assumption and

estimation of a single ground plane and 3D context which may

not be readily available.

4.4.2. Semi-supervised learning for object detection

In this section, we briefly review work on semi-supervised

learning of object detectors for videos. However, this work

solves a different problem than domain adaptation (i.e. semi-

supervised learning setting assumes that there is no source do-

main and some labelled data are always given in the target do-

main) but we include these here for completeness.

Levin et al. [59] propose a co-training [60] approach for

semi-supervised learning of vehicle detectors in video. Given

some labelled data in the target scene, firstly, a pair of car de-

tectors is trained; one of the pairs is trained on data for whose

feature extraction is performed on original images and for the

other, background subtracted images instead of the original im-

ages are used. Then these two classifiers are used to teach and

improve each other by “feeding” one the confident detections of

the other and retraining the classifiers. They tested their meth-

ods on videos of vehicles on a highway captured by a surveil-

lance camera. A similar co-training system is presented by

Javed et al. [61] by using online boosting.

Rosenberg et al. [62] use iterative self-training for semi-

supervised learning of an eye detector. For the “oracle” (i.e.

for selecting which examples to include for each iteration of

self-training), instead of using the detector’s own confidence,

the system uses nearest neighbour scores of all examples in the

current dataset to the detection, in an attempt to make the ora-

cle independent from the detection. However, the oracle is still
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Figure 15: An image is represented by a bag of multiple stable segments which

is obtained by collecting the outputs of different segmentation algorithms and

various segmentation parameters with the assumption that one of the segmenta-

tions in the bag would correctly correspond to the aeroplane. Then by looking

at multiple such bags corresponding to training images where each image con-

tains an aeroplane, the aeroplane category can be inferred and segmented in

each of the images. Figure taken from [64].

not independent because it is derived from the same dataset that

the detector was trained from. Their approach can also be seen

a type of co-training where two classifiers have two different

classifier types (i.e. inductive biases) and one of the classifiers

is fixed.

Ali et al. [63] propose an iterative self-training algorithm

based on Adaboost for semi-supervised learning of a pedestrian

detector in a video, given sparsely annotated video (i.e. a small

subset of all the frames in the video are labelled). Examples to

include for each iteration of the self-training is determined by

track smoothness. The method is however limited to Adaboost

and not applicable to other types of classifiers.

4.4.3. Weakly supervised learning for object detection

Galleguillos et al. [64] propose a weakly supervised ap-

proach to learn object detectors given weakly labelled images.

In their case, weakly labelled images are considered as images

containing the desired objects but the exact locations and spatial

extent of those objects are not specified.

However, the method does require the objects to be spatially

occupying the major portion of the images for their algorithm

to work well. To our knowledge, they are the first to use the

idea of “multiple stable segmentations” and Multiple Instance

Learning (MIL) for the purpose of training object detectors us-

ing weakly labelled images.

Multiple stable segmentations is an idea that in any image

containing an object of interest, an ensemble or bag of segmen-

tations obtained by multiple segmentation algorithms and dif-

ferent segmentations parameters will most likely result in the

object being correctly segmented in at least one of these seg-

mentations in the ensemble. Each image containing an object

can therefore be associated with a bag of segmentations from

which one of them corresponding to the desired object. This

is a much better and useful prior information than not having

any information about the object in the image. Since an image

containing an object can be represented with a bag (of possible

objects), MIL can be used to learn the most consistent object

category by optimizing across multiple such images and corre-

sponding bags. This is illustrated in Figure 15.

Weber et al. [65] propose another weakly supervised train-

ing approach to learn human face models and models of rear

views of cars. Again, similar to [64], their method assumes

that each object occupies the major portion of the correspond-

ing training image. They represent an object as a constellation

Figure 16: On the left is an example of interest point detection on an image con-

taining a face. The right picture shows a set of distinctive parts discovered by

clustering the patches corresponding to interest points across multiple training

images containing faces. Figure taken from [65].

Figure 17: Overview of the weakly supervised learning approach by Prest et

al. [69]. Figure taken from [69].

of parts where parts are detected by an interest point detector.

Distinctive parts are discovered by clustering the detected parts

(represented by features extracted from regions centred at the

interest points) in the training images. This is shown in Fig-

ure 16. Then object classes are learnt by searching for parts and

geometry of parts that are consistent across the training images.

The method requires high resolution images (for reliable part

detection) and is dependent upon the interest point detector to

consistently and correctly fire on actual part-like locations in

images. Moreover, if the background clutter is high, the system

may not correctly learn the desired models. Recently, methods

such as [66] have also been been proposed to deal with situa-

tions where there are multiple objects of interest and significant

background clutter in each image.

Blaschko et al. [67] and Pandey and Lazebnik [68] pro-

pose latent-SVM-based weakly supervised training algorithms

where the bounding boxes of objects are treated as latent vari-

ables to be inferred during training. The general problem, how-

ever, with these approaches is that the resulting optimization

function is very prone to get stuck in bad local optima un-

less there is a good initialisation. Although they propose some

heuristics for initialising such models, they are usually applica-

tion and object-specific. Moreover, the training algorithm can

also be very computationally expensive.

Prest et al. [69] propose a weakly supervised learning of ob-

ject detectors from short YouTube video clips where each video
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clip is assumed to contain an object of interest moving about.

A diagram illustrating the overview of their approach is shown

in Figure 17.

Their method first identifies candidate spatio-temporal tubes

from which at least one of them is very likely to contain a

moving object of interest in each video clip. Then from many

sets of these candidate spatio-temporal cubes from multiple

video clips, a consistent class of spatio-temporal cubes is found

by jointly considering all the spatio-temporal candidate cubes

across all the training video clips and minimising an objective

function.

Similar to many other weakly learning approaches, their ap-

proach also has an implicit assumption that objects of interest

occupy the majority of the spatio-temporal volume in the video

clips and the optimization algorithm can get stuck in bad local

optima without a suitable initialisation which is non-trivial.

5. Discussion

In this section, we recap, put into context and compare the

relevant representative papers that have been discussed in detail

in Section 4.

One of the most relevant works for domain adaptation for

images is by Gopalan et al. [25] who propose building inter-

mediate representations between source and target domains by

using geodesic flows. However, their approach requires sam-

pling a finite number of subspaces and tuning many parameters

such as the number of intermediate representations. Gong et

al. [27] improves on [25] by giving a kernel version of [25].

However both [25, 27] are dealing only with domain adaptation

for image classification as opposed to domain adaptation for

object detection. Moreover, their approaches, unlike [66], do

not learn deep representations required for manifolds that are

highly non-linear.

As can be observed in Section 4.3, the overwhelming ma-

jority of the state-of-the-art research for domain adaptation of

object detectors in videos use self-training in one form or an-

other [29, 30, 31, 32, 33, 36, 37, 38, 40, 42, 11, 10]. In order

to adapt a generic pedestrian detector to a specific scene, a typ-

ical system would run the generic detector on some frames in

a video, then score each detection using some heuristics and

afterwards, add the most confident positive and negative detec-

tions to the original dataset for retraining. This process is re-

peated over multiple iterations. Each of these approaches suf-

fers from a subset of the following problems:

1. The need to manually determine and set thresholds for

“the most confident” detections, “the least confident” de-

tections, low precision and high recall settings and so on.

2. Many of them only work with specific types of classifier

(such as Adaboost, cascaded classifiers and Multiple In-

stance Learning).

3. Most of them need setting of the number of iterations for

the iterative self-training.

4. Many of them are prone to drifting since wrongly labelled

examples in one iteration could make the detector become

progressively worse in the following iterations.

5. Most of them require the presence of the original dataset

for retraining. This is expensive especially for large

datasets and many a time, we may only have a generic

detector (which can be a classifier of any type) but not the

generic dataset itself (due to copyright reasons, etc.).

6. Most approaches have several sensitive parameters to set

and tune. And these parameters change for different

videos (or scenes), many of them cannot be set automati-

cally (for unsupervised domain adaptation) and for some,

it is non-trivial to tune them automatically without exten-

sive and very expensive cross validation.

7. Many of the approaches do not work well with low-

resolution far-field surveillance videos.

8. Some of them require labelled data (i.e. supervision) in the

target domain, i.e. they are supervised domain adaptation

approaches.

We now go through each of the representative related works

discussed Section 4.3 and briefly compare the papers.

Bose and Grimson[29] evaluate their approach on far-field

surveillance scenes. However, most of the improvement of their

detector adaptation comes from using a different and better fea-

ture extraction at test time. In contrast, in algorithms proposed

in works such as [45, 10, 11], the majority of the benefit of

domain adaptation is derived from the systematic and effec-

tive collection of scene-specific positive and negative examples.

Therefore, unlike [29], approaches proposed in [45, 10, 11] can

still improve performance further by extracting new and better

features specific to the scene after collecting the scene-specific

positive and negative data.

The approach by Wu and Nevatia [30] only works with part-

based detectors, so it is not really suitable for the majority of

holistic object detectors that we focus on in this paper.

The Multiple Kernel Learning approach of Kemhavi et

al. [31] is expensive at test time as opposed to algorithms pre-

sented in [45, 10, 11] which can generate a linear classifier (or

any type of classifier) for test time.

Wang et al. [32] and Sharma et al. [33] deal with domain

adaptation for pedestrian detection, however their approach is

not likely to work well for the low resolution videos. The su-

pervised domain adaptation approach of Jain and Farfade [37]

using cascade classifiers solves a different problem (i.e. (super-

vised domain adaptation) which is much easier than unsuper-

vised domain adaptation. The paper by Mirrashed et al. [40] re-

quires multiple (i.e. at least two) source domains whereas most

of the works reviewed in this paper assume that only one source

domain is available. The approach of Shu et al. [42] may work

poorly for videos with small pedestrians.

Compared to training object detectors using strong super-

vision, the literature concerning weakly supervised training is

limited. In the existing approaches, supervision is given in the
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form of image-level labels where the exact location and spatial

extent of objects of interest are considered unknown and treated

as latent variables to be inferred from data during training.

One of the ways of solving this problem is by formulating it

as Multiple Instance Learning (MIL) [35, 70] in which supervi-

sion labels are given at the bag level rather than at the instance

level. Each positive bag is assumed to contain at least one pos-

itive instance and each negative bag is assumed to contain all

negative instances. In order to generate positive bags and be-

cause the space of all possible object locations and sizes is too

large to be tractable during training, many existing approaches

use an ensemble of low-level segmentations to generate numer-

ous candidate regions with the assumption that at least one of

them contains the desired object [64, 71]. The output of such

a system, however, depends heavily on the results of segmenta-

tion.

Furthermore, most existing approaches work with datasets

where an object occupies a large central portion of each image

in most of the training images [72, 73, 71, 64]. This is in con-

trast to [66] which is dealing with far-field videos where there

are often multiple objects of varying sizes in each frame and

each object occupies only a tiny portion of a frame. Moreover,

[66] can work with low-resolution objects that do not allow so-

phisticated part-based modelling and discovery.

Deselaers et al. [74] propose an iterative algorithm to learn

object classes from weakly supervised images using a condi-

tional random field that progressively adapts to the new classes.

Chum and Zisserman [72] give an algorithm that locates im-

age regions corresponding to object classes of a set of training

images by optimizing an objective function that computes sim-

ilarity between pairs of images.

Considering classifier parameters and subwindows of objects

jointly as latent variables in an SVM classification objective

function, Nguyen et al. [73] optimize the function to infer the

variables. Weakly supervised learning is tackled as a structured

output learning framework in [67].

Most of the aforementioned approaches deal only with im-

ages and do not make use of information that can be exploited

in surveillance-type videos.

Recently, Prest et al. [69] propose a weakly supervised learn-

ing approach for YouTube video clips. Their approach, which

is essentially an extension of [74] to video, solves a fundamen-

tally different problem from most of other papers in that they

assume that small independent video clips are the training data

and each video clip contains the desired object class in a large

proportion of the spatio-temporal volume.

We now make some practical recommendations on which

methods should be preferred for certain situations.

If the target dataset (i.e. domain) is a video captured with

a static camera, it is best to use the iterative self-training al-

gorithms proposed in [10, 11, 45] because it makes maximum

use of cues available in video, resulting in the highest domain

adaptation accuracy. Moreover, not only it is reasonably effi-

cient and fast during training (i.e. during domain adaptation),

it is also very fast at test time since there is no need to per-

form expensive feature projection (as required by the domain

adaptation algorithm using feature projection approaches in

[25, 27, 28, 47]). In addition to this, if there is a generic de-

tector but if the corresponding generic dataset is not available,

the non-iterative self-training method in [45] should be used

since the algorithms in [10, 11] requires the generic dataset to

be present.

If smooth spatio-temporal constraints cannot be reliably ex-

ploited in the target domain (either due to the video camera

recording at very low frame rates, due to the presence of suffi-

ciently large camera movements or due to the fact that the target

domain is a set of static image collections with no temporal con-

nections), we would recommend using the feature learning and

projection approaches (such as in [46, 47, 48, 49]). However,

with these approaches, if faster pedestrian detection is desired,

we would recommend that during test time, rather than exhaus-

tive sliding window detection, some other methods (such as 3D

or ground plane information) should be used to limit the the

number of sliding windows that need to be evaluated.

Finally, in a situation where neither the generic dataset nor

the generic detector is present, domain adaptation is then not

possible and weakly-supervised learning approaches (e.g. [69,

74, 66]) should be used.

6. Conclusion & Future Directions

Due to the need for high performance in the automated anal-

ysis of the ever increasing amount of visual data, domain adap-

tation has become popular in recent years in the fields of com-

puter vision and machine intelligence. In this paper, we sur-

vey, review and analyse the most relevant works for domain

adaptation in the context of pedestrian detection in image and

video data. In order to provide readers with the necessary back-

ground, a brief tutorial on transfer learning and domain adap-

tation is also presented. Furthermore, in order to benefit prac-

titioners in real life scenarios, we make recommendations on

which domain adaptation methods should be preferred in spe-

cific situations.

In this field, there are a number of promising research di-

rections that can be identified. Firstly, it would be beneficial

to combine the two main streams of domain adaptation tech-

niques, which are iterative self-training and learning common

representations across the source and target datasets. By inte-

grating these two categories of methods in the future, we expect

that their advantages can be brought together and some of their

disadvantages can be eliminated, resulting in even higher do-

main adaptation performance.

Secondly, it can be observed that most of the existing do-

main adaptation systems in the literature require manual tun-

ing of sensitive hyper-parameters. This is especially more true

with the unsupervised domain adaptation methods. It is an open

research area to investigate how to perform “hands-off” fully-

automated domain adaptation that can simply be deployed with-

out the need for further intervention or assistance from human

operators. For supervised domain adaptation, it would be in-

terest to characterize the amount and nature of supervision re-

quired in the target dataset.
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Thirdly, a general method that can detect concept drifting

would be highly beneficial not only for domain adaptation, but

also for related areas such as semi-supervised learning.

And finally, a promising research area would be to integrate

domain adaptation with active learning, semi-supervised learn-

ing and weakly supervised learning, with the goal of minimis-

ing the cost (in terms of time, money, labour, etc.) involved in

training accurate object detectors. This will have wide-ranging

benefits in the area of Artificial Intelligence since objects form

the basic building blocks in reasoning about the visual world.
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