

This is a repository copy of Tanzania's reptile biodiversity: Distribution, threats and climate change vulnerability.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/id/eprint/102121/

Version: Accepted Version

Article:

Meng, Han, Carr, Jamie, Beraducci, Joe et al. (17 more authors) (2016) Tanzania's reptile biodiversity: Distribution, threats and climate change vulnerability. Biological Conservation. pp. 72-82. ISSN: 0006-3207

https://doi.org/10.1016/j.biocon.2016.04.008

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long as you credit the authors, but you can't change the article in any way or use it commercially. More information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Tanzania's Reptile Biodiversity: Distribution, Threats and Climate Change

2 Vulnerability

- 3 Han Meng a,c,r,*, Jamie Carr a,d, Joe Beraducci e, Phil Bowles b, William R. Branch f, Claudia Capitani g,
- 4 Jumapili Chenga ^h, Neil Cox ^b, Kim Howell ⁱ, Patrick Malonza ^j, Rob Marchant ^g, Boniface Mbilinyi ^k,
- 5 Kusaga Mukama¹, Charles Msuyaⁱ, Philip J. Platts^m, Ignas Safariⁿ, Stephen Spawls^o, Yara Shennan-
- 6 Farpon ^c, Philipp Wagner ^{p,s}, Neil D. Burgess ^{c,q}

8 Addresses:

7

1

- 9 ^a IUCN Global Species Programme, Cambridge, UK
- 10 b IUCN CI Biodiversity Assessment Unit, Global Species Programme c/o Conservation International
- 2011 Crystal Drive, Suite 500, Arlington, VA 22202 United States
- ^c United Nations Environment Programme World Conservation Monitoring Centre, 219 Huntington
- 13 Road, Cambridge, UK
- 14 d IUCN Species Survival Commission Climate Change Specialist Group
- 15 ^e MBT snake farm, Arusha, Tanzania
- 16 f Department of Zoology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
- 17 g York Institute for Tropical Ecosystems (KITE), Environment Department, University of York,
- 18 Heslington, York YO10 5DD, UK
- 19 h P.O.Box 391, Karatu, Tanzania
- ¹ P.O. Box 35064, Department of Zoology and Wildlife Conservation, University of Dar es Salaam,
- 21 Dar es Salaam, Tanzania
- 22 ^j Zoology Department, National Museums of Kenya, Kenya
- 23 ^k SokoineUniversity, P.O. Box 3000, ChuoKikuu, Morogoro, Tanzania
- ¹WWF Tanzania Country Programme Office, Mikocheni, Dar es Salaam, Tanzania
- ^m Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
- ⁿ Department of Conservation Biology, University of Dodoma, Tanzania
- ^o 7 Crostwick lane, Spixworth, Norwich NR10 3PE, UK
- ^p Zoologische Staatssammlung München, Münchhausenstraße 21, D81247 München, Germany
- ^q Natural History Museum, University of Copenhagen, Copenhagen, Denmark
- 30 ^r IUCN Commission on Ecosystem Management
- 31 Speartment of Biology, Villanova University, 800 Lancaster Avenue, Villanova, Pennsylvania
- 32 19085, USA

35

- *=Corresponding author contact: Tel +86 15201533250 or +44 (0)7533121149, E-mail:
- 34 han.meng@consultants.unep-wcmc.org

36 **Key words:** Species Richness, Red List, Traits, Protected Areas, Endemism, Conservation Priority

Abstract

Assessments of biodiversity patterns and threats among African reptiles have lagged behind those of other vertebrate groups and regions. We report the first systematic assessment of the distribution, threat status, and climate change vulnerability for the reptiles of Tanzania. A total of 321 reptile species (including 90 Tanzanian endemics) were assessed using the global standard IUCN Red List methodology and 274 species were also assessed using the IUCN guidelines for climate change vulnerability. Patterns of species richness and threat assessment confirm the conservation importance of the Eastern Arc Mountains, as previously demonstrated for birds, mammals and amphibians. Lowland forests and savannah-woodland habitats also support important reptile assemblages. Protected area gap analysis shows that 116 species have less than 20% of their distribution ranges protected, among which 12 are unprotected, eight species are threatened and 54 are vulnerable to climate change. Tanzania's northern margins and drier central corridor support high numbers of climate vulnerable reptile species, together with the eastern African coastal forests and the region between Lake Victoria and Rwanda. This paper fills a major gap in our understanding of the distribution and threats facing Tanzania's reptiles, and demonstrates more broadly that the explicit integration of climate change vulnerability in Red Listing criteria may revise spatial priorities for conservation.

1 Introduction

 Tanzania (Fig. 1) is characterised by a diverse range of landscapes and habitats, from mangroves through diverse savannah and forest habitats to alpine grasslands (Burgess et al., 2004). Some regions, for example the Eastern Arc Mountains, are thought to have acted as both refuges and areas of speciation during climatic cycles (Fjeldså and Lovett, 1997; Tolley et al., 2011). Tanzania's central arid region is regarded as an important element of Africa's 'Arid Corridor', facilitating faunal movements between the Namib in the south and Horn of African in the north (Bobe, 2006; Broadley, 2006). However, there is no documentation of vertebrate biodiversity patterns at the Tanzanian national scale, with studies focused on more local biodiversity centres (e.g. Eastern Arc: Rovero et al., 2014; Coastal Regions: Burgess and Clarke, 2000), or at regional (e.g. African: Brooks et al., 2001; Burgess et al., 2004; Platts et al., 2014) or global scales (Pimmet al., 2014). As Tanzania is party to many global conventions, in particular the Convention of Biological Diversity, the lack of appropriate data on biodiversity patterns and threats hinders the development of National Biodiversity Strategies

The IUCN Red List of Threatened Species (hereafter 'the Red List') provides the most widely-

and Actions Plans, and other national policy instruments.

73	accepted framework for assessing the types and severity of threats to the survival of individual species
74	(IUCN Standards and Petitions Subcommittee, 2014). Species distribution maps compiled during the
75	Red Listing process, using primary data and expert knowledge, represent a species' known global
76	range. In addition, the Red List system also gathers data of threats to species, which is being
77	augmented to explicitly consider the threats from climate change (Carr et al., 2013; Foden et al.,
78	2013). This development addresses some of the limitations of the Red List (Akçakaya
79	et al., 2006) and acknowledges that climate change poses an increasingly significant threat to species.
80	
81	Reptiles occur throughout Tanzania, with the exception of areas above the snowline (Spawls et al.,
82	2002). Some reptile species have very small, restricted ranges and rely upon highly-specific
83	environmental conditions, such as rainfall and temperature regimes and/or specific habitats in order to
84	undergo particular life-history events (e.g. Zani and Rollyson, 2011; Weatherhead et al., 2012).
85	Others, such as viviparous reptiles need to balance thermal budgets between normal daily activities
86	and reproductive demands. As such, reptiles are particularly sensitive to changes in insolation
87	(Sinervo et al., 2008) and may be especially vulnerable to climate change (Whitfield Gibbons et al.,
88	2000).
89	
90	Protected areas are an important conservation approach to preventing biodiversity loss. However, the
91	coverage of an existing protected area network, for example in Tanzania, does not always reflect the
92	distribution of species that may require protection with urgency (e.g. Sritharan and Burgess, 2012).
93	These gaps can be caused by various factors during the protected area planning stage, such as not
94	prioritising threatened or endemic biodiversity patterns, not considering global climate change as a
95	threat, and biases towards areas that can least prevent land conversion (Rodrigues et al., 2004; Joppa
96	and Alexander, 2009).
97	
98	In this paper we present new and existing reptile data for Tanzania to show: a) species richness; b)
99	richness of threatened species; and c) richness of species considered vulnerable to climate change.
100	Reptile distribution patterns are compared with those for birds, mammals and amphibians to
101	determine if biodiversity patterns are congruent between vertebrate groups. Gaps within Tanzania's
102	protected area network are identified by evaluating the extent of reptile range overlap with protected
103	areas. We also present knowledge-gaps that need to be filled for more effective conservation practices
104	in the future. Our analyses are targeted at policy-makers and planners, and aim to facilitate the
105	consideration of biodiversity in planning and conservation decision making and the better
106	understanding of future protection requirements.
107	

108

109				
110	2 Data and Methodology			
111				
112	2.1 Species data and the Red List assessment process			
113				
114	Species data came from two sources: i) an IUCN Red Listing Workshop in Bagamoyo, Tanzania			
115	(January 2014); and ii) published IUCN Red List assessments. Nine expert herpetologists (from the			
116	author list: CM; IS; JCh; JB; KH; PM; PW; SS; WB) attended the 2014 workshop where they			
117	completed the standard IUCN Red Listing process (IUCN Standards and Petitions Subcommittee,			
118	2014; IUCN, 2015) and also provided climate change vulnerability-related trait information (see			
119	Section 2.2). Prior to this workshop a total of 37 Tanzanian reptile species (excluding marine species)			
120	had been assessed for the IUCN Red List, although many were considered in need of updating.			
121				
122	The preliminary list of Tanzanian reptile species was derived from Spawls et al. (2002) and Menegon			
123	et al. (2008). This was cross referenced against field guides and atlases from other regions of Africa			
124	that share species with Tanzania (Southern Africa — Branch, 1998; West Africa — Trape et al.,			
125	2012a; Trape and Mané, 2006a; Cameroon — Chirio and LeBreton, 2007; Ethiopia — Largen and			
126	Spawls, 2010; Somalia — Lanza, 1990), and the Reptile Database (http://www.reptile-database.org)			
127	(Uetz and Hošek, 2013) was used to identify more recent descriptions. Inconsistencies between these			
128	lists were referred to experts for resolution. A number of major taxonomic studies and revisions have			
129	been undertaken since Spawls et al. (2002); key references consulted in this regard include Broadley			
130	and Wallach (2007, 2009: Typhlopidae); Adalsteinsson et al. (2009: Leptotyphlopidae); Trape et al.			
131	(2006: Atractaspis); Trape and Mané (2006b); Trape et al. (2012b) (Dasypeltis) and Kelly et al.			
132	(2008: Psammophiidae). One species, Agama dodomae, was included prior to its formal description			
133	following discussions with the describing author, as the description was due to be published prior to			
134	finalisation of the Red List results (Wagner, 2014). Species lists for chameleons, pythons and vipers			
135	were confirmed by the relevant IUCN SSC Specialist Groups.			
136				
137	Reptile range maps are presented on a 10 arc-minute grid (c. 19 km at the equator). To reduce errors			
138	of commission, we removed grid cells containing no elevations or habitat types deemed suitable for			
139	the species, following the procedure used for other taxa (Rondinini et al., 2005; Foden et al., 2013).			
140				
141	Through this process, we compiled distributional data for 279 of the 321 reptile species known to			
142	occur in Tanzania (Table 1), spanning 26 families and 102 genera (Table 2). We compiled Red List			
143	data for all 321 species, providing 184 published assessments and 137 'draft' assessments (i.e.			
144	currently unpublished; Table A1, Annex 1).			

145	
146	To investigate the spatial congruence of reptile species richness and richness in other vertebrate
147	groups, we obtained range maps for 188 amphibian, 356 mammal, and 1046 bird species, all recorded
148	as occurring in Tanzania, from the IUCN Red List of Threatened Species (IUCN, 2015)
149	(http://www.iucnredlist.org/technical-documents/spatial-data). For consistency with reptile richness,
150	individual species maps were gridded at 10 arc-minute resolutions and summed over species within a
151	group. We summarised spatial congruence between group richness using a Taylor diagram (Taylor,
152	2001), which normalises richness in each group to the interval [0,1], and then plots a comparison of
153	standard deviations, Pearson correlations and centred root-mean-squared differences between reptile
154	richness and richness in other groups (Taylor, 2001). Due to potentially confounding effects of spatial
155	autocorrelation, values of Pearson's r were checked against those derived from spatially random
156	samples of 30 cells (1% of the total), such that the mean distance (km) between adjacent sampling
157	points was 101 ± 10 s.d. over $10,000$ repetitions.
158	
159	2.2 Climate change vulnerability
160	
161	We applied the IUCN Climate Change Vulnerability Assessment Framework (Carr et al., 2013, 2014;
162	Foden et al., 2013) to 274 reptile species (Table 1). This framework uses biological traits and
163	ecological requirements (hereafter 'traits') to infer high sensitivity and/or low adaptive capacity to
164	climate change, together with measures of individual species' projected exposure to change, to
165	develop an overall insight into each species' relative vulnerability to climate change.
166	
167	We gathered data on 11 individual traits across four trait groups (referred to as 'level 1' in Table
168	A2.2, Annex 2) to identify species with high sensitivity to climate change: (i) specialised
169	habitat/microhabitat requirements; (ii) narrow environmental tolerances or thresholds that are likely to
170	be exceeded due to climate change at any stage in the life cycle; (iii) dependence on a specific
171	environmental trigger (e.g. for migration or reproduction) that is likely to be disrupted by climate
172	change; and (iv) dependence on inter-specific interactions, likely to be disrupted by climate change.
173	To assess poor adaptive capacity, we used five individual traits across two level 1 trait groups (Table
174	A2.3, Annex 2): (i) poor dispersability; (ii) poor evolvability, defined as low capacity to adapt in-situ
175	through genetic micro-evolution, based on proxies relating to a species' reproductive output and/or
176	generation length. Species possessing at least one trait under either of these two components were
177	considered to have high climate sensitivity or low adaptive capacity, according to the respective trait
178	(Foden et al., 2013).
179	
180	Species' exposure to climate change was assessed by overlaying projected changes in biologically-

181	relevant climatic variables on species' distribution maps (Table A2.1, Annex 2). Climate grids for			
182	1950-2000 were from WorldClim (Hijmans et al., 2005). For consistency with climate change			
183	vulnerability assessments of other groups (amphibians, birds and mammals), we used mean values to			
184	resample WorldClim grids from $30^{\prime\prime}$ (c. 1 km) to 10^{\prime} (c. 19 km). For future climate ($2041-2070$ and			
185	2071-2100) we used data from AFRICLIM v1 (Platts et al., 2015), which provides high-resolution			
186	ensemble means derived in a two-step downscaling procedure from eight CMIP5 General Circulation			
187	Models (GCMs): CanESM2, CNRM-CM5, EC-EARTH, GFDL-ESM2G, HadGEM2-ES, MIROC5,			
188	MPI-ESM-LR and NorESM1-M. First, each GCM was dynamically downscaled to a resolution of			
189	0.44° (c. 50 km) using the SMHI-RCA4 regional climate model, in order to better capture climatic			
190	processes operating at sub-GCM scales. Second, regional outputs were empirically downscaled (bias-			
191	corrected) against the WorldClim baselines (Platts et al., 2015). Two representative concentration			
192	pathways (RCPs) of the IPCC-AR5 were considered, characterising a stabilisation of radiative forcing			
193	shortly after 2100 (RCP4.5) or increasing greenhouse gas emissions over time (RCP 8.5) (van Vuuren			
194	et al., 2011).			
195				
196	Using these data, we calculated the projected changes in four variables: (i) absolute change in mean			
197	temperature; (ii) ratio of change in total precipitation; (iii) absolute change in temperature variability			
198	(calculated as the average absolute deviation from the mean); and (iv) ratio of change in precipitation			
199	variability (calculated in the same manner as iii). A species was designated as 'highly exposed' if its			
200	exposure with respect to any of these variables exceeded a given threshold. Following Foden et al.			
201	(2013) and other applications of the IUCN Climate Change Vulnerability Assessment Framework			
202	(e.g. Carr et al., 2013, 2014), thresholds were fixed across scenarios, at levels determined by the			
203	quartile of most severely exposed species under RCP4.5 (2041-2070).			
204				
205	Assessments of sensitivity, adaptability and exposure to climate change were combined to determine			
206	each species' overall vulnerability. Following Foden et al. (2013), only species scoring 'high' in all			
207	three components were considered to be climate change-vulnerable. Of the 274 species assessed for			
208	climate change vulnerability, $113\ (41.2\%)$ and $56\ (20.4\%)$ had unknown final adaptability and			
209	sensitivity scores, respectively (i.e. data were unavailable for at least one trait, and assessments were			
210	scored 'low' for all other traits in that group; see Table A3, Annex 3). To account for these missing			
211	trait data, we ran each assessment twice, assuming each missing data point as either 'low' (optimistic			
212	scenario) or 'high' (pessimistic scenario).			
213				
214	2.3 Protected area gap analysis			
215				

6

Using all species distribution data, we assessed the degree of overlap with protected areas (WDPA;

216

217	IUCN and UNEP-WCMC, 2014). Protected areas with only location (no boundary) information were
218	omitted from the analysis as it was not possible to calculate their overlap with species' ranges. All
219	categories of protected area were included (618 polygons in total). This protected area network
220	consists of 14 designation category types, with Forest Reserves comprising the majority (498; 80% of
221	protected areas).
222	
223	For each reptile species, we calculated protected area coverage within arbitrary protection thresholds
224	of 0–10% and 10–20% of the respective species' range. These thresholds are not specific to the levels
225	of habitat availability or integrity required for species' survival, but highlight generally low levels of
226	protection that may be targeted for intervention on a site-by-site or species-by-species basis.
227	
228	3 Results
229	
230	The overall distribution pattern of reptile species richness highlights the Eastern Arc Mountains and
231	the central and eastern regions of Tanzania as centres of reptile diversity (Fig. 2). Reptile richness is
232	strongly correlated with amphibian richness (Pearson's $r = 0.61$ on both the full dataset and under
233	subsampling), moderately correlated with bird richness (r=0.45 [0.38 under subsampling]), and
234	weakly correlated with mammal richness (r= 0.14 [0.21 under subsampling]).
235	
236	Ninety (28%) reptile species are endemic to Tanzania (Table A1, Annex 1). A particularly diverse and
237	endemic-rich group is the chameleons, with 24 endemics out of 39 species in total. Other diverse
238	genera include the geckos Lygodactlylus (17 species in total) and Hemidactylus (7), the scincid genus
239	Trachylepis (11), and the fossorial skink genera Melanoseps (7) and Scolecoseps (2). Tanzania's
240	terrestrial and arboreal snake fauna also contains high diversity within the genera <i>Philothamnus</i> (11),
241	Psammophis (10) and Lycophidion (9), as do burrowing snakes, such as the scolecophidian genera
242	Afrotyphlops (6) and Leptotyphlops (9).
243	
244	3.1 Diversity and distribution of threatened reptiles
245	
246	Forty-two (13%) reptile species are (provisionally, pending final reviewand publication) considered to
247	be globally threatened with extinction (Vulnerable, Endangered or Critically Endangered), and 36
248	(11%) have been assessed as Data Deficient (Table A1, Annex 1).
249	
250	The highest concentrations of threatened species (up to 16 species per grid cell) are found in the
251	Eastern Arc Mountains, especially the East Usambara Mountains near Tanga and the Uluguru
252	Mountains near Morogoro (Fig. 3a, b). Other montane areas, such as Mt. Kilimanjaro, the Udzungwa

Mountains and the Nguru Mountains, have up to eight threatened reptile species per grid cell. Other montane or coastal locations (Katavi, Rukwa, Lindi, Pwani, Mbeya and Njombe) contain one or two threatened species per grid cell. These patterns generally follow those of other vertebrate groups, with the East Usambara and Uluguru mountains always being prioritised, but the relatively low ranking of the Udzungwa Mountains differs from other groups where this mountain is normally the most important (see Rovero et al., 2014).
Our assessment of non-climatic threats to reptiles shows that 'agriculture/ aquaculture' and 'biological resource use' present the most significant threats (Table 3). Within these broad classifications, 'smallholder farming', 'logging and wood harvesting' and 'hunting and trapping' (both for 'intentional use' and for 'persecution/control') are common threat types.
The international pet trade poses a threat to some restricted-range reptile species, including Tanzanian endemics. In Tanzania, the majority of chameleon species are traded, often at unsustainable levels. The turquoise dwarf gecko (<i>Lygodactylus williamsi</i>) (Critically Endangered) is currently collected at unsustainable levels (Flecks et al., 2012). The pancake tortoise (<i>Malacochersus tornieri</i>) is also threatened by the pet trade (Klemens and Moll, 1995; UNEP-WCMC, 2015). Savannah-endemic species, such as Agama dodomae, are collected and traded in high and potentially unsustainable numbers (Wagner, 2010).
3.2 Diversity and distribution of climate change-vulnerable reptiles
For the period 2041–2070, using climate projections based on the RCP4.5 emission pathway a total of 186 species (68%) were considered as 'high' and 87 species (32%) as 'low' in terms of their projected exposure to climate change (Table A2.1, Annex 2). One species (b1%) was 'unknown', and this remained across all combinations of time periods and emissions pathways. For the period 2071 to 2100, based on RCP 4.5 (but using the same thresholds determined for the above results), 270 species (98.5%) were considered 'high' and three (1%) as 'low'. Using RCP 8.5, for both time periods, and again using the same thresholds, 273 species (> 99%) were considered 'high' and zero as 'low'.
A total of 194 reptile species (71% of the 274 assessed) possess traits that make them sensitive to climate change (Table A2.2, Annex 2). Within our analysis the most common traits were habitat specialization (Trait S1; 117 species; 43%) and dependence upon specific microhabitats (Trait S2; 72 species; 26%). Data gaps on the sensitivity of reptile species were most common when considering environmental cues and triggers that may be disrupted by climate change (Trait S8) and negative

289	species interactions that may increase as a result of climate change (Trait S11), which were unknown			
290	for 116 (42%) and 126 (46%) species, respectively.			
291				
292	One hundred and fifty-nine species (58%) were assessed as possessing traits that make them poorly			
293	able to adapt to climate change (Table A2.3, Annex 2). Among these traits, a low intrinsic capacity to			
294	disperse (Trait A2) was the most common, present in 136 species (50%). Data for traits relating to a			
295	species' capacity to adapt to change in-situ through genetic micro-evolution (Traits A4 and A5) were			
296	missing in many cases: information on reproductive output (Trait A4) was unavailable for 240 species			
297	(88%), and information on species maximum longevity (a proxy for generation length (Trait A5)) was			
298	unavailable for 264 species (96%).			
299				
300	When combining the exposure, sensitivity and adaptive capacity components, 86 (31%) or 175 (64%)			
301	reptile species were considered vulnerable to climate change by 2041–2070, using climate projections			
302	based on the RCP4.5 emissions pathway, and an optimistic or pessimistic assumption of missing data			
303	values, respectively (Fig. 4; Table A3, Annex 3). These numbers increase to 125 (46%) (optimistic) or			
304	248 (90.5%) (pessimistic) under rising emissions (RCP 8.5), and to 122 (45%) (optimistic)/245 (89%)			
305	(pessimistic) or 125 (46%) (optimistic)/ 248 (90.5%) (pessimistic) by 2071–2100 for RCP 4.5 and			
306	RCP 8.5, respectively (Table A3, Annex 3).			
307				
308	Focusing on mid-century (2041–2070) under RCP 4.5, which we consider more immediately relevant			
309	to conservation, the highest concentrations and proportions of climate change-vulnerable reptile			
310	species (up to 18 species per grid cell) are found in the dry habitats of northern Tanga (Fig. 3c, d). A			
311	broad area with 10 to 13 climate change-vulnerable reptile species per grid cell is found in the			
312	northeastern (bordering Kenya) and eastern (coastal and inland) parts of Tanzania. There are also			
313	regions of importance in Kagera, Rukwa, Dodoma, Morogoro and the islands of Zanzibar, Pemba and			
314	Mafia. These trends, although not absolute numbers, are consistent across emissions pathways (RCP			
315	4.5 or RCP8.5) and time-spans (2041-2070 or 2071-2100), and under different assumptions for			
316	missing data values (Table A3, Annex 3). Note, however, that maps are only presented for the RCP			
317	4.5/2041-2070 combination). These areas are not congruent with areas highlighted previously as			
318	containing high numbers of threatened species, a point which is discussed later in this paper.			
319				
320	3.3 Gaps in Tanzania's protected area network			
321				
322	Of the assessed reptile species with available distribution maps, 116 (42%) have less than 20% of			
323	their Tanzanian ranges protected by the current protected area network (54 of these with b10%). Of			
324	the species with $< 20\%$ protected, eight are threatened, and 54 to 70 (or 47–60%) are vulnerable to			

325	climate change under the RCP 4.5/2041–2070 to RCP 8.5/2071–2100 combinations (Table 4). Four
326	Tanzanian endemic species have no protection at all: Chirindia ewerbecki, Chirindia mpwapwaensis,
327	Ichnotropis tanganicana and Melanoseps pygmaeus.
328	
329	Gaps in the current protected area network were located in places that host high proportions of
330	globally threatened and climate change vulnerable species (Fig. 5). This includes mountain areas
331	north of Lake Malawi (Southern Highlands), large parts of the Eastern Arc Mountains, as well as
332	some small coastal forest patches (southern Lindi and southern Liwale) in the south-eastern part of the
333	country.
334	
335	Based on the above results, we identified nine species that are globally threatened, endemic to
336	Tanzania and climate change-vulnerable under all four combinations of year and emissions scenario
337	(Table A1, Annex 1 and Table A3, Annex 3): Afrotyphlops usambaricus, Lygodactylus conradti, L.
338	gravis, Proscelotes eggeli, Prosymna ornatissima, Scelotes uluguruensis, Typhlacontias kataviensis,
339	Urocotyledon wolterstorffi and Xyelodontophis uluguruensis. Among them, three (L. gravis, P. eggeli
340	and X. uluguruensis, see photos in Panel 1) have protected area coverage less than 20%.
341	
342	4 Discussion
343	
344	4.1 Major threats to Tanzanian reptiles
345	
346	Agriculture poses an important and increasing threat to Tanzania's reptiles. Demand for arable lands is
347	high (Newmark, 2002) and is projected to increase (Rosegrant et al., 2005) as a consequence of
348	Tanzania's rapid population growth, low productivity of traditional agricultural practices and
349	predominantly rain-fed production (MAFAP, 2013).
350	
351	Farmland covers a large proportion of the Eastern Arc region, which contains forests and montane
352	grasslands that are the most biologically diverse areas for reptiles in Tanzania. The Eastern Arc region
353	has lost over 75% of its forest cover to agriculture (Hall et al., 2009) and now also supports a high
354	human population density mostly reliant on subsistence agriculture (Platts et al., 2011).
355	
356	The Eastern Arc region is also highly vulnerable to logging, and other wood uses, particularly due to
357	its relative proximity to the rapidly expanding city of Dar es Salaam, and the associated increasing
358	pressures on forest resources (Ahrends et al., 2010; Schaafsma et al., 2014).
359	
360	The development of softwood plantations in Tanzania's montane grasslands poses threats to
	The development of softwood plantations in Tanzania's montaine grassiands poses uneats to

361	grassland-specialised endemics such as the Udzungwa long-tailed seps (Tetradactylus udzungwensis)			
362	(Endangered). Similar pressures are likely to threaten the Southern Highlands grassland lizard and the			
363	Ukinga mountain skink (Trachylepis brauni) (Vulnerable) in the future. Softwood plantations may			
364	expand in the grasslands around the existing Sao Hill plantation (Ngaga, 2011).			
365				
366	Tanzania is one of the four major chameleon-exporting countries in Africa (others being Madagascar,			
367	Togo and Kenya), accounting for 15% of the individuals and 38 species being exported and recorded			
368	by import countries between 1977 and 2001 (Carpenter et al., 2004). The latest official CITES trade			
369	records indicate that a few hundred specimens were legally traded in 2014 (although significant illegal			
370	trade is suspected). Anderson (2014) argued that the absence of leaf chameleons (Rhampholeon			
371	species) on CITES regulations has led to unsustainable harvesting and export of species from this			
372	group, for example Rhampholeon spinosus (Endangered). Trade is also a major threat to Tanzania's			
373	marine turtles, tortoises and pythons. Turtles and their products are traded internationally, supplying			
374	protein, leather, oil and ornamental objects to markets in Europe, America and Asia (Muir, 2005).			
375	Pythons are threatened by the emerging trade in skins (and, reputedly, meat).			
376				
377	4.2 Climate change impacts			
378				
379	The Red List is acknowledged to have shortcomings when considering climate change impacts			
380	(Akçakaya et al., 2006). Such shortcomings were the primary factor leading IUCN to develop and			
381	apply its trait based climate change vulnerability assessment approach.			
382				
383	The climate change vulnerability methodology used here employs arbitrary thresholds for continuous			
384	variables (e.g. 25% of species with greatest exposure to change in a given variable), rather than			
385	empirically tested thresholds of vulnerability. Our results therefore give an indication of which			
386	reptiles are likely to be most vulnerable to climate change within this group, but it is inappropriate to			
387	compare degrees of vulnerability between different taxonomic groups. Although this protocol broadly			
388	followed Foden et al. (2013), the use of reproductive output or generation length as a proxy for			
389	adaptive capacity may need further consideration. Other factors (e.g. body size) may provide better			
390	proxies for adaptive capacity.			
391				
392	When comparing spatial priorities for non-climate threatened reptiles with those for climate			
393	threatened reptiles, it is clear that these are not congruent. The main areas of non-climate threat are in			
394	the Eastern Arc and coastal forests in the east of the country, whereas the main areas of climate threat			
395	are in the northern coastal and north western margins of the country. This demonstrates how these two			
396	measures suggest different priority regions within a single country. Similar results were found at the			

397	Africa-wide scale by Garcia et al. (2014). Within Tanzania the current Red List assessment for		
398	reptiles primarily indicates regions suffering from the impacts of agricultural expansion, logging and		
399	the pet trade. These tend to be focused on the mountains and lowland forests in the east of the country		
400	In comparison, the regions where climate change is projected to be more of a challenge are located		
401	mainly in the north and west of the country, in already drier regions where human use is less of an		
402	issue. As climate vulnerability assessments are, however, missing for chameleons, it is possible that		
403	the vulnerability of some mountain regions for reptiles has been underestimated in this paper.		
404			
405	4.3 Key areas for the conservation of Tanzanian reptiles		
406			
407	It might be expected that the cooler and wetter mountain regions would be less favourable to		
408	ectothermic reptiles, when compared with warmer lowlands. However, this is not the case and		
409	Tanzania shows broadly the same patterns of richness for reptiles as for other vertebrate groups (Fig.		
410	2; Rovero et al., 2014), though less so for mammals. In particular, the Eastern Arc emerges as by far		
411	the most important region of the country for reptiles, as it is for other vertebrate groups. This may be a		
412	product of allopatric speciation and/or a high diversity of available niches (Szabo et al., 2009;		
413	Belmaker and Jetz, 2011), but may also be the result of more intense collecting efforts in the Eastern		
414	Arc, as previously demonstrated by the relationship between funding for biodiversity surveys and		
415	plant and vertebrate biodiversity measures (Ahrends et al., 2011; Rovero et al., 2014).		
416			
417	Our analysis shows that although most priority areas for reptiles in Tanzania such as the Eastern Arc		
418	region are already legally protected within reserves under various categories, especially Forest		
419	Reserves under the Tanzania Forest Service, gaps still exist when comparing the protected area		
420	coverage with globally threatened and climate change vulnerable species' distribution ranges.		
421	Furthermore, some of these reserves are, in reality, poorly funded relative to, for example National		
422	Parks (Green et al., 2012) and suffer considerable encroachment, degradation and deforestation		
423	(Ahrends et al., 2010; Pfeifer et al., 2012). This means that in order to ensure the long term		
424	conservation of reptiles in Tanzania, improved management of some reserves and in some cases the		
425	reconsideration of the reserves' range is critical.		
426			
427	4.4 Gaps in knowledge		
428			
429	As with most other regions, the distribution of Tanzania's reptiles is imperfectly known, with new		
430	species being regularly described (e.g. Menegon et al., 2011; Rovero et al., 2014). The rate of new		
431	reptile descriptions in Africa shows little indication of reaching a plateau (Menegon et al., 2015), and		
432	species numbers have increased by 65% in the last 26 years (Branch unpubl. obs.). Within Tanzania it		

433	is likely that the number of discovered reptile species, and hence their inferred patterns of richness			
434	and endemism, to some extent follow the intensity of collecting efforts and the availability of funding			
435	used on field surveys (Rovero et al., 2014). Elsewhere in Africa, new discoveries are often in reptile			
436	groups associated with rocky and xeric habitats (Branch, 2014). In Tanzania such habitats remain			
437	particularly poorly surveyed, despite a number of studies (e.g. Broadley, 2006; Bauer and Menegon,			
438	2006) indicating that they contain hidden diversity. For instance, the biodiversity wealth of Eastern			
439	Arc Mountains is well known due to the extensive scientific focus it has obtained, but the Southern			
440	Highlands, to the south of Eastern Arc Mountains, divided by the Makambako gap, remains poorly			
441	known and has stronger affinities to the Eastern Arc than was previously acknowledged (Menegon et			
442	al., 2015).			
443				
444	The findings presented by this paper, around the distribution patterns of species richness, globally			
445	threatened species and climate change vulnerable species and the gaps existing in current protected			
446	area network, provide valuable information for policy makers, national and international conservation			
447	communities. We believe the results will help improve Tanzania's conservation action plans and			
448	investment strategies that contribute to closing knowledge-gaps on reptiles and other biodiversity.			
449				
450	5 Acknowledgements			
451				
452	We thank the Norwegian Government (Project Number TAN-09/049) through their Embassy in Dar			
453	es Salaam (Tanzania) for funding that has contributed to the development of the Red Listing of			
454	Tanzanian reptiles and their climate change vulnerability. The WWF Tanzania Country Programme			
455	Office is thanked for their efforts in managing the project that provided funding for this paper. Rob			
456	Marchant, Phil Platts, Claudia Capitani and Neil Burgess also thank the Ministry for Foreign Affairs,			
457	Finland, for funding support through the Climate Change Impacts on Ecosystem Services and Food			
458	Security in Eastern Africa (CHIESA) project.			
459				
460	6 Appendix A. Supplementary data			
461				
462	Supplementary data to this article can be found online at			
463	http://dx.doi.org/10.1016/j.biocon.2016.04.008.			
464				
465	7 References			
466				
467	Adalsteinsson, S.A., Branch, W.R., Trapé, S., Vitt, L.J., Hedges, S.B., 2009. Molecular phylogeny,			
468	classification, and biogeography of snakes of the family Leptotyphlopidae (Reptilia, Squamata).			

- 469 Zootaxa 2244, 1–50.
- 470 Ahrends, A., Burgess, N.D., Milledge, S.H., Bulling, M.T., Fisher, B., et al., 2010. Predictable waves
- 471 of sequential forest degradation and biodiversity loss spreading from an African city. Proceedings of
- the National Academy of Sciences of the United States of America. 107, pp. 14556–14561.
- Ahrends, A., Burgess, N.D., Gereau, R.E., Marchant, R., Bulling, M.T., et al., 2011. Funding begets
- biodiversity. Divers. Distrib. 17, 191–200.
- Akçakaya, H.R., Butchart, S.H.M., Mace, G.M., Stuart, S.N., Hilton-Taylor, C., 2006. Use and misuse
- of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Glob. Chang.
- 477 Biol. 12, 2037–2043.
- Anderson, C.V., 2014. The trade status of Rhampholeon spinosus. Chameleons! Online EZine, June
- 479 2014 http://www.chameleonnews.com/14JunAndersonSpinosus.html.
- Bauer, A.M., Menegon, M., 2006. A new species of prehensile-tailed gecko, *Urocotyledon*
- 481 (Squamata: Ekkonidae), from the Udzungwa Mountains, Tanzania. Afr. J. Herpetol. 55 (1), 13–22.
- Belmaker, J., Jetz, W., 2011. Cross-scale variation in species richness—environment associations.
- 483 Glob. Ecol. Biogeogr. 20, 464–474.
- Bobe, R., 2006. The evolution of arid ecosystems in eastern Africa. J. Arid Environ. 66, 564–584.
- Branch, W.R., 1998. Field Guide to Snakes and Other Reptiles of Southern Africa. Struik Publishers,
- 486 Cape Town.
- Branch, W.R., 2014. Reptiles of South Africa, Lesotho and Swaziland: Conservation status, diversity,
- 488 endemism, hotspots and threats. In: Bates, M.F., Branch, W.R., Bauer, A.M., Burger, M., Marais, J.,
- 489 et al. (Eds.), Atlas and Red Data Book of the Reptiles of South Africa, Lesotho and Swaziland.
- 490 Suricata 1, South African National Biodiversity Institute, Pretoria, pp. 22–50.
- 491 Broadley, D.G., 2006. A new species of *Typhlacontias* (Reptilia: Scincidae: Feylininae) from western
- 492 Tanzania. Proceedings of the California Academy of Science 57 (20), 557–560.
- Broadley, D.G., Wallach, V., 2007. A review of East and Central African species of *Letheobia Cope*,
- revived from the synonymy of *Rhinotyphlops Fitzinger*, with descriptions of five new species.
- 495 Zootaxa 1515, 31–68.
- Broadley, D.G., Wallach, V., 2009. A review of the eastern and southern African blind snakes
- 497 (Serpentes: Typhlopidae), excluding *Letheobia Cope*, with the description of two new genera and a

- 498 new species. Zootaxa 2255, 1–100.
- Brooks, T., Balmford, A., Burgess, N., Fjeldså, J., Hansen, L.A., et al., 2001. Towards a blueprint for
- 500 conservation in Africa. Bioscience 51, 613–624.
- Burgess, N., D'Amico Hales, J., Underwood, E., Dinerstein, E., Olson, D., et al., 2004. Terrestrial
- 502 Ecoregions of Africa and Madagascar: A Continental Assessment. Island Press, Washington DC, pp.
- 503 1–501.
- 504 Burgess, N.D., Clarke, G.P. (Eds.), 2000. The Coastal Forests of Eastern Africa. IUCN Forest
- 505 Conservation Programme, Gland and Cambridge, pp. 1–435.
- 506 Carpenter, A.I., Marcus Rowcliffe, J., Watkinson, A.R., 2004. The dynamics of the global trade in
- 507 chameleons. Biol. Conserv. 120, 291–301.
- Carr, J.A., Outhwaite, W.E., Goodman, G.L., Oldfield, T.E.E., Foden, W.B., 2013. Occasional Paper
- of the Species Survival Commission No. 48. Available at:
- 510 https://portals.iucn.org/library/efiles/edocs/SSC-OP-048.pdf.
- 511 Carr, J.A., Hughes, A.F., Foden, W.B., 2014. A Climate Change Vulnerability Assessment of West
- 512 African Species. UNEP-WCMC Technical Report. Available at http://www.parcc-web.org/parcc-
- 513 project/documents/2014/04/carr-et-al-2014-a-climatechangevulnerability-assessment-of-west-african-
- 514 species-main-report-unep-wcmctechnical-report.pdf.
- 515 Chirio, L., LeBreton, M., 2007. Atlas Des Reptiles Du Cameroun. IRD Editions, Paris.
- 516 Foden, W.B., Butchart, S.H.M., Stuart, S.N., Vié, J., Akçakaya, H.R., et al., 2013. Identifying the
- world's most climate change-vulnerable species: a systematic trait-based assessment of all birds,
- amphibians and corals. PLoS One 8, e65427.
- 519 Fjeldså, J., Lovett, J.C., 1997. Biodiversity and environmental stability. Biodivers. Conserv. 6, 315–
- 520 323.
- Flecks, M., Weinsheimer, F., Böhme, W., Chenga, J., Lötters, S., et al., 2012. Watching extinction
- happen: the dramatic population decline of the critically endangered Tanzanian turquoise dwarf
- 523 gecko, *Lygodactylus williamsi*. Salamandra 48 (1), 12–20.
- 524 Garcia, R.A., Arãujo, M.B., Burgess, N.D., Foden, W.B., Gutsche, A., et al., 2014. Matching species
- traits to projected threats and opportunities from climate change. J. Biogeogr.
- 526 http://dx.doi.org/10.1111/jbi.12257.

- 527 Green, J.H.M., Burgess, N.D., Green, R.E., Madoffe, S.S., Munishi, P.K.T., et al., 2012. Estimating
- management costs of protected areas: a novel approach from the Eastern Arc Mountains, Tanzania.
- 529 Biol. Conserv. 150, 5–14.
- Hall, J., Burgess, N.D., Lovett, J., Mbilinyi, B., Gereau, R.E., 2009. Conservation implications of
- deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. Biol. Conserv.
- 532 142, 2510–2521.
- Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution
- interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978.
- 535 IUCN and UNEP-WCMC (2014). The World Database on Protected Areas (WDPA) [Online],
- [October 2014]. Cambridge, UK: UNEP-WCMC. Available at: www.protectedplanet.net.
- 537 IUCN, 2015. IUCN Spatial Data Resources. http://www.iucnredlist.org/technicaldocuments/red-list-
- training/iucnspatialresources Accessed August 2015.
- 539 IUCN Standards and Petitions Subcommittee, 2014. Guidelines for Using the IUCN Red List
- 540 Categories and Criteria. Version 11. Prepared by the Standards and Petitions Subcommittee.
- Downloadable from http://www.iucnredlist.org/ documents/RedListGuidelines.pdf.
- Joppa, L.N., Alexander, P., 2009. High and far: biases in the location of protected areas. PLoS One 4
- 543 (12).
- Kelly, C.M.R., Barker, N.P., Villet, N.H., Broadley, D.G., Branch, W.R., 2008. The snake family
- 545 Psammophiidae (Reptilia: Serpentes): phylogenetics and species delimitation in the African sand
- snakes (Psammophis Boie, 1825) and allied genera. Mol. Phylogenet. Evol. 47, 1045–1060.
- Klemens, M.W., Moll, D., 1995. An assessment of the effects of commercial exploitation on the
- 548 pancake tortoise, *Malacochersus tornieri*, in Tanzania. Chelonian Conservation and Biology 1, 197–
- 549 206.
- 550 Largen, M., Spawls, S., 2010. The Amphibians and Reptiles of Ethiopia and Eritrea. Edition
- 551 Chimaira, Frankfurt am Main, Germany.
- Lanza, B., 1990. Amphibians and reptiles of the Somali Democratic Republic: checklist and
- biogeography. Biogeographica 407–465.
- Lanza, B., Broadley, D.G., 2014. A review of the genus *Gonionotophis* in northeastern Africa
- 555 (Squamata: Lamprophiidae). Acta Herpetologica 9 (1), 89–97.

- 556 MAFAP, 2013. Review of Food and Agricultural Policies in the United Republic of Tanzania.
- 557 MAFAP Country Report Series. FAO, Rome, Italy 221 pp.
- Menegon, M., Doggart, N., Owen, N., 2008. The Nguru Mountains of Tanzania, an outstanding
- hotspot of herpetofaunal diversity. Acta Herpetologica 3, 107–127.
- Menegon, M., Davenport, T.R.B., Howell, K.M., 2011. Description of a new and critically
- endangered species of Atheris (Serpentes: Viperidae) from the southern highlands of Tanzania, with
- an overview of the country's tree viper fauna. Zootaxa 3120, 43–54.
- Menegon, M., Loader, S.P., Davenports, T.R.B., Howell, K.M., Tilbury, C.R., et al., 2015. A new
- species of chameleon (Sauria: Chamaeleonidae: Kinyongia) highlights the biological affinities
- between the southern highlands and Eastern Arc Mountains of Tanzania. Acta Herpetologica 10 (2),
- 566 111–120.
- Muir, C., 2005. The Status of Marine Turtles in the United Republic of Tanzania, East Africa. Sea
- Sense (Tanzania Turtle and Dugong Conservation Programme).
- Ngaga, Y.M., 2011. Forest plantations and woodlots in Tanzania. African forest forum working paper
- 570 series 1 (16).
- Newmark, W.D., 2002. Conserving Biodiversity in East African Forests: A Study of the Eastern Arc
- Mountains. Springer Science and Business Media, p. 197.
- Pfeifer, M., Burgess, N.D., Swetnam, R.D., Platts, P.J., Willcock, S., et al., 2012. Protected areas:
- mixed success in conserving East Africa's evergreen forests. PLoS One 7 (6), e39337.
- 575 http://dx.doi.org/10.1371/journal.pone.0039337.
- Pimm, S.L., Jenkins, C.N., Abell, R., Brooks, T.M., Gittleman, J.L., et al., 2014. The biodiversity of
- 577 species and their rates of extinction, distribution, and protection. Science 344 (6187).
- 578 http://dx.doi.org/10.1126/science.1246752.
- 579 Platts, P.J., Burgess, N.D., Gereau, R.E., Lovett, J.C., Marshall, A.R., et al. (2011). Delimiting tropical
- 580 mountain ecoregions for conservation. Environ. Conserv., 38, 312–324.
- Platts, P.J., Garcia, R.A., Hof, C., Foden, W., Hansen, L.A., et al., 2014. Conservation implications of
- omitting narrow-ranging taxa from species distribution models, now and in the future. Divers. Distrib.
- 583 20, 1307–1320.
- Platts, P.J., Omeny, P.A., Marchant, R., 2015. AFRICLIM: high-resolution climate projections for

- ecological applications in Africa. Afr. J. Ecol. 53, 103–108.
- Rodrigues, A.S.L., Andelman, S.J., Bakarr, M.I., Boitanl, L., Brooks, T.M., et al., 2004. Effectiveness
- of the global protected area network in representing species diversity. Nature 428 (6983), 640–643.
- Rondinini, C., Stuart, S., Boitani, L., 2005. Habitat suitability models and the shortfall in conservation
- planning for African vertebrates. Conserv. Biol. 19 (5), 1488–1497.
- Rosegrant, M.W., Cline, S.A., Li, W., Sulser, T.B., Valmonte-Santos, R.A., 2005. Looking Ahead:
- 591 Long-TermProspects for Africa's Agricultural Development and Food Security. 2020 Discussion
- Paper No. 41 International Food Policy Research Institute, Washington, D.C.
- Rovero, F., Menegon, M., Fjeldså, J., Collett, L., Doggart, N., et al., 2014. Targeted vertebrate
- surveys enhance the faunal importance and improve explanatory models within the Eastern Arc
- Mountains of Kenya and Tanzania. Divers. Distrib. http://dx.doi.org/10.1111/ddi.1224.
- 596 Schaafsma, M., Burgess, N.D., Swetnam, R.D., Ngaga, Y.M., Turner, R.K., et al., 2014. Market
- signals of unsustainable and inequitable forest extraction: assessing the value of illegal timber trade in
- the Eastern Arc Mountains of Tanzania. World Dev. 62, 155–168.
- 599 Sinervo, B., Méndez-de-la-Cruz, F., Miles, D.B., Heulin, B., Bastiaans, E., et al., 2008. Erosion of
- 600 lizard diversity by climate change and altered thermal niches. Science 328 (5980), 894–899.
- Spawls, S., Howell, K., Drewes, R., Ashe, J., 2002. A Field Guide to the Reptiles of East Africa.
- Kenya, Tanzania, Rwanda and Burundi. Academic Press, London, UK.
- 603 Sritharan, S., Burgess, N.D., 2012. Protected area gap analysis of important bird areas in Tanzania.
- 604 Afr. J. Ecol. 50 (1), 66–76.
- Szabo, N.D., Algar, A.C., Kerr, J.T., 2009. Reconciling topographic and climatic effects on
- widespread and range-restricted species richness. Glob. Ecol. Biogeogr. 18, 735–744.
- Taylor, K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. J.
- 608 Geophys. Res. 106, 7183–7192.
- Tolley, K.A., Tilbury, C.R., Measey, G.J., Menegon, M., Branch, W.R., et al., 2011. Ancient forest
- fragmentation or recent radiation? Testing refugial speciation models in chameleons within an African
- biodiversity hotspot. J. Biogeogr. 38, 1748–1760.
- Trape, J.-F., Mané, Y., 2006a. Guide des serpents d'Afrique occidentale—savane et désert. IRD
- 613 Editions, Paris.

- 614 Trape, J.-F., Mané, Y., 2006b. Le genre Dasypeltis Wagler (Serpentes: Colubridae) en Afrique de
- l'Ouest: description de trois especes et d'une sous-espece nouvelles. Bulletin of the Society of
- 616 Herpetology of France 119, 27–56.
- Trape, S., Mediannikov, O., Trape, J.-F., 2012a. When colour patterns reflect phylogeography: new
- species of Dasypeltis (Serpentes: Colubridae: Boigini) from West Africa. Comptes Rendus Biologies
- 619 335 (7), 488–501.
- Trape, J.-F., Trape, S., Chirio, L., 2012b. Lézards, crocodiles et tortues d'Afrique occidentale et du
- 621 Sahara. IRD Editions, Marseille.
- Trape, J.-F., Mané, Y., Ineich, I., 2006. Atractaspis microlepidota, A. micropholis et A. watsoni en
- Afrique occidentale et centrale. Bulletin de la Société Herpétologique de France 2006 (119), 5–16.
- 624 Uetz, P. and Jirí Hošek (eds.), The Reptile Database, http://www.reptile-database.org, accessed
- October-November 2013.
- 626 UNEP-WCMC, 2015. Report on Standing Committee Recommendations to Suspend Trade That Were
- Made More Than Two Years Ago Through the Review of Significant Trade. UNEP-WCMC,
- 628 Cambridge.
- van Vuuren, D.P., Edmonds, J., Kainuma, M.L.T., Riahi, K., Thomson, A., et al., 2011.
- Representative concentration pathways: an overview. Clim. Chang. 109, 5–31.
- Wagner, P., 2010. Diversity and distribution of African reptiles, with a special focus on agamid
- lizards (Unpublished PhD thesis) University of Bonn 374 p.
- Wagner, P., 2014. A new cryptic species of the Agama lionotus complex from south of the Ngong
- 634 Hills in Kenya. Salamandra 50 (4), 187–200.
- Weatherhead, P.J., Sperry, J.H., Carfagno, G.L.F., Blouin-Demers, G., 2012. Latitudinal variation in
- thermal ecology of North American ratsnakes and its implications for the effect of climate warming
- 637 on snakes. J. Therm. Biol. 37, 273–281.
- Whitfield Gibbons, J., Scott, D.E., Ryan, T.J., Buhlmann, K.A., Tuberville, T.D., et al., 2000. The
- 639 global decline of reptiles, déjà vu amphibians. Bioscience 50 (8), 653–666.
- Zani, P.A., Rollyson, M., 2011. The effects of climate modes on growing-season length and timing of
- reproduction in the Pacific northwest as revealed by biophysical modeling of lizards. Am. Midl. Nat.
- 642 165, 372–388.

Table 1. Number of Tanzanian reptile species with available distribution maps that were assessed for Red List status and/or climate change vulnerability.

Sources of species data	Number of species with available distribution maps	Number of species included in Red List Assessment	Number of species included in Climate change Vulnerability Assessment
Bagamoyo Workshop, January	269 ¹	276^{2}	274^{3}
2014, Tanzania			
Additional species (predominantly Chameleons)	10	45	Not assessed
Total	279	321	274

Notes:

Of all species, 273 had available distribution maps, but the full distributions of four species were uncertain at the time of analysis, and so their distribution maps were excluded: *Causus bilineatus*,

Congolacerta vauereselli, Gonionotophis unicolor (now Gonionotophis chanleri following Lanza and Broadley, 2014) and *Hemidactylus modestus*.

² Of the 280 species considered at the Bagamoyo workshop, four were omitted: *Agama persimilis* and *Telescopus dhara*, due to their first records from Tanzania being new reports; *Lygodactylus gutturalis* and *Megatyphlops mucroso* (now *Afrotyphlops* following Hedges *et al.*, 2014) were omitted due to errors regarding their countries of occurrence at the time of data collection.

³ Trait data were collected only for species considered at the Bagamoyo workshop, of which, in addition to the four species omitted from Red List assessment, a further two species were excluded from the climate change vulnerability assessment: *Python sebae* was omitted from the assessment process due to human error; *Lycophidion pembanum* was only ever known from historical records and was therefore not considered in this study. See Table 2 for more detail on the number of species not assessed for climate change vulnerability.

Table 2. Taxonomic table summarising reptile species considered in this paper. For each species family, numbers of total species, genera, endemic species, as well as numbers of species that are Critically Endangered (CR), Endangered (EN), Vulnerable (VU), Near Threatened (NT), Least Concern (LC), Data Deficient (DD), Not Evaluated (NE) and climate change-vulnerable are included. 'N/A' means the species' Red List status was not set at the time of analysis.

Family	Total species	Genera	Endemic	CR	EN	VU	NT	LC	DD	N/A	NE	CC Vulnerable	Not assessed for CC vulnerability
AGAMIDAE	9	2	3	0	0	1	0	8	0	0	0	0	1
AMPHISBAENIDAE	10	4	7	0	0	0	0	2	8	0	0	6	
ATRACTASPIDIDAE	17	6	1	0	0	1	0	16	0	0	0	7	
BOIDAE	1	1	0	0	0	0	0	1	0	0	0	0	
CHAMAELEONIDAE	39	5	24	1	9	1	4	24	0	0	0	0	39
COLUBRIDAE	36	15	3	0	1	1	1	33	0	0	0	4	1
CORDYLIDAE	6	3	1	0	0	0	0	5	1	0	0	3	
CROCODYLIDAE	2	2	0	1	0	0	0	1	0	0	0	0	2
ELAPIDAE	14	4	0	0	0	1	0	13	0	0	0	2	1
EUBLEPHARIDAE	1	1	0	0	0	0	0	1	0	0	0	1	
GEKKONIDAE	36	8	15	1	0	5	2	20	8	0	0	16	1
GERRHOSAURIDAE	5	3	1	0	1	0	0	4	0	0	0	0	
GRAYIIDAE	2	1	0	0	0	0	0	2	0	0	0	0	
LACERTIDAE	15	8	1	0	0	0	1	12	1	0	1	9	
LAMPROPHIIDAE	14	3	2	0	0	0	0	11	3	0	0	0	1
LEPTOTYPHLOPIDAE	11	2	2	0	0	0	0	6	3	2	0	8	
NATRICIDAE	3	1	1	0	0	0	0	3	0	0	0	1	
PROSYMNIDAE	6	1	2	1	0	1	0	4	0	0	0	4	
PSAMMOPHIIDAE	18	5	0	0	0	0	0	17	1	0	0	0	
PSEUDASPIDIDAE	1	1	0	0	0	0	0	1	0	0	0	0	
PSEUDOXYRHOPHIIDAE	3	2	2	0	0	2	0	1	0	0	0	0	
PYTHONIDAE	2	1	0	0	0	0	1	1	0	0	0	0	1
SCINCIDAE	38	14	13	0	4	2	0	24	6	1	1	17	
TYPHLOPIDAE	16	4	9	0	2	2	0	7	4	1	0	8	
VARANIDAE	2	1	0	0	0	0	0	2	0	0	0	0	
VIPERIDAE	14	4	3	1	0	3	1	9	0	0	0	0	
TOTAL	321	102	90	5	17	20	10	228	35	4	2	86	47

Table 3. Major threats and threat-types (using IUCN's Red List classification scheme) known to be affecting reptile species in Tanzania. Note: Threat type 'climate change and severe weather' should not be compared to the trait-based climate change vulnerability assessment which aims to identify species that are not yet impacted to a degree that can be used in Red List assessment.

Threat category	Threat types within each category	Number of reptile species affected	
	Small-holder farming	38	
	Small-holder grazing, ranching or farming	6	
	Agro-industry farming	6	
Agriculture and aquaculture	Shifting agriculture	5	
uquucunure	Agro-industry plantations	5	
	Small-holder plantations	1	
	Agro-industry grazing, ranching or farming	1	
Residential and	Housing and urban areas	8	
commercial development	Commercial and industrial areas	3	
	Logging and wood harvesting (unintentional effects)	17	
	Hunting and trapping (intentional use)	14	
Biological resource use	Intentional use: species is the target	11	
O	Hunting and trapping (persecution/control)	11	
	Unintentional effects: subsistence/small scale harvesting	6	
	Intentional use: subsistence/small scale harvesting	1	
	Habitat shifting and alteration	2	
Climate change and severe weather	Temperature extremes	1	
	Droughts	1	
	Increase in fire frequency/intensity	1	
Invasive and other problematic species, genes and diseases	Problematic native species/diseases	2	
b	Invasive non-native/ alien species/ diseases	1	
Human intrusions and disturbance			
Dollation	Herbicides and pesticides	3	
Pollution	Domestic and urban waste water (type unknown)	1	

Threat category	Threat types within each category	Number of reptile species affected	
	Oil spills	1	
	Soil erosion, sedimentation	1	
Energy production and	Mining and quarrying	4	
mining	Oil and gas drilling	1	
Natural system	Dams (size unknown)	3	
modifications	Increase in fire frequency/intensity	3	
	Other ecosystem modifications	1	

Table 4. Summary of the number and proportion of species being poorly protected in terms of low protected area coverage (Tier 1 and Tier 2) and the number and proportion of species being assessed as vulnerable within each of the two categories, according to Red List assessments (threatened or Data Deficient species) and climate change vulnerability assessments for 2041-2070 and 2071-2100 using RCP 4.5 and RCP 8.5. 'CC' – Climate Change; 'PA' – Protected Area

	No. of	No. and % of poorly protected	No. and % of species assessed as climate change-vulnerable within each of the two 'poorly protected species' categories							
Total	species with valid maps	species among species with valid maps	Red List Data Deficient	Red List Threatened	CC (2041- 2070, RCP 4.5)	CC (2041- 2070, RCP 8.5)	CC (2071- 2100, RCP 4.5)	CC (2071- 2100, RCP 8.5)		
90	66 nic	< 10% PA Coverage 19 species	14 (74%)	0	15 (79%)	17 (89%)	18 (95%)	18 (95%)		
Tanzanian endemic species		>= 10% and <20% PA Coverage 13 species	2 (15%)	7 (54%)	6 (46%)	9 (69%)	9 (69%)	9 (69%)		
		Total: 32 (48%)	16 (50%)	7 (22%)	21 (66%)	26 (81%)	27 (84%)	27 (84%)		
321	279	< 10% PA Coverage54 species	18 (33%)	0	29 (54%)	34 (63%)	36 (67%)	36 (67%)		
All assessed species		>= 10% and <20% PA Coverage 62 species	2 (3%)	8 (13%)	25 (40%)	34 (55%)	34 (55%)	34 (55%)		
		Total: 116 (42%)	20 (17%)	8 (7%)	54 (47%)	68 (59%)	70 (60%)	70 (60%)		

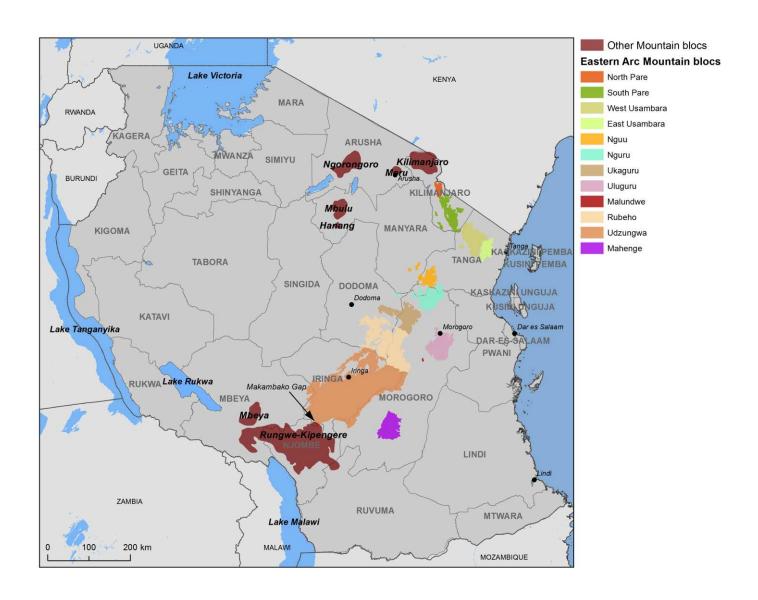


Figure 1. General map: regions, major lakes, mountain blocs and cities of Tanzania.

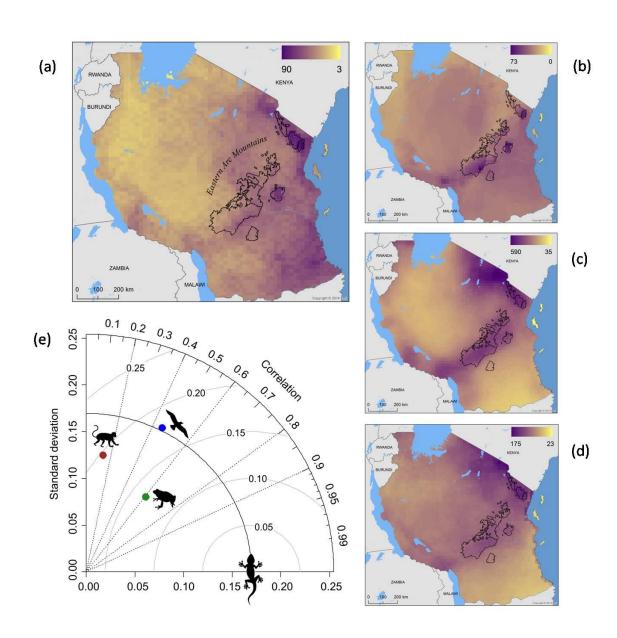


Figure 2. Overall distribution pattern of reptile species richness (a) in Tanzania, in comparison with the richness patterns of amphibians (b), birds (c) and mammals (d). Normalising richness in each group to the interval [0, 1], Taylor diagram (e) shows standard deviations (sd, y-axis) compared with reptiles (gecko on the x-axis), as well as Pearson correlations (r, following straight lines from the origin) and centred root-mean-squared differences (rms, radial distances from gecko) between reptile richness and richness in other groups. For example, reptile richness is most highly correlated with amphibians (r = 0.61, rms = 0.14), while the variance is most similar to birds (sd ≈ 0.17).

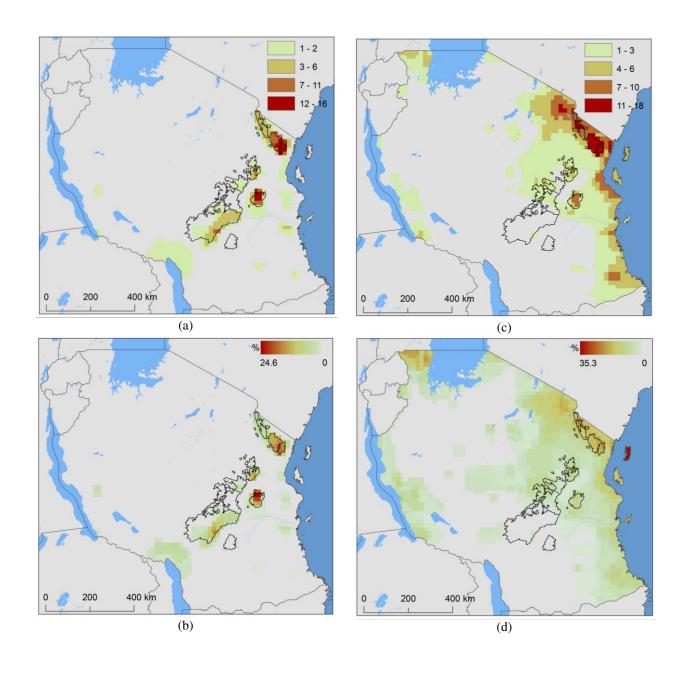


Figure 3. Relative richness of globally threatened (a, b) and climate change-vulnerable (c, d) reptiles in Tanzania. Top (a, c) and bottom (b, d) rows show, respectively, numbers and percentages (of the total number present) of species in these groups, per 10 arc-minute grid cell. Threatened species were assessed as Vulnerable, Endangered or Critically Endangered according to the IUCN Red List guidelines. Climate change vulnerability was determined using trait-based measures of sensitivity and adaptability, combined with climate change exposure by 2041-2070, under emissions pathway RCP4.5 and using optimistic assumptions for all unknown data values. Note that maps represent differing total numbers of species, as described in Table 1. Also note that the chameleons were not assessed for climate change vulnerability.

Figure 4. Numbers and percentages of the 274 species considered for the climate change vulnerability assessments falling into each of the three framework dimensions. Measures of exposure use climate projections to 2041-2070 under RCP4.5, and all dimensions treat unknown data points optimistically (i.e. assuming that are not negatively impacting the species).

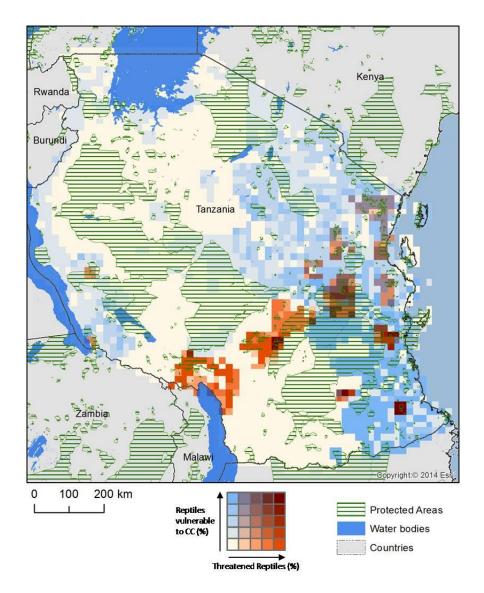


Figure 5. Current protected area network (WDPA; IUCN and UNEP-WCMC, 2014) in Tanzania overlaid on a bivariate map of climate change-vulnerable and globally threatened reptile species. Key gaps in protection of such species are: areas around the north of Lake Malawi, large areas of the Eastern Arc Mountains only partly covered by a scatter of protected areas as well as some small patches (southern Lindi and southern Liwale) in the south-eastern part of the country. CC = Climate Change.

Panel 1. Based on all assessments in this paper, we highlighted three species that are globally threatened, endemic to Tanzania, and climate change-vulnerable under all four combinations of year and emissions scenario and poorly protected (protected area coverage of 14-20%): *Lygodactylus gravis* (a), *Xyelodontophis uluguruensis* (b), and *Proscelotes eggeli* (no photo of *P. eggeli* was available to the authors).