
Swarm Intell (2016) 10:65–97
DOI 10.1007/s11721-016-0119-0

Supervisory control theory applied to swarm robotics

Yuri K. Lopes1 · Stefan M. Trenkwalder1 ·
André B. Leal2 · Tony J. Dodd1 · Roderich Groß1

Received: 16 June 2015 / Accepted: 27 January 2016 / Published online: 25 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Currently, the control software of swarm robotics systems is created by ad hoc
development. Thismakes it hard to deploy these systems in real-world scenarios. In particular,
it is difficult to maintain, analyse, or verify the systems. Formal methods can contribute to
overcome these problems. However, they usually do not guarantee that the implementation
matches the specification, because the system’s control code is typically generated manually.
Also, there is cultural resistance to apply formal methods; they may be perceived as an
additional step that does not add value to the final product. To address these problems, we
propose supervisory control theory for the domain of swarm robotics. The advantages of
supervisory control theory, and its associated tools, are a reduction in the amount of ad hoc
development, the automatic generation of control code from modelled specifications, proofs
of properties over generated control code, and the reusability of formally designed controllers
between different robotic platforms. These advantages are demonstrated in four case studies
using the e-puck and Kilobot robot platforms. Experiments with up to 600 physical robots

Electronic supplementary material The online version of this article (doi:10.1007/s11721-016-0119-0)
contains supplementary material, which is available to authorized users.

B Roderich Groß
r.gross@sheffield.ac.uk

Yuri K. Lopes
y.kaszubowski@sheffield.ac.uk

Stefan M. Trenkwalder
s.trenkwalder@sheffield.ac.uk

André B. Leal
andre.leal@udesc.br

Tony J. Dodd
t.j.dodd@sheffield.ac.uk

1 Department of Automatic Control and Systems Engineering, The University of Sheffield, Mappin
Street, Sheffield S1 3JD, UK

2 Department of Electrical Engineering, Santa Catarina State University, Campus Universitário Prof.
Avelino Marcante, Joinville, SC 89219-710, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11721-016-0119-0&domain=pdf
http://dx.doi.org/10.1007/s11721-016-0119-0

66 Swarm Intell (2016) 10:65–97

are reported, which show that supervisory control theory can be used to formally develop
state-of-the-art solutions to a range of problems in swarm robotics.

Keywords Supervisory control theory · Swarm robotics · Formal methods · Kilobot ·
e-puck · Automatic code generation

1 Introduction

Swarm robotics studies how large groups of robots can interact with each other in simpleways
to solve relatively complex tasks cooperatively. Swarm robotics systems may accomplish
tasks despite failures in some of the robots, and they are typically designed so that their
performance scales well with the number of robots. These properties can be useful in several
applications (Brambilla et al. 2013).

Designing the control logic for a swarm of robots is a challenging problem. Each robot
in the swarm typically executes an identical program which has access only to a limited
amount of local information. As a consequence, it is unaware of the overall configuration of
the swarm.

The control software of swarm robotics systems is usually obtained through ad hoc devel-
opment, without relying on software engineering methods. The ad hoc development, which
is mainly used in academic environments, hinders the transition of swarm robotics systems
to real-world applications. The source code resulting from ad hoc development is difficult to
be maintained, analysed, or verified.

Formal methods help in addressing these problems (for example, see Knight et al. (1997)).
They require a systematic formalisation of the solutions. Such formalisation can be subjected
to analysis tools, for example, to verify that certain properties are met. They also serve as a
documentation of the system.

However, even when formal methods were used, it was not guaranteed that the final
source code would accurately represent the specifications. This is because the source code
was obtained in a manual process as automatic code generation has not been supported yet.

Furthermore, a cultural resistance to apply formal methods can be observed: they may
be perceived as an additional step that does not add value to the final product, prolongs
its development cycle, and introduces undesired complexity, and their integration is often
impeded by the lack of appropriate tools (Knight et al. 1997).

In this paper1, we propose the application of supervisory control theory (SCT) to the
domain of swarm robotics. SCT is a framework for formally synthesising controllers, also
referred to as supervisors (Ramadge and Wonham 1987). In SCT, formal languages are
used to model the capabilities of systems. At the same time, specifications, also expressed
as formal languages, are used to restrict these capabilities. This ensures that the system
behaves as intended. By using SCT, we show how to formally model the capabilities of and
specifications for swarm robotics systems and how to automatically generate the controllers
(including source code) for the individual robots in the swarm.

The contributions of this work are: (1) the proposal and demonstration of the use of SCT
for formally developing controllers in swarm robotics; (2) the application of SCT using the
full Ramadge and Wonham (RW) framework (Ramadge and Wonham 1987), from the mod-

1 This paper is an extension of (Lopes et al. 2014). It presents three new case studies (Sects. 4.2, 4.3, 4.4)
and related experiments (Sects. 7.2, 7.3, 7.4), an analysis of three methods for synthesising formal controllers
(Sects. 5.1, 5.2, 5.3, 5.4), and a more comprehensive description of the implementation of the synthesised
controllers (Sect. 6).

123

Swarm Intell (2016) 10:65–97 67

elling to the software implementation; (3) the adaptation of an open source software tool to
automatically generate the control software for a swarm of robots; and (4) the comparison of
three existing control synthesis methods, monolithic (Ramadge and Wonham 1987), modu-
lar (Wonham and Ramadge 1988), and local modular (Queiroz and Cury 2000b, a, 2002) in
four swarm robotics’ case studies.

Two case studies illustrate how the canonical problems of aggregation (Gauci et al. 2014a)
and object clustering (Gauci et al. 2014b) can be formalised using the SCT framework. Two
further case studies report novel solutions to segregation and group formation problems.
These case studies are more advanced and explore more features of SCT. The results from
the case studies clearly demonstrate the potential of using SCT in swarm robotics.

This paper is organised as follows: Sect. 2 reviews related works. Section 3 introduces
SCT. Section 4 presents the case studies and how they are modelled in the SCT framework.
Section 5 shows the control synthesis using SCT. Section 6 details the implementation.
Section 7 presents the experiments. Finally, Sect. 8 concludes the paper.

2 Formal methods in swarm robotics

This section overviews previous work that investigates the application of formal methods in
swarm robotics. Swarm robotics systems can be modelled at multiple levels of abstraction.
Microscopic models capture the behaviours of individual members of swarm systems, while
macroscopic models capture the behaviours of the systems as a whole. In Martinoli et al.
(2004), the authors present a unified framework formodelling a swarm robotics system at both
microscopic and macroscopic levels. The framework uses probabilistic finite state machines
(PFSM). The authors present a case study where a swarm of robots cooperatively pull sticks
out of the ground.

As Massink et al. (2013) argue, modelling a system at multiple levels (microscopic
and macroscopic) can lead to inconsistencies. To address this, they propose biochemical
performance evaluation process algebra (Bio-PEPA), a method widely used for modelling
biochemical reactions. Bio-PEPA models the swarm robotics system solely at the micro-
scopic level and supports the integration of spatial information. Bio-PEPA enables analysis
and verification of macroscopic features by model checking (Massink et al. 2013).

In the work of Tanner et al. (2007), algebraic graph theory is applied to analyse stability
properties of networked mobile agents that are flocking using decentralised control. Agents
exchange information via networks that may change in topology. They do so while avoiding
collisions and converging to a common direction and speed.

Brambilla et al. (2015) propose a method called property-driven design. The method
consists of four steps: first, the requirements are formally specified; second, a prescriptive
macroscopic model is designed using Markov chains and verified by model checking; third,
this model is used to guide the implementation of a simulated robot swarm; and finally, the
desired robot swarm is implemented and tested in simulation and then with robots. Property-
driven design does not yet incorporate the automatic porting of the models to source code.

Probabilistic finite state machines can be automatically generated. In Francesca et al.
(2014b), the AutoMoDe-Vanilla (automatic modular design) approach is presented. In
AutoMoDe predefined parametric modules serve as building blocks to the design process.
Controllers, represented as PFSM, are obtained using the F-Race optimisation algorithm.
They are then compared against controllers generated by EvoStick (Francesca et al. 2014b)
and by human experts (Francesca et al. 2014a). The human experts are either constrained to

123

68 Swarm Intell (2016) 10:65–97

use the predefined parametric modules (C-Human) or unconstrained (U-Human). The results
show that C-Human outperformed AutoMoDe-Vanilla, but AutoMoDe-Vanilla was better
than U-Human. AutoMoDe was also extended to use the iterated F-Race algorithm, resulting
in an approach called AutoMoDe-Chocolate, which outperforms both AutoMoDe-Vanilla
and C-Human (Francesca et al. 2015).

Petri-nets are another formal approach tomodelling the control software of swarm robotics
systems. InKing et al. (2003), the authors use Petri-nets to coordinate the actions of a group of
robots. The Petri-net-based controller is, however, executed from a central computer, which
communicates with the robots. Petri-nets for multi-robot control have been analysed to detect
properties such as boundedness, livelocks, and deadlocks (Costelha and Lima 2008).

Temporal logic (Emerson 1990) has been applied to model and analyse swarm robotics
systems (Winfield et al. 2005). It can be combined with model checking for formal verifica-
tion (Belta et al. 2007; Dixon et al. 2011, 2012). In model checking, all possible executions
of the system are considered to check whether certain properties are met. Automatic code
generation for temporal logic models has yet to be shown.

SCT (Ramadge and Wonham 1987, 1989) provides an alternative approach to formally
developing controllers. SCT is mostly applied in the context of manufacturing systems. It is
used to synthesise a controller based on formal descriptions of the system and specifications.
Studies have illustrated how code for manufacturing coordination control can be automat-
ically generated using SCT (Liu and Darabi 2002; Queiroz and Cury 2002; Lopes et al.
2012). SCT is also applied to design controllers for systems of multiple robots (Gordon-
Spears and Kiriakidis 2004; Tsalatsanis et al. 2009, 2012), solving tasks such as object
delivery and patrolling/inspection. These works focus, however, on the design and analysis
of controllers rather than on their implementation and/or validation using physical robots.
Moreover, the works by Tsalatsanis et al. (2009, 2012) are only partially based on the RW
framework (Ramadge and Wonham 1987, 1989); as a consequence, a variety of software
tools and theory are not applicable to those systems. SCT has also been considered for trans-
portation systems, moving both goods (Silva et al. 2008; Mass et al. 2012) and persons, for
example, in theme parks (Forschelen et al. 2012).

SCT, as most of the aforementioned methods, assumes discrete system states. Hybrid
system theory (HST) offers an alternative, where the system can be represented by both
discrete and continuous states. HST has been used in the context of swarm robotics, multi-
robot systems, and other multi-agent systems (Tomlin et al. 1998; Fierro et al. 2001; McNew
and Klavins 2006; McNew et al. 2007; Zavlanos et al. 2009; Mesquita 2010; Mesquita and
Hespanha 2012).

Belta et al. (2007), for example, use HST in a motion planning problem. The state of the
robot reflects its position in the environment. It is represented both discretely and continu-
ously. For the discrete representation, the environment is partitioned into a graph of triangular
regions. The graph can be used to express high-level specifications using temporal logic. The
paths in the graph that conform with the specification can be considered as words of a formal
language. These can be recognised by a discrete automaton. The continuous representation is
used to realise low-level motion control, for example, to move the robot from one triangular
region to the next. The overall controller can thus be considered a hybrid automaton.

Fierro et al. (2001) use HST to control the formation of a group of three robots moving
along a given trajectory. Here the discretisation is at the controller level: the robot hasmultiple
continuous motion controllers. Its sensory input—which other robots are perceived—is used
to select the controller to be executed. In McNew and Klavins (2006); McNew et al. (2007),
HST is used for the problem of organising the robots into subgroups while maintaining the

123

Swarm Intell (2016) 10:65–97 69

overall connectivity. The formal properties are guaranteed by the use of embedded graph
grammars.

As shown in this paper, SCT allows for automatic code generation for a swarm of robots.
While formal methods have been used for the design and validation of swarm robotics con-
trol before, they do not guarantee that the controller implementation faithfully represents
the specification. We address this issue by generating the control software automatically
using SCT. The control software is formalised using regular languages. Deterministic finite
automata, which realise these languages, are already widely used in the control of swarm
robotics systems.

3 Supervisory control theory preliminaries

SCT (Ramadge and Wonham 1987; Wonham and Ramadge 1988; Ramadge and Wonham
1989) is a theoretical framework for synthesising controllers, called supervisors. It assumes
that the systems under investigation can be represented as discrete event systems (DES).2

DES are composed of discrete states. Changes in state (called transitions) are triggered by
events (Cassandras and Lafortune 2008). SCT distinguishes between uncontrollable events
and controllable events. Uncontrollable events represent feedback signals, for example, from
sensors. Controllable events represent command signals—issued by the controller, for exam-
ple, to move a robot forward.

In SCT, the designermodels (i) what the system can do and (ii) what it should do. Concern-
ing (i), they specify an arbitrary number of so-called free behaviour models, which describe
all of the system’s capabilities. Concerning (ii), they specify an arbitrary number of so-called
control specifications. Both free behaviour models and control specifications are expressed
using a formal language. A language is a set of words that are composed of symbols over an
alphabet. Each symbol corresponds to an event of the DES. Therefore, the desirable sequence
of events form the words of the language. SCT combines all free behaviour models and con-
trol specifications into a coherent language. It synthesises a supervisor (controller), which
guarantees that, at any time, only valid words or prefixes of valid words occur. This is realised
by restricting the set of controllable events that the system may choose from. For example,
consider a service robot tasked to retrieve milk from a fridge. The robot would first choose
controllable event “open fridge”. Suppose uncontrollable event “fridge has milk” was then
triggered; SCT would restrict the set of controllable events to “take milk out of fridge” and
“close fridge” thereafter. If, however, uncontrollable event “fridge out of milk” was triggered,
SCT would restrict the set of controllable events to “close fridge”. In both cases the robot
would be prevented from starting a new activity until the fridge was closed. The desired
sequence of events—related to actuation and sensing—would thus adhere to what is both
possible and desirable, either (“open fridge”, “fridge out of milk”, “close fridge”) or (“open
fridge”, “fridge has milk”, “take milk out of fridge”, “close fridge”).

3.1 Generators

The class of formal languages that is most commonly used in SCT are the regular languages,
also called Type-3 languages (Chomsky 1956, 1959).Words of a regular language, within the
SCT framework, can be produced by a generator. A generator is similar to a finite automaton,
also called finite state machine (FSM). However, while a finite automaton recognises words

2 When hybridised with continuous methods, however, SCT can also be applied to continuous systems.

123

70 Swarm Intell (2016) 10:65–97

(a) (b)G1 G2

Fig. 1 Example of free behaviour models for a a conveyor and b a sensor placed at the end of the conveyor.
Each behaviour model Gi has its own set of states Qi = {q1, q2, . . .}. move and stop are controllable events.
active and inactive are uncontrollable events

from a particular regular language (i.e. given a word the automaton will accept it or not
accept it), a generator produces words that belong to the language. A generator G is a 5-tuple
(Q,Σ, δ, q0, Qm), where Q is a finite set of states; Σ is a finite set of symbols related to the
system’s events; δ : Q × Σ → Q is a partial transition function; q0 ∈ Q is the initial state;
and Qm ⊆ Q is a set of marked states. The language realised by generator G is referred to
as L(G). For simplicity, we may use G indistinctly to denote the generator or the language
L(G).

Events (that are the symbols of the language) are of two types: uncontrollable events (Σu)
and controllable events (Σc), where Σ = Σu ∪ Σc and Σu ∩ Σc = ∅. A controllable event
ec ∈ Σc is enabled in a state q ∈ Q if δ(q, ec) is defined. Let Σ∗ denote the set of all
words—or sequences of events—over an alphabet Σ . Let Σ+ denote the set of all words
excluding the empty word ε (i.e. Σ+ = Σ∗\ε).

Marked states are states that are considered safe for the system. For example, a marked
state can correspond to the end of a task. Reaching a marked state does not necessarily
implicate the end of the operation; the generator could continue to evolve.

3.2 Free behaviour models

In SCT, the system is formally represented bym free behaviour models. Each free behaviour
model abstracts one of the system’s relevant physical capabilities. This modularisation leads
to an intuitive link between hardware and software (also, see Cowley and Taylor (2007)).
The free behaviour modules are realised by generators Gi , i ∈ {1, 2, . . . ,m}. By default,
it is assumed that the free behaviour models are independent of each other. Figure 1 shows
two examples of free behaviour models. These represent (a) a conveyor that transports parts
in a manufacturing plant and (b) a sensor that detects the presence of a part at the end of
the conveyor. States are represented by circles. The initial state is indicated by an unlabelled
arrow.Marked states are represented by double-line circles. It is common that only the initial
state of a free behaviour model is marked. This means that the resulting supervisors should be
able to return to the initial condition. Transitions and associated events are shown as labelled
arrows. Arrows with a stroke relate to controllable events, and arrows without a stroke relate
to uncontrollable events.

3.3 Control specifications

The desired behaviour of the system is formally represented by n control specifications.
Each control specification restricts the possibilities of one or more free behaviour models. It
is realised by a generator E j , j ∈ {1, 2, . . . , n}. Figure 2 shows an example specification
that relates the free behaviour model of the conveyor with that of the sensor to implement the
following rule: “when a part arrives in front of the sensor the conveyor shall stop, otherwise

123

Swarm Intell (2016) 10:65–97 71

Fig. 2 Example of a control
specification that enables the
conveyor to move only when
there is no part in front of the
sensor

it shall move”. SCT works by preventing controllable events from occurring in some states.
This is achieved by disabling controllable events. For example, in state q1 (see Fig. 2), event
stop is disabled and eventmove is enabled. Hence, when the sensor is inactive, the conveyor
will move. Normally, all states of specifications are marked states. An exception to this would
be a specification representing a buffer. It can then be desirable, for a system, to guarantee
that it reaches a state with the buffer empty; thus, only the state that represents the empty
buffer is marked.

4 Design of free behaviour models and control specifications

SCTmodels the system and its specifications using formal languages. The modelling process
may not always be intuitive, and multiple models may represent the same system or spec-
ification. In the following, we provide guidance on how to model systems with SCT. We
present four case studies that illustrate how SCT can be applied in swarm robotics. The
case studies make use of two robotic platforms, the Kilobot (Rubenstein et al. 2012) and the
e-puck (Mondada et al. 2009). Both platforms move on the ground and are able to locally
broadcast messages.3 The Kilobot is equipped with a light sensor and an RGB LED. The
e-puck is equippedwith an on-board camera and several LEDs distributed along its perimeter.

One case study—segregation—uses both robotic platforms. It shows that as long as all
task-relevant hardware is available, the same supervisors can be applied to different robotic
platforms. Two further case studies, using the e-puck platform, illustrate how state-of-the-art
solutions for the problems of aggregation (Gauci et al. 2014a) and object clustering (Gauci
et al. 2014b) can be formalised using the SCT framework. The last case study—group for-
mation—requires advanced features of SCT. It uses the Kilobot platform.

We use θ ∈ {s, a, c, g} to refer to the different case studies, where s refers to segregation,
a to aggregation, c to object clustering, and g to group formation. Gθ

i denotes the i th of mθ

free behaviour models and Eθ
j denotes the j th of nθ control specifications.

4.1 Segregation case study

The system comprises an arbitrary number of leader and follower robots. Each leader assumes
one of multiple types, characterised by its colour. Here, colours red, green, and blue are
assigned at the beginning of the experiment. The segregation strategy separates follower
robots into distinct groups, whereby each follower robot belongs to at most one leader (Lopes
et al. 2014). Each leader broadcasts a signal containing its colour within a limited range.
Follower robots within the signal range of only one type of leader belong to that leader and
do not move. Followers that do not receive a signal also do not move. Followers that receive
a signal from more than one type of leader move randomly.

The free behaviour models are illustrated in Fig. 3. Gs
1 represents a user input device that

triggers the uncontrollable event press. It is used to configure the robot. Gs
2 defines the robot

3 The e-puck requires a non-standard library to broadcast messages using infrared.

123

72 Swarm Intell (2016) 10:65–97

(a) (b) (c) (d)Gs
1 Gs

2 Gs
3 Gs

Y

Fig. 3 Free behaviour models for the segregation case study. a Input device to configure the robot; b the
robot’s ability to assume one of the three leader types or to be a follower; c motion capabilities; d the robot’s
ability to receive messages from nearby leader robots

(a) (b) (c)Es
1 Es

2 Es
3

Fig. 4 Specification for the segregation case study. a Configures the robot through user interaction; b allows
followers to move and leaders to transmit a signal; c moves the follower robot according to the signal received

type. By default, the robot is a follower (state q1 in Gs
2). Followers do not transmit any mes-

sage. There are three types of leaders, which are set by the controllable events sendR, sendG,
and sendB. These events enable the broadcast of the messages red, green, and blue, respec-
tively. The follower type can be set by the controllable event sendNothing. Gs

3 represents the
robot’s motion capabilities. Themotion is started through controllable eventsmoveFW (move
forward), turnCW (turn clockwise), and turnCCW (turn counter clockwise). The motion pro-
ceeds for a randomperiod of time, and then, the uncontrollable eventmoveEnded is generated.
The motion can also be stopped by the controller through controllable event moveStop.

Gs
4, G

s
5, and Gs

6 represent three different sensor outcomes that detect the presence of
red, green, and blue leaders, respectively. The corresponding uncontrollable events getX,
X ∈ {R,G, B} indicate that the robot has received a message, respectively, from a red,
green, or blue leader during the sample period of 0.2 s. On the other hand, the event getNotX,
X ∈ {R,G, B} occurs if no such message was received.

123

Swarm Intell (2016) 10:65–97 73

Fig. 5 Free behaviour models
for the aggregation case study.
a Binary sensor; b motion
capabilities

(a) (b)Ga
1 Ga

2

Figure 4 shows the specifications for the segregation strategy. The user can configure the
robot type. When press occurs, specification model Es

1 reaches state q2, where the events
sendR, sendG, sendB, and sendNothing are enabled. As seen in model Gs

2 (Fig. 3b), the robot
type is restricted to change sequentially through states of follower (q1), red leader (q2), green
leader (q3), and blue leader (q4). Specification Es

2 allows only followers to move. It also sets
up the message broadcasting of leaders. The main strategy is represented in specification Es

3,
where only the stop event (moveStop) is enabledwhile being in state q1 (no signal received) or
state q2 (one type of leader signal received). Consequently, the robot does notmove. However,
if signals of two types of leaders (state q3) or all three types of leaders (state q4) are received,
the previously described motion events are enabled. The controller can, therefore, choose
from all three movement options. How this choice is made is an implementation question
(for details about the choice problem, see (Fabian and Hellgren 1998)). In this work, the
options are chosen with equal probability. It is worth noting that message receiving events
getR and getNotR occur alternatively (see free behaviour model Gs

4 in Fig. 3d); the same
is true for getG/getNotG as well as for getB/getNotB. This property is exploited in control
specification Es

3.

4.2 Aggregation

The aggregation strategy allows a group of e-puck robots to gather in a homogeneous envi-
ronment (Gauci et al. 2014a). It requires each robot to be equipped with a binary sensor, I ,
which detects the presence of other robots in its line of sight. The sensor provides a value
I = 1 if there is a robot in the line of sight and I = 0 otherwise. For this setting, Gauci et al.
(2014a) propose a reactive controller: if no other robot was detected, the robot would move
backward along a circular trajectory, with scaled wheel velocities (vl0, vr0) = (−0.7,−1).
If another robot was detected, the robot would turn clockwise on the spot, with scaled wheel
velocities (vl1, vr1) = (1,−1). This controller was shown to be provably correct for two
robots and it performed the aggregation task reliably with 40 physical robots (Gauci et al.
2014a). In the following, we show how to formalise this controller using SCT.

Figure 5 shows the free behaviour models for the aggregation strategy. Free behaviour
model Ga

1 represents the binary sensor; uncontrollable events S0 and S1 represent sensor
readings I = 0 and I = 1, respectively. Free behaviour model Ga

2 represents the possi-
ble movements. Controllable events V0 and V1 represent the pairs (vl0, vr0) and (vl1, vr1),
respectively. The movements are executed until a new command is issued.

Figure 6 shows the specifications to implement the aggregation strategy. Specification
Ea
1 enables event V0 (robot moving backward along circular trajectory) if no other robot

is perceived (S0). Specification Ea
2 enables event V1 (robot turning on the spot) if another

robot is perceived (S1). Specifications Ea
3 and Ea

4 guarantee that events V0 and V1 will occur
in alternation. Note that the movement of a robot continues indefinitely once V0 or V1 is
triggered.

123

74 Swarm Intell (2016) 10:65–97

(a) (b)

(c) (d)

Ea
1 Ea

2

Ea
3 Ea

4

Fig. 6 Specification for the aggregation case study. a, b Move the robot according to the sensor reading;
c, d prevent the same movement event from occurring consecutively (yet, the robot will perform its current
movement indefinitely)

(a) (b)

(c)

Fig. 7 Three alternative specifications to be used instead of Ea
3 and Ea

4 in the aggregation case study. The
specifications in a or b are not fully equivalent to Ea

3 and Ea
4 , as they restrict the first movement to be either

V0 or V1, respectively. The specification in c is the result of synchronous composition Ea
3 ||Ea

4 and thus fully
equivalent

Instead of specifications Ea
3 and Ea

4 , one may apply one of the specifications shown in
Fig. 7. Note that the specification shown in Fig. 7a would not be fully equivalent to Ea

3 and
Ea
4 , as it forces V0 to occur first. Similarly, the specification shown in Fig. 7b forces V1 to

occur first. The third option, Fig. 7c, is, however, equivalent to Ea
3 and Ea

4 ; it can be obtained
by their synchronous composition (for details, see Sect. 5).

4.3 Object clustering

The object clustering strategy allows a group of e-puck robots to cluster objects that are
initially dispersed in the environment (Gauci et al. 2014b). Each robot can detect the presence

123

Swarm Intell (2016) 10:65–97 75

Fig. 8 Free behaviour models for
the object clustering case study. a
Sensor to detect nothing, objects,
or robots; b motion capabilities

(a) (b)Gc
1 Gc

2

(a) (b) (c)

(d) (e) (f)

Ec
1 Ec

2 Ec
3

Ec
4 Ec

5 Ec
6

Fig. 9 Specification for the object clustering case study. a–c Move the robot according to the sensor reading;
d–f prevent the same movement event from occurring consecutively (yet, the robot will perform its current
movement indefinitely)

of an object or another robot in its direct line of sight. Its line-of-sight sensor I thus indicates
what it is pointing at: I = 0 if it is pointing at nothing (or the walls of the environment, if
this is bounded); I = 1 if it is pointing at an object; and I = 2 if it is pointing at another
robot.

The free behaviourmodels for this strategy are similar to those presented in the aggregation
case study. However, there are three modes of movement instead of two. The corresponding
parameters were obtained using an evolutionary search (Gauci et al. 2014b):

x = (vl0, vr0, vl1, vr1, vl2, vr2) = (0.5, 1, 1, 0.5, 0, 0.5), (1)

where, vl I and vr I are the left and rightwheel velocities, respectively, when the sensor reading
is I .

Figure 8 shows the free behaviour models for this strategy. Free behaviour Gc
1 represents

the sensor. Uncontrollable events S0, S1, and S2 represent the presence of nothing (I = 0),
an object (I = 1), or another robot (I = 2) in the line of sight. Free behaviour Gc

2 defines the
possible movements. Controllable events V0, V1, and V2 represent pairs (vl0, vr0), (vl1, vr1),
and (vl2, vr2), respectively. The movements are executed indefinitely.

Figure 9 illustrates the specifications for the object clustering strategy. Specifications Ec
1,

Ec
2, and Ec

3 relate, respectively, the perception of nothing (S0), an object (S1), or another
robot (S2) with the wheel velocities, which are specified by parameters vl I and vr I through
controllable events VI , I ∈ {0, 1, 2}. Specifications Ec

4, E
c
5, and Ec

6 guarantee that events
V0, V1, and V2 occur in alternation (e.g., when event V0 occurs it cannot occur again until
either event V1 or event V2 occurs).

123

76 Swarm Intell (2016) 10:65–97

4.4 Group formation

This case study is performed with the Kilobot robots. It involves two types of robots, leaders
and followers. The followers are of two classes, which we call green and blue. Robots of the
same class could be equipped with identical tools, for example. The task is to group each
leader with a balanced number of followers from each class (±1).We call this the equilibrium
criterion.

The strategy is as follows. Leaders are randomly distributed over the arena and do not
move. Followers move randomly broadcasting a message (broadcast) containing a unique
identification code, their class, and the message type. When a leader receives a broadcast
message, it sends an offer message if adding that robot would fulfil the equilibrium criterion.
When a follower receives an offer, it stops, sends an acceptance message to the leader, and
starts relaying any message to and from their leader.

Figure 10 shows the free behaviour models for this strategy. Free behaviour model Gg
1

represents themovement capabilities. It is identical toGs
3 in Fig. 3c. Free behaviourmodelGg

2
represents a timer. Controllable event startTimer starts the timer. After the defined time has
elapsed, uncontrollable event timeout is generated. Free behaviour model Gg

3 represents the
message sending capability. Controllable events sendBG and sendBB enable the broadcasting
message of available green and blue followers, respectively. Controllable events sendOG and
sendOB are the messages emitted by a leader to offer membership in the group to a specific
green or blue follower, respectively. Controllable events sendAG and sendAB are themessages
that confirm the acceptance of the green or blue follower, respectively. Controllable event
sendE causes followers that are already part of a group to relay the last received message
that is related to its leader. Controllable event msgStop stops the sending of the current
message. Free behaviour model Gg

4 defines the message receiving capability. Controllable

(a) (b) (c)

(d) (e) (f)

Gg
1 Gg

2 Gg
3

Gg
4 Gg

5 Gg
6

Fig. 10 Free behaviour models for the group formation case study. a Motion capabilities; b timer; c message
transmission; d message reception; e the robot’s configurations; f the robot’s ability to choose not to make an
offer

123

Swarm Intell (2016) 10:65–97 77

event getMessage reads themost recent receivedmessage in the buffer. Uncontrollable events
receiveBG and receiveBB are triggered when a broadcast message of a blue or green follower
is received; receiveOG and receiveOB are triggered when a message is received that offers
membership to a green or blue follower, respectively; receiveAG and receiveAB are triggered
when receiving an acceptance message by a green or blue follower, respectively, to join a
group. Free behaviour model Gg

5 defines the robot configuration subsystem. The robots can
be configured as a leader by the uncontrollable event setLeader, or as a follower by setGreen
or setBlue; it is not possible for a robot to change its configuration. The configuration is
randomly selected during initialisation. Followers can join a group triggering the controllable
event join. In the free behaviour model Gg

6 , the leader can choose not to send an offer by
the controllable events ignoreOG and ignoreOB. This is used to implement the equilibrium
criterion.

Figure 11 illustrates the specifications for the group formation strategy. Specification Eg
1

defines that followers that have not yet joined any group can move. All other robots are not
allowed to move. Specification Eg

2 defines that a leader robot can send an offer to a follower
when it receives a corresponding broadcast message. Alternatively, it can choose to ignore
the request. Specification Eg

3 controls the follower’s cycle of messages. Robots broadcast
their colour and identification code until they receive an offer for their colour. When this
occurs, they send an acceptance message and join the group. When a follower joins a group,
it relays the messages it receives, using an echo function triggered by controllable event
sendE. Specification Eg

4 controls the transmission mechanisms. A message is transmitted by
the subsystemover a pre-defined period of time.Once amessage is sent, it can only be stopped
after the timeout of the subsystem. Specification Eg

5 implements the equilibrium criterion
for the leader. In state q1, the system is in equilibrium and can make offers to both classes of
followers. In state q2, there is one more blue follower than green followers. Therefore, offers
can only be made to green followers. State q3 describes the equivalent situation where there
are more green than blue followers. Finally, specification Eg

6 defines the relay mode of a
follower. Any received message is retransmitted after joining a group by event sendE. For all
messages, an identification code filter is implemented to minimise the traffic load in a layer
that links the abstract discrete events to the hardware (see Sect. 6); this is not implemented
by using the formal method.

5 Supervisor synthesis

The supervisor represents the control logic of the robot. To obtain the supervisor, one has to
restrict the free behaviour models according to the specifications. In other words, the robot
should be allowed to perform only those actions that are compatible with the specifications.
Formally, this is done by combining the free behaviour models and specifications using syn-
chronous composition. The synchronous composition (represented by ·||·) of two generators
Ga and Gb with alphabet Σi , i ∈ {a, b} is defined as

Ga ||Gb = (Qa × Qb,Σa ∪ Σb, δa||b, (q0a , q0b), Qma × Qmb), (2)

where

δa||b((qa, qb), e) =
⎧
⎨

⎩

(δa(qa , e), δb(qb, e)) if δa(qa , e)! ∧ δb(qb, e)! ∧ e ∈ Σa ∧ e ∈ Σb
(δa(qa , e), qb) if δa(qa , e)! ∧ e ∈ Σa ∧ e /∈ Σb
(qa , δb(qb, e)) if δb(qb, e)! ∧ e /∈ Σa ∧ e ∈ Σb
undefined otherwise,

(3)

123

78 Swarm Intell (2016) 10:65–97

(a) (b)

(c)

(f)

(d) (e)

Eg
1 Eg

2

Eg
3

Eg
4 Eg

5

Eg
6

Fig. 11 Specification models for the group formation case study. a Allows followers that did not join a group
to move; b allows leaders that received a broadcast to send or not to send an offer; c allows followers that
received an offer message to join a group after sending an acceptance message; d ensures that a message is
transmitted for a minimum period; e guarantees the equilibrium criterion; f the robot’s ability to choose not
to make an offer

123

Swarm Intell (2016) 10:65–97 79

and δ(x, y)! means that δ is defined on input (x, y). Equation 3 ensures that events that are
not common to Σa and Σb can occur asynchronously, whereas events that are common to
both alphabets must occur synchronously.

The synchronous composition of free behaviour models with specifications is called the
target language. In the case of a single free behaviour model G and a single specification E ,
the target language K is defined as

K = G||E . (4)

It is important to note that the target language is not necessarily controllable. A language
K over an alphabet Σ is controllable with respect to the free behaviour model G and the set
of uncontrollable events Σu ⊆ Σ , if (Cassandras and Lafortune 2008):

∀s ∈ L(K),∀eu ∈ Σu, seu ∈ L(G) ⇒ seu ∈ L(K), (5)

where L denotes the prefix-closure of a language L , that is, L = {s ∈ Σ∗ : ∃t ∈ Σ∗∧st ∈ L}.
In other words, if s is a prefix of a word of the language generated by K , L(K), and eu an
uncontrollable event that is physically possible to occur after this sequence (i.e. seu ∈ L(G)),
then seu must also be a prefix of a word in L(K) (i.e. seu ∈ L(K)).

Let us consider controllability in more detail. Each state qK (y) of a target language K =
G||E can be mapped to a state qG(x) in G. qK (y) can be considered as a composed state
(qG(x), ·). If an event e is enabled in qG(x) but not in qK (y) = (qG(x), ·), it is physically
possible to occur, but deniedby the control specification.This corresponds to case “undefined”
in Eq. 3. If e is an uncontrollable event, qK (y) is called a bad state, as the controller is not
able to disable event e when the state is reached. The language is then uncontrollable. Thus,
qK (y) is a bad state if:

∃ e ∈ Σu : e ∈ ΣG(x) and e /∈ ΣK (y), (6)

where ΣG(x) denotes the set of events defined in state qG(x) and ΣK (y) denotes the set of
events defined in state qK (y). To extract the controllable sub-language from an uncontrollable
language, all bad states (e.g. qbad) and all states that have uncontrollable paths to any bad
state (i.e. qa : ∃s ∈ Σ+

u : δ(qa, s) = qbad) are removed. The resulting language is minimally
restrictive (Ramadge and Wonham 1987). In other words, it is the largest sub-language of K
that is controllable.

Figure 12 shows an example of a bad state and its removal. The composition ofG, Fig. 12a,
and E , Fig. 12b, results in target language K , Fig. 12c. State q(2,2) in K is related to state
q2 in G where both uncontrollable events a and b are enabled, but a is disabled in q2 of
specification E , and hence it is disabled in q(2,2) in K . As a consequence, the uncontrollable
event a could occur in q(2,2), even though it should not occur according to the specification.
To prevent the event from occurring, state q(2,2) must not be reached. Therefore, it is removed.
As the controller can only disable controllable events, it is necessary to remove also all states
with an uncontrollable path to q(2,2), if any. Following the removal of bad state q(2,2), the
target language, Fig. 12d, is controllable.

States of a generator that are reachable from initial state q0 are called accessible. The
initial state is accessible by definition. If all states of a generator are accessible, the generator
is called accessible. States of a generator that can reach at least one marked state q ∈ Qm are
called coaccessible.Marked states are coaccessible by definition. If all states of a generator are
coaccessible, the generator is called coaccessible. All non-accessible and non-coaccessible
states of G can be removed with the operator trim(G). This operator guarantees that the
corresponding language L(G) is non-blocking (WonhamandRamadge 1988). In otherwords,
no deadlocks can occur.

123

80 Swarm Intell (2016) 10:65–97

(c) (d)

(a) (b)G E

K = G||E

Fig. 12 Example of a bad state and its removal. The composition of G (a) and E (b) results in target language
K (c). Removing bad state q(2,2) results in a controllable language (d). For details, see text

Figure 13 shows an example of a non-coaccessible state and its removal by the trim
operator. This example considers the controllable event a and the uncontrollable events b
and c. The generator in Fig. 13a has all states accessible from initial state q1. States q1, q2,
and q3 are also coaccessible, as all of them have a path to marked state q1. State q4 is non-
coaccessible and is eliminated (see Fig. 13b). However, in state q3 the uncontrollable event
c can occur which is not desirable (it previously led to the non-coaccessible state q4). Thus,
q3 must be removed as well (Fig. 13c). Note that as only transitions triggered by controllable
events led to q3, the resulting target language is controllable.

SupC(G, K) removes bad states from language K (obtained by Eq. 4) and applies the
trim operator to guarantee the accessibility and coaccessibility. It works iteratively as the
trim can result in additional bad states. The remaining language,

Lm(S/G) = SupC(G, K), (7)

is controllable, accessible, and coaccessible. As a consequence, it is non-blocking.
With the presented methods, supervisors can be synthesised that possess all the afore-

mentioned properties. The supervisors can be represented as monolithic, modular, and local
modular supervisors.

5.1 Monolithic supervisor

If all free behaviour and specification models are composed to a single supervisor S, S is
called monolithic. The first step to synthesise a monolithic supervisor is to compose all mθ

free behaviour models in a single generator4:

Gθ = Gθ
1|| · · · ||Gθ

mθ . (8)

4 Note that θ denotes the case study as defined in Sect. 4.

123

Swarm Intell (2016) 10:65–97 81

(a)

(b) (c)

Fig. 13 Example of a non-coaccessible state and its removal by trim(·). In a, states q1, q2, and q3 are
coaccessible, as all of them have a path to marked state q1. State q4 is not coaccessible and hence removed
(b). As state q4 could be reached from state q3 through uncontrollable event c, q3 is removed as well (c). State
q3 could only be reached through controllable events, which can be disabled by the supervisor

All nθ specifications are also composed in a single generator:

Eθ = Eθ
1 || · · · ||Eθ

nθ . (9)

The monolithic target language, K θ , is obtained by the synchronous composition of Gθ

and Eθ :

K θ = Gθ ||Eθ . (10)

Finally, the monolithic supervisor Sθ is obtained as:

Sθ : Lm(Sθ /Gθ) = SupC(Gθ , K θ). (11)

5.2 Modular supervisors

Due to the parallel composition, the number of states may grow exponentially with the
number of free behaviour models and specifications. As a result, a prohibitively large amount
of program memory can be required to store the control logic. To alleviate this problem,
modular supervisors were proposed (Wonham and Ramadge 1988). The modular approach
composes one supervisor for each specification. These supervisors can then be executed in
parallel.

The free behaviour models are composed into a single generator Gmod,θ . This is done in
the same way as for the monolithic approach (see Eq. 8). Thus, Gmod,θ = Gθ .

Rather than calculating a single target language, one target language Kmod,θ
j is calculated

for each specification Eθ
j :

Kmod,θ
j = Gmod,θ ||Eθ

j ∀ j ∈ {1, . . . , nθ }. (12)

The modular supervisor is obtained for each target language, analogous to Eq. 11:

Smod,θ
j : Lm(Smod,θ

j /Gmod,θ) = SupC(Gmod,θ , Kmod,θ
j) ∀ j ∈ {1, . . . , nθ }. (13)

The modular approach requires the specifications to have no conflicts. To check for con-
flicts, all modular supervisors are composed together into Smod|| . Smod|| is then compared with
the monolithic supervisor. If they are not equivalent, that is, they produce different languages,
then a conflict exists (see (WonhamandRamadge 1988; Lopes et al. 2012), for details).Where
a conflict occurs between specifications, the conflicting specifications have to be composed

123

82 Swarm Intell (2016) 10:65–97

together in a single supervisor. This reduces the number of supervisors. For example, if two
specifications E1 and E2 are in conflict, then the supervisors Smod

1 and Smod
2 are replaced by

Smod
1,2 , where Lm(Smod

1,2) = SupC(G, Kmod
1,2) and Kmod

1,2 = G||E1||E2.

5.3 Local modular supervisors

The localmodular approach (Queiroz andCury 2000a, b, 2002) explores not only themodular
property of specifications but also of free behaviour models. It reduces the number of free
behaviour models used in the synthesis of each supervisor. This may result in supervisors
with fewer states and transitions in total.

In the local modular approach, similar to the modular one, a supervisor is created for
each control specification. However, only the free behaviour models that are affected by the
particular control specification are taken into account. Thus, each specification E loc

j has its

own local free behaviour model G loc
j , which is the parallel composition of all free behaviour

Gi that have at least one event in common with E j .
Table 1 shows the relation of events for each specification for the segregation case study.

The local free behaviour models are obtained as:

G loc,s
1 = Gs

1||Gs
2,

G loc,s
2 = Gs

2||Gs
3,

G loc,s
3 = Gs

3|| · · · ||Gs
6.

(14)

The appendix gives the local free behaviour models for the remaining four case studies.

Table 1 Events used by the specifications and free behaviour models for the segregation case study

Es
1 Es

2 Es
3

Gs
1 press �

Gs
2 sendR � �

sendG � �
sendB � �
sendNothing � �

Gs
3 moveFW � �

turnCW � �
turnCCW � �
moveEnded

moveStop �
Gs
4 getR �

getNotR �
Gs
5 getG �

getNotG �
Gs
6 getB �

getNotB �
Local models Gloc,s

1 Gloc,s
2 Gloc,s

3

In the local modular approach, only the relevant free behaviour models are used when composing a supervisor
for a specification. These are the free behaviour models that have at least one event in common with the
specification

123

Swarm Intell (2016) 10:65–97 83

As in the modular approach, one target language is calculated for each specification.
However, each target language uses its own local free behaviour model:

K loc,θ
j = G loc,θ

j ||Eθ
j ∀ j ∈ {1, . . . , nθ }. (15)

The local modular supervisor Sloc,θj is obtained for each target language K loc,θ
j , analogous

to Eq. 13:

Sloc,θj : Lm(Sloc,θj /G loc,θ
j) = SupC(G loc,θ

j , K loc,θ
j) ∀ j ∈ {1, . . . , nθ }. (16)

5.3.1 Enabled events in modular and local modular supervisors

In the case of multiple supervisors S1, . . . , Sn running in parallel, a controllable event ec
is enabled if for every supervisor S j , where ec ∈ Σ j , the transition function δ j (q j , ec) is
defined.

5.4 Comparison

Table 2 compares the three methods introduced in this section in terms of size of target
language and supervisors for all case studies. In particular, it lists the number of states and
transitions. These performance metrics are related to the program memory required to store
the control strategy. The number of state transitions is based on the minimised version of
each automaton (see Brzozowski (1962)). The local modular approach turned out to be the
most memory efficient in three of the four case studies. In the remaining case study, it was
almost on par with the best alternative. The modular approach is the least memory efficient
for the considered cases.

The local modular approach requires more effort when synthesising the supervisors. One
needs to check whether conflicts occur. However, once the supervisors are obtained, as can
be seen from Table 2, the local modular approach often outperforms the other approaches in
terms of total number of states and transitions (and hence in memory usage).

Table 2 Total number of states and transitions for each case study when using monolithic, modular, and local
modular synthesis approaches, respectively

Monolithic Modular Local modular

K S K S K S

Segregation States 128 128 256 256 32 32

Transitions 696 696 1720 1720 103 103

Aggregation States 7 (9) 7 (9) 8 8 8 8

Transitions 18 (22) 18 (22) 28 28 20 20

Object clustering States 13 (16) 13 (16) 12 12 12 12

Transitions 48 (57) 48 (57) 66 66 48 48

Group formation States 280 130 560 488 93 79

(304) (138) (776) (680) (108) (92)

Transitions 1446 531 6708 5768 553 452

(1602) (561) (9272) (8012) (641) (525)

Data correspond to the minimised version of the target language K and supervisor S. Data in parentheses
show the numbers prior to minimisation, if different. The best results are highlighted in bold

123

84 Swarm Intell (2016) 10:65–97

Fig. 14 Supervisor data
structure in memory (Lopes et al.
2012). The first element of each
state represents the number of
outgoing transitions. It is
followed by blocks of three
elements, which detail the event
that triggers the transition and the
resulting state

6 Implementation of supervisory control in swarm robotics

Our implementation is based on the SCT architecture proposed by (Queiroz and Cury 2000b,
2002). It adds three layers on top of the robot’s hardware: the supervisor (which is at the
highest level), the generator player, and then the operational procedures. In this paper, we
implement complete local modular supervisors.5

Our implementation uses the open source software tool Nadzoru (Lopes et al. 2012;
Lopes 2012; Pinheiro et al. 2015) available at http://www2.joinville.udesc.br/~gasr/nadzoru/.
Nadzoru supports the design of free behaviourmodels and control specifications, the synthesis
of supervisors, and automatic code generation. Furthermore, we extendedNadzoru to support
the e-puck and Kilobot platforms.

A video demonstrating the use of Nadzoru is available in the electronic supplementary
material. The Nadzoru tool can be found together with all implementations in (Lopes et al.
2015).

6.1 Supervisor representation in memory

Figure 14 illustrates the data structure that stores the synthesised supervisor inmemory (Lopes
et al. 2012). Each state is represented as a part of this data structure. Each part describes all
output transitions from that state. The first byte for each part is the amount of output transitions
(o). It is followed by o sets of 3 bytes, where each set represents a transition. The first byte
of each set represents the event. The other two bytes determine the target state. This data
structure is limited to 256 events, 216 states and 255 output transitions per state. The memory
occupation (in bytes) of the supervisor data structure is given by:

mem = s + 3 × t, (17)

where s is the total number of states and t the total number of transitions among all supervisors.
Themethod can be adapted to support higher numbers of events, states, and transitions (Lopes
et al. 2012).

In addition, a vector of size e bytes storeswhether events are controllable or uncontrollable,
where e is the number of events used in the system. A matrix of size e × N bytes defines
which events are part of each supervisor, where N is the number of supervisors. A vector of
size N × 2 bytes stores the current state of all supervisors.

5 Note that these differ from reduced local modular supervisors (Queiroz and Cury 2000b, 2002).

123

http://www2.joinville.udesc.br/~gasr/nadzoru/

Swarm Intell (2016) 10:65–97 85

6.2 Generator player

The generator player—also called automata player—is a virtual machine. It executes the
generators realising the supervisors. An arbitrary number of generators can run in parallel.

The generator player is given by Algorithm 1. Its logic stores the states of all generators.
It checks whether any uncontrollable events occurred (by calling functions in the operational
procedures, see Sect. 6.3). If an uncontrollable event occurred, the generators’ states are
updated accordingly. Otherwise, the generator player determines the list of enabled con-
trollable events. If the list is not empty, the generator player selects one such event (e.g. at
random) and updates the generators’ states accordingly. It also calls functions in the opera-
tional procedures to perform the action associated with the event.

Algorithm 1 Generator player
1: Let N be the number of generators
2: procedure Generator player
3: for all j ∈ {1, 2, . . . , N } do
4: set current state c j to initial state q0 j ;
5: end for
6: while true do
7: if uncontrollable event eu ∈ Σu occurred then
8: for all j ∈ {1, 2, . . . , N } do
9: c j = δ j (c j , eu);
10: end for
11: else
12: calculate the set of enabled controllable events ψ(c1, c2, . . . , cn);
13: if ψ(c1, c2, . . . , cn) = ∅ then
14: select one controllable event ec ∈ ψ(c1, c2, . . . , cn);
15: for all j ∈ {1, 2, . . . , N } do
16: c j = δ j (c j , ec);
17: end for
18: execute callback function of ec;
19: end if
20: end if
21: end while
22: end procedure

To perform the experiments, the generator player was implemented for both swarm
platforms—Kilobot and e-puck. These implementations (one per target platform) were inten-
sively used across the case studies and hence can be considered reliable. This is an inherent
advantage of virtual machines. It reduces the code that has to be manually validated to the
operational procedures, which link the abstract events to the hardware.

6.3 Operational procedures

The operational procedures are a low-level interface of the controller to the hardware (Queiroz
and Cury 2002). Operational procedures were originally designed for manufacturing envi-
ronments. As a result, they were mainly used to translate events to signals on pins of
programmable control logic devices and vice versa. In the following, we show how to use
operational procedures in a more unrestricted way. Nadzoru allows the developer to define
callback functions in a separate file or to input the code in the tool, which then outputs the
complete final code.

123

86 Swarm Intell (2016) 10:65–97

The operational procedures, implemented by the developer, define one callback function
for each event. For controllable events, the generator player calls this function to perform an
action (see line 18 of Algorithm 1). In the segregation case study, for example, controllable
event turnCW is used to turn the robot clockwise for a random duration of time. The
corresponding callback function could be realised, using functions from the e-puck library,
as follows:

void callback_turnCW(void∗ data){
int t = 5 + (rand()
dirLeft = −1; dirRight = 1;
/ / set wheels speed
e_set_speed_left (500);
e_set_speed_right(−250);
/ / set required number of steps for stepper motor counter
e_set_steps_left(−500∗t) ;
e_set_steps_right(250∗ t) ;

}

For uncontrollable events, the generator player calls a function to determine whether
these events occurred (see line 7 of Algorithm 1). For example, for uncontrollable event
moveEnded, the callback function could check whether the aforementioned duration has
elapsed:

unsigned char moveEnded(void∗ data){
return e_get_steps_left ()∗dirLeft < 0 | | e_get_steps_right ()∗dirRight < 0;

}

6.4 Memory usage

Table 3 shows the memory usage of the control software using the proposed implementation
for each case study and robot platform. The usage is broken down into four components:
libraries/base code, operational procedures, generator player, and supervisors. Libraries are
a group of generic routines or resources that are available to be used in any program. Base
code includes initialisation routines not related to the operational procedures.

For all case studies and robot platforms, the memory usage is within 10–30 kB. Only a
small fraction of this can be attributed to the operational procedures, generator player, and
supervisors. The use of memory to store the supervisor is, however, larger than the theoretical
amount derived in Sect. 6.1; the values depend on the specific overhead and implementation
details of each compiler.

Table 3 Memory usage of the control software for each case study and robot platform

Case Compiler/ Libraries/ Operational Generator Super-
platform base code procedures player visors

Segregation XC16/e-puck 25,308 1773 2106 654

Segregation WinAVR/Kilobot 10,968 1512 1478 418

Aggregation XC16/e-puck 17,502 408 2016 207

Object clustering XC16/e-puck 16,695 696 2004 378

Group formation WinAVR/Kilobot 10,968 1742 1584 1704

Values are in bytes

123

Swarm Intell (2016) 10:65–97 87

Fig. 15 Snapshots from a segregation trial with Kilobots: a initial grid formation with three leaders, marked
with white tags; b result after segregation occurred. Trial with e-pucks: c initial grid formation with three pairs
of leaders marked with tags; d result after segregation occurred, tags were added after the experiments for
visualisation

7 Experiments

This section describes the experiments that we performed using local modular supervisors.
The experiments are used to validate our implementation of SCT in practice. In particular,
they test whether the modelled specifications match with the synthesised control logic, as
observed during the trials. The electronic supplementary material offers a selection of video
recordings.Video recordings fromall 50 experimental trials and additional resources (models,
the Nadzoru tool, the used source code) can be found in (Lopes et al. 2015).

7.1 Segregation experiment

The segregation experiment took place in a two-dimensional 1.20 m × 0.90 m arena. It
used a group of 39 follower robots in the Kilobot experiment and 20 follower robots in the
e-puck experiment. These robots were initially distributed on a grid. Three leader robots
were added inside the grid in the Kilobot experiment. For the e-puck experiment, three
pairs of leaders were added; this was done as the infrared (IR) signal range of the e-puck
is small in relation to its size. For each robot platform, ten trials were performed for 300 s
or until the robots were segregated, whichever occurred first. The robots were considered to
be segregated if they all receive a signal of only one leader or no signal at all—as indicated
by their light-emitting diodes (LEDs). Visual inspection confirmed that the SCT controller
performed the segregation task as intended. Figure 15 shows snapshots taken from one of
the experimental trials with the Kilobots and e-pucks, respectively. Figure 15a, c shows the
initial grid formation with leaders marked using tags. Figure 15b, d shows the result after
segregation occurred. For Fig. 15d, tags were added to all robots after the experiments for
visualisation purposes (based on the robots’ states as indicated by their LEDs).

123

88 Swarm Intell (2016) 10:65–97

Fig. 16 Sequence of snapshots taken from one of the trials where 40 e-pucks perform the aggregation task.
a The initial positions of the robots. b–d The experiment after 120, 300, and 480 s

7.2 Aggregation experiment

The aggregation experiment used the same configuration as (Gauci et al. 2014a). The e-puck
robot used its on-board camera to determine the type of object within its line of sight. The
camera is a CMOS RGB colour camera with a resolution of 640 × 480 and a field of view
of 56◦ × 42◦. To simplify identification, the robots were fitted with black skirts. Trials were
performed in a 400 cm × 225 cm light grey floor arena surrounded by white walls that were
50 cm in height. The arena had 120 pencil marks distributed as a 15 × 8 grid with columns
and rows spaced 25 cm apart. Forty robots were uniformly randomly distributed over the
marks in the arena.

In principle, one single pixel from the centre of the camera would be enough to realise
the line-of-sight sensor. To account for misalignment between the orientations of the robots’
cameras, the sensor was implemented as a column of pixels (for details, see (Gauci et al.
2014a)). This provided reliable readings in a range of up to 150 cm (Gauci et al. 2014a).

Ten trials were performed, each lasting 900 s. An IR signal was emitted to instruct the
robots to turn in place for a random period of time. As a result, the robots were randomly
orientated. A second IR signal instructed the robots to start the controller. In case of failure of
any robot (e.g. the robot reset because of a collision or low battery), a restart of the controller
was attempted via IR signal.

Figure 16 shows snapshots taken from one of the experimental trials, where 40 e-pucks
were performing the aggregation task.

In one trial, we tried—without success—to manually reset a robot with hardware failure.
In five of the ten cases, one to three robots of the forty became unresponsive. The remaining
robots achieved aggregation in all ten trials.

123

Swarm Intell (2016) 10:65–97 89

Fig. 17 Sequence of snapshots taken fromone of the trials inwhich 5 e-pucks—in black—cluster 20 objects—
in white. a The initial positions of the robots and the objects. b–d The experiment after 120, 300, and 480 s

7.3 Object clustering experiment

The object clustering experiment used the same configuration as in (Gauci et al. 2014b). In
particular, the robots were fitted with green skirts and the objects used were red cylinders
with 10 cm diameter and 10 cm height. As for the aggregation case study, the camera was
used as a theoretical one-pixel sensor to determine the type of object within the line of sight.
The implementation of the camera sensor is detailed in (Gauci et al. 2014b). Trials were
performed in the same arena and using the same conditions as in the aggregation case study.

Ten trials were performed, each lasting 600 s. As in (Gauci et al. 2014b), 5 e-pucks and
20 objects were used. Figure 17 shows snapshots taken from one of the experimental trials.

To evaluate whether the performance of object clustering using SCT is similar to the
original implementation (Gauci et al. 2014b), we used two metrics to characterise the per-
formance. We measured the proportion of objects in the largest cluster and the compactness
of objects. Two objects are considered to belong to the same cluster if there is a sequence of
objects connecting them, such that any adjacent objects are no more than 10 cm apart. The
compactness of objects (u(t)) is defined as (Gauci et al. 2014b):

u(t) = 1

4r2o

No∑

i=1

||p(t)
i − p̄(t)||2, (18)

where ro is the radius of the object, No is the number of objects, p(t)
i denotes the position of

the object i , and p̄(t) represents the centroid of the centre of the objects.
The clustering dynamics are plotted in Fig. 18. The coloured curves correspond to the 10

trials, and the black dashed line represents the mean. Figure 18a, b shows the proportion of
objects in the largest cluster. The results from (Gauci et al. 2014b) are plotted in (a), and
those obtained using SCT in (b). Figure 18c, d shows the compactness of objects. The results
from (Gauci et al. 2014b) are plotted in (c), and those obtained using SCT in (d). Overall the

123

90 Swarm Intell (2016) 10:65–97

time, t (s)

pr
op

or
ti
on

of
cl
us
te
re
d
ob

je
ct
s

0
0.
5

1

0 200 400 600
time, t (s)

pr
op

or
ti
on

of
cl
us
te
re
d
ob

je
ct
s

0
0.
5

1

0 200 400 600

(b)(a)

time, t (s)

co
m
pa

ct
ne
ss

0
15
00

30
00

0 200 400 600
time, t (s)

co
m
pa

ct
ne
ss

0
15
00

30
00

0 200 400 600

(d)(c)

Fig. 18 Dynamics of object clustering with 5 e-pucks and 20 objects. a and c are plotted using data from
(Gauci et al. 2014b). b and d present the results for the controller that was synthesised using SCT. In a and
b, the relationship between the proportion of clustered objects and time is displayed. c and d display the
compactness of objects in relation to time. Each coloured line represents one experimental trial. The thick
black dashed line indicates the mean. The horizontal dotted black line indicates a theoretical lower bound of
the compactness for 20 objects (Gauci et al. 2014b)

results are similar, and in both implementations the robots succeeded in clustering the objects.
We notice that in the first half of the experiment—0 to 300 s—the original method had a
slightly faster convergence compared to the use of SCT; in the second half, SCT overcomes
that difference.

7.4 Group formation experiment

To test the scalability of the approach, 600 Kilobots were used in the group formation experi-
ment. The experiment took place in a 2.20 m× 2.20 m arena with a glass surface. The robots
were uniformly distributed over the arena. The trial duration was limited to 600 s. The robots
were started using an overhead programmer (OHP) (Rubenstein et al. 2012). The OHP can
only communicate in a radius of around 50 cm. Due to the size of the arena, the robots could
not all be started at the same time. It took approximately 60 s to initialise all the robots.

In total, 10 experimental trials were conducted. While it is difficult to monitor the contin-
uous operation of 600 autonomous robots, visual inspection confirmed that they formed the
groups as intended. Figure 19 shows snapshots taken from one experimental trial. A video
recording is included in the electronic supplementary material. Video recordings from all
experimental trials can be found in (Lopes et al. 2015). Note that we use the robot’s LED to

123

Swarm Intell (2016) 10:65–97 91

Fig. 19 Sequence of snapshots taken from one of the trials where 600Kilobots perform the group formation
task. a The robots in their initial position and b–d show the positions and states of robots after 180, 360, and
540 s

indicate its type. Leaders are represented by non-blinking randomly chosen colours. When
a follower joins a group, it changes its colour to match the leader. Recall that there are two
types of followers and that an equal number of them (±1) will join each particular leader. To
visually discriminate between followers of different types even after they join a leader, they
flash their LEDs with two distinct frequencies.

8 Conclusions

This paper proposed and demonstrated the use of supervisory control theory (SCT) for for-
mally developing controllers in swarm robotics. Using a series of case studies, it illustrated
how to formally model the capabilities of robots and their desired behaviour (specifications).
Supervisors—controllers in the form of formal languages—can then be derived from these
models. The supervisors, here represented as regular languages, are driven through uncontrol-
lable and controllable events. Uncontrollable events are triggered externally, for example, by
the robot’s sensors.Controllable events are triggered to initiate an action, for example, tomove
the robot forward. The SCT design process reduces the action space to only those controllable
events that do not violate the specifications. It guarantees that the supervisors are ‘control-
lable’ and ‘deadlock-free’. In addition, the supervisors can be subjected to a range of formal
analysis tools (Akesson et al. 2006; Reiser et al. 2006; Rudie 2006; Feng andWonham 2006).

Compared with other work on formal methods in swarm robotics, our work has the advan-
tage that the control software is automatically derived from the problem specification. The
open source software tool Nadzoru supports users through all stages of the development
process, from specification to control software (for a demonstration see video in electronic

123

92 Swarm Intell (2016) 10:65–97

supplementary material). We extended Nadzoru to allow automatic code generation for two
robot platforms—the Kilobot and the e-puck. The supervisors run on a virtual machine on-
board each robot. The same supervisors can run on multiple platforms, further enhancing
reusability. The only platform-specific source code the user would have to provide are the
callback functions for events. For uncontrollable events, these would test whether the events
occurred; for controllable events, these would execute the associated actions. Note that events
can be reused for implementing solutions to different tasks, further reducing the amount of
ad hoc development.

The case studies, which we reported, demonstrate that SCT is a promising method to gen-
erate state-of-the-art solutions for canonical tasks in swarm robotics. The tasks required the
robots to gather,manipulate objects, and organise into logical groups. Systematic experiments
with up to 40 e-pucks and up to 600Kilobots confirmed the correctness of the implementation.

A limitation of SCT is that it assumes that the systemunder investigation canbe represented
as a discrete event system. In addition, the system and specifications have to be modelled
as a formal language. To assist this process, graphical software tools (such as Nadzoru) can
be used. The control logic can assume any behaviour that can be expressed using a regular
language (Chomsky Type-3 grammar). Regular languages are realised by deterministic finite
state machines (FSM), which are commonly used by designers of swarm robotics systems.
Traditionally, the designer creates a single, relatively complex, FSM to express the desired
behaviour. The supervisors used in this paper are an equivalent representation of such FSM.
But instead of designing one complex FSM or supervisor, SCT can be used to decompose
the behaviour into smaller and simpler parts and to separate the components related to the
robot’s abilities from those related to the specifications. This allows the designer to focus
on each aspect individually. In principle, SCT can be used with formal languages of higher
computational power. For example, deterministic Petri-nets or pushdown automata (Chomsky
Type-2 grammar) can offer elegant solutions for problems involving unbounded variables
(e.g. for robots counting their neighbours). Note, however, that some formal methods are not
suitable for the control of DES (Sreenivas 1993) or may require alteration (Lacerda and Lima
2014).

In the future, we will investigate how to prove further properties of controllers modelled
by SCT. We will also attempt to distribute a single supervisor across multiple robots.

Acknowledgments This research was supported by the Engineering and Physical Sciences Research
Council (Grant No. EP/J013714/1 and EP/K031600/1). Y.K. Lopes acknowledges support by Coordina-
tion for the Improvement of Higher Education Personnel (CAPES)—Brazil (Grant Number: 0462/12-8).
S.M. Trenkwalder is a recipient of a DOC Fellowship of the Austrian Academy of Sciences. We are thankful
for the assistance provided by F. Perez-Diaz and G. Kapellmann while performing the experiments with the
Kilobots.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

9 Appendix

This section presents the local free behaviour model calculations for the three case studies
that were omitted in Sect. 5.3: aggregation, object clustering, and group formation.

123

http://creativecommons.org/licenses/by/4.0/

Swarm Intell (2016) 10:65–97 93

Table 4 Events used by
specifications and free behaviour
models for the aggregation case
study

Ea
1 Ea

2 Ea
3 Ea

4

Ga
1 S0 � �

S1 � �
Ga
2 V0 � � �

V1 � � �
Local models Gloc,a

1 Gloc,a
2 Gloc,a

3 Gloc,a
4

Table 5 Events used by
specifications and free behaviour
models for the object clustering
case study

Ec
1 Ec

2 Ec
3 Ec

4 Ec
5 Ec

6

Gc
1 S0 � � �

S1 � � �
S2 � � �

Gc
2 V0 � � � �

V1 � � � �
V2 � � � �

Local models Gloc,c
1 Gloc,c

2 Gloc,c
3 Gloc,c

4 Gloc,c
5 Gloc,c

6

9.1 Aggregation

Table 4 shows the relation of events for each specification for the aggregation case study. The
local free behaviour models are obtained as:

G loc,a
1 = G loc,a

2 = Ga
1 ||Ga

2,

G loc,a
3 = G loc,a

4 = Ga
2 .

(19)

9.2 Object clustering

Table 5 shows the relation of events for each specification for the object clustering case study.
The local free behaviour models are obtained as:

G loc,c
1 = G loc,c

2 = G loc,c
3 = Gc

1||Gc
2,

G loc,c
4 = G loc,c

5 = G loc,c
6 = Gc

2.
(20)

9.3 Group formation

Table 6 shows the relation of events for each specification for the group formation case study.
The local free behaviour models are obtained as:

G loc,g
1 = Gg

1 ||Gg
5,

G loc,g
2 = Gg

3 || · · · ||Gg
6,

G loc,g
3 = G loc,g

6 = Gg
3 ||Gg

4 ||Gg
5,

G loc,g
4 = Gg

2 ||Gg
3,

G loc,g
5 = Gg

3 ||Gg
6 .

(21)

123

94 Swarm Intell (2016) 10:65–97

Table 6 Events used by specifications and free behaviour models for the group formation case study

Eg
1 Eg

2 Eg
3 Eg

4 Eg
5 Eg

6

Gg
1 moveFW �

turnCW �
turnCCW �
moveEnded

moveStop �
Gg
2 startTimer

timeout �
Gg
3 msgStop �

sendE � � �
sendBG � �
sendBB � �
sendOG � � �
sendOB � � �
sendAG � �
sendAB � �

Gg
4 getMessage

receiveBG � �
receiveBB � �
receiveOG � �
receiveOB � �
receiveAG �
receiveAB �

Gg
5 setLeader � �

setGreen � �
setBlue � �
join � � �

Gg
6 ignoreOG � �

ignoreOB � �
Local models Gloc,g

1 Gloc,g
2 Gloc,g

3 Gloc,g
4 Gloc,g

5 Gloc,g
6

123

Swarm Intell (2016) 10:65–97 95

References

Akesson, K., Fabian, M., Flordal, H., & Malik, R. (2006). Supremica—An integrated environment for verifi-
cation, synthesis and simulation of discrete event systems. In 2006 IEEE 8th international workshop on
discrete event systems (pp. 384–385). Piscataway, NJ: IEEE.

Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., & Pappas, G. (2007). Symbolic planning and
control of robot motion [grand challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1),
61–70.

Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm
engineering perspective. Swarm Intelligence, 7(1), 1–41.

Brambilla, M., Brutschy, A., Dorigo, M., & Birattari, M. (2015). Property-driven design for swarm robotics:
A design method based on prescriptive modeling and model checking. ACM Transaction on Autonomous
and Adaptive Systems, 9(4), 17:1–17:28.

Brzozowski, J. (1962). Canonical regular expressions and minimal state graphs for definite events.Mathemat-
ical Theory of Automata, 12, 529–561.

Cassandras, C. G., & Lafortune, S. (2008). Introduction to Discrete Event Systems (2nd ed.). New York:
Springer.

Chomsky, N. (1956). Three models for the description of language. IRE Transactions on Information Theory,
2(3), 113–124.

Chomsky, N. (1959). On certain formal properties of grammars. Information and Control, 2(2), 137–167.
Costelha, H., & Lima, P. (2008). Modelling, analysis and execution of multi-robot tasks using Petri nets. In

Proceedings of the 7th international joint conference on autonomous agents and multiagent systems
(AAMAS’08) (Vol. 3, pp. 1187–1190). Richland, SC: IFAAMS.

Cowley, A., & Taylor, C. (2007). Orchestrating concurrency in robot swarms. In Proceedings of the IEEE/RJS
international conference on intelligent robots and systems (pp. 945–950). Piscataway, NJ: IEEE.

Dixon, C., Winfield, A., & Fisher, M. (2011). Towards temporal verification of emergent behaviours in swarm
robotic systems. In R. Groß, L. Alboul, C. Melhuish, M. Witkowski, T. Prescott, & J. Penders (Eds.),
Towards autonomous robotic systems, volume 6856 of Lecture notes in computer science (pp. 336–347).
Berlin: Springer.

Dixon, C., Winfield, A. F., Fisher, M., & Zeng, C. (2012). Towards temporal verification of swarm robotic
systems. Robotics and Autonomous Systems, 60(11), 1429–1441.

Emerson, E. (1990). Temporal and modal logic. In J. van Leeuwen (Ed.), Handbook of theoretical computer
science (pp. 996–1072). Amsterdam: Elsevier.

Fabian, M., & Hellgren, A. (1998). PLC-based implementation of supervisory control for discrete event
systems. In 1998 IEEE 37th conference on decision and control (Vol. 3, pp. 3305–3310). Piscataway,
NJ: IEEE.

Feng, L., &Wonham,W.M. (2006). TCT: A computation tool for supervisory control synthesis. In 2006 IEEE
8th international workshop on discrete event systems (pp. 388–389). Piscataway, NJ: IEEE.

Fierro, R., Das, A., Kumar, V., & Ostrowski, J. (2001). Hybrid control of formations of robots. In Proceedings
of ICRA 2001, IEEE international conference on robotics and automation (pp. 157–162). Piscataway,
NJ: IEEE.

Forschelen, S., van de Mortel-Fronczak, J., Su, R., & Rooda, J. (2012). Application of supervisory control
theory to theme park vehicles. Discrete Event Dynamic Systems, 22(4), 511–540.

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., et al. (2014a). An
experiment in automatic design of robot swarms: Automode-vanilla, evostick, and human experts. In
M. Dorigo, et al. (Eds.), Swarm intelligence, ANTS 2014, volume 8667 of LNCS (pp. 25–37). Berlin:
Springer.

Francesca, G., Brambilla, M., Brutschy, A., Garattoni, L., Miletitch, R., Podevijn, G., et al. (2015). Automode-
Chocolate: automatic design of control software for robot swarms. Swarm Intelligence, 9(2–3), 125–
152.

Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., & Birattari, M. (2014b). Automode: A novel approach
to the automatic design of control software for robot swarms. Swarm Intelligence, 8(2), 89–112.

Gauci, M., Chen, J., Li, W., Dodd, T. J., & Groß, R. (2014a). Self-organised aggregation without computation.
The International Journal of Robotics Research, 33(9), 1145–1161.

Gauci, M., Chen, J., Li, W., Dodd, T. J., & Groß, R. (2014b). Clustering objects with robots that do not
compute. In Proceedings of the 2014 international conference on autonomous agents and multi-agent
systems (AAMAS ’14) (pp. 421–428). Richland, SC: IFAAMS.

Gordon-Spears, D., & Kiriakidis, K. (2004). Reconfigurable robot teams: Modeling and supervisory control.
IEEE Transactions on Control Systems Technology, 12(5), 763–769.

123

96 Swarm Intell (2016) 10:65–97

King, J., Pretty, R., & Gosine, R. (2003). Coordinated execution of tasks in a multiagent environment. IEEE
Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 33(5), 615–619.

Knight, J. C., DeJong, C. L., Gibble, M. S., & Nakano, L. G. (1997). Why are formal methods not used more
widely? In Fourth NASA formal methods workshop (pp. 1–12). NASA.

Lacerda, B., & Lima, P. U. (2014). On the notion of uncontrollable marking in supervisory control of Petri
nets. IEEE Transactions on Automatic Control, 59(11), 3069–3074.

Liu, J., & Darabi, H. (2002). Ladder logic implementation of Ramadge-Wonham supervisory controller. In
2002 IEEE 6th international workshop on discrete event systems (pp. 383–389). Piscataway, NJ: IEEE.

Lopes, Y. K. (2012). Integração dos níveis MES, SCADA e controle da planta de manufatura com base na
teoria de linguagens e autômatos. Master’s thesis, Santa Catarina State University, Departamento de
Engenharia Elétrica, Joinville, Brazil (in Portuguese).

Lopes, Y. K., Leal, A. B., Rosso, R. S. U., & Harbs, E. (2012). Local modular supervisory implementation
in microcontroller. In Proceedings of the 9th international conference of modeling, optimization and
simulation (MOSIM 2012).

Lopes, Y. K., Leal, A. B., Dodd, T. J., & Groß, R. (2014). Application of supervisory control theory to swarms
of e-puck and Kilobot robots. In M. Dorigo, et al. (Eds.), Swarm Intelligence, ANTS 2014, volume 8667
of LNCS (pp. 62–73). Berlin: Springer.

Lopes, Y. K., Trenkwalder., S. M., Leal, A. B., Dodd, T. J., & Groß, R. (2015). Online supplementary material.
http://naturalrobotics.group.shef.ac.uk/supp/2015-001/.

Martinoli, A., Easton, K., & Agassounon, W. (2004). Modeling swarm robotic systems: A case study in
collaborative distributed manipulation. The International Journal of Robotics Research, 23(4–5), 415–
436.

Mass, D. G. N., Pinotti, A. J., & Leal, A. B. (2012). Síntese e implementação de controle supervisório
monolítico para um ice maker. Anais do XIX Congresso Brasileiro de Automática, CBA, 19, 5294–5301
(in Portuguese).

Massink, M., Brambilla, M., Latella, D., Dorigo, M., & Birattari, M. (2013). On the use of Bio-PEPA for
modelling and analysing collective behaviours in swarm robotics. Swarm Intelligence, 7(2–3), 201–228.
doi:10.1007/s11721-013-0079-6.

McNew, J. M., & Klavins, E. (2006). Locally interacting hybrid systems with embedded graph grammars. In
2006 45th IEEE conference on decision and control (pp. 6080–6087). Piscataway, NJ: IEEE.

McNew, J. M., Klavins, E., & Egerstedt, M. (2007). Solving coverage problems with embedded graph gram-
mars. In A. Bemporad, et al. (Eds.), Hybrid systems: Computation and control, volume 4416 of LNCS
(pp. 413–427). Berlin: Springer.

Mesquita, A. (2010). Exploiting stochasticity in multi-agent systems. PhD thesis, University of California,
Santa Barbara, CA.

Mesquita, A. R., & Hespanha, J. P. (2012). Jump control of probability densities with applications to
autonomous vehicle motion. IEEE Transactions on Automatic Control, 57(10), 2588–2598.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., et al. (2009). The e-puck, a robot
designed for education in engineering. InProceedings of the 9th conference on autonomous robot systems
and competitions (Vol. 1, pp. 59–65).

Pinheiro, L. P., Lopes, Y. K., Leal, A. B., & Rosso, R. S. U. (2015). Nadzoru: A software tool for supervisory
control of discrete event systems. In Proc. of the 5th international workshop on dependable control of
discrete systems (DCDS) (Vol. 5).

Queiroz, M. H., & Cury, J. E. R. (2000a). Modular supervisory control of large scale discrete event sys-
tems. In Proceedings of international workshop on discrete event systems (WODES) (pp. 103–110).
Berlin:Springer.

Queiroz, M. H., & Cury, J. E. R. (2000b). Modular control of composed systems. In Proceedings of the 2000
american control conference (pp. 4051–4055). Piscataway, NJ: IEEE.

Queiroz,M. H., &Cury, J. E. R. (2002). Synthesis and implementation of local modular supervisory control for
a manufacturing cell. In Proceedings of 6th international workshop on discrete event systems (WODES)
(pp. 103–110). Piscataway, NJ: IEEE.

Ramadge, P. J., & Wonham, W. M. (1987). Supervisory control of a class of discrete event process. SIAM
Journal on Control and Optimization, 25(1), 206–230.

Ramadge, P. J., & Wonham, W. M. (1989). The control of discrete event systems. Proceedings of the IEEE,
77(1), 81–98.

Reiser, C., Cunha, A. E. C., & Cury, J. E. R. (2006). The environment Grail for supervisory control of
discrete event systems. In 2006 IEEE 8th international workshop on discrete event systems (pp. 390–
391). Piscataway, NJ: IEEE.

Rubenstein, M., Ahler, C., & Nagpal, R. (2012). Kilobot: A low cost scalable robot system for collective
behaviors. In Proceedings of ICRA 2012 (pp. 3293–3298). Piscataway, NJ: IEEE.

123

http://naturalrobotics.group.shef.ac.uk/supp/2015-001/
http://dx.doi.org/10.1007/s11721-013-0079-6

Swarm Intell (2016) 10:65–97 97

Rudie, K. (2006). The integrated discrete-event systems tool. In 2006 IEEE 8th international workshop on
discrete event systems (pp. 394–395), Piscataway, NJ: IEEE.

Silva, D., Santos, E., Vieira, A., & de Paula, M. (2008). Application of the supervisory control theory in the
project of a robot-centered, variable routed system controller. In 2008 IEEE international conference on
emerging technologies and factory automation (pp. 751–758). Piscataway, NJ: IEEE.

Sreenivas, R. (1993). On a weaker notion of controllability of a language k with respect to a language l. IEEE
Transactions on Automatic Control, 38(9), 1446–1447.

Tanner, H. G., Jadbabaie, A., & Pappas, G. J. (2007). Flocking in fixed and switching networks. IEEE Trans-
actions on Automatic Control, 52(5), 863–868.

Tomlin, C., Pappas, G., Kosecka, J., Lygeros, J., & Sastry, S. (1998). Advanced air traffic automation: A case
study in distributed decentralized control. In Proceedings of the workshop control problems in robotics
and automation (pp. 261–295). Berlin: Springer.

Tsalatsanis, A., Yalcin, A., & Valavanis, K. (2009). Optimized task allocation in cooperative robot teams. In
Proceedings of the 17th Mediterranean conference on control and automation (MED’09) (pp. 270–275).
Piscataway, NJ: IEEE.

Tsalatsanis, A., Yalcin, A., & Valavanis, K. P. (2012). Dynamic task allocation in cooperative robot teams.
Robotica, 30(5), 721–730.

Winfield, A. F. T., Sa, J., Fernández-Gago, M.-C., Dixon, C., & Fisher, M. (2005). On formal specification
of emergent behaviours in swarm robotic systems. International Journal of Advanced Robotic Systems,
2(4), 363–370.

Wonham,W.M., & Ramadge, P. J. (1988). Modular supervisory control of discrete event system.Mathematics
of Control, Signals and Systems, 1(1), 13–30.

Zavlanos, M., Tanner, H., Jadbabaie, A., & Pappas, G. (2009). Hybrid control for connectivity preserving
flocking. IEEE Transactions on Automatic Control, 54(12), 2869–2875.

123

	Supervisory control theory applied to swarm robotics
	Abstract
	1 Introduction
	2 Formal methods in swarm robotics
	3 Supervisory control theory preliminaries
	3.1 Generators
	3.2 Free behaviour models
	3.3 Control specifications

	4 Design of free behaviour models and control specifications
	4.1 Segregation case study
	4.2 Aggregation
	4.3 Object clustering
	4.4 Group formation

	5 Supervisor synthesis
	5.1 Monolithic supervisor
	5.2 Modular supervisors
	5.3 Local modular supervisors
	5.3.1 Enabled events in modular and local modular supervisors

	5.4 Comparison

	6 Implementation of supervisory control in swarm robotics
	6.1 Supervisor representation in memory
	6.2 Generator player
	6.3 Operational procedures
	6.4 Memory usage

	7 Experiments
	7.1 Segregation experiment
	7.2 Aggregation experiment
	7.3 Object clustering experiment
	7.4 Group formation experiment

	8 Conclusions
	Acknowledgments
	9 Appendix
	9.1 Aggregation
	9.2 Object clustering
	9.3 Group formation

	References

