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Summary

1. Many quantitative traits are labile (e.g. somatic growth rate, reproductive timing and invest-

ment), varying over the life cycle as a result of behavioural adaptation, developmental pro-

cesses and plastic responses to the environment. At the population level, selection can alter the

distribution of such traits across age classes and among generations. Despite a growing body

of theoretical research exploring the evolutionary dynamics of labile traits, a data-driven frame-

work for incorporating such traits into demographic models has not yet been developed.

2. Integral projection models (IPMs) are increasingly being used to understand the interplay

between changes in labile characters, life histories and population dynamics. One limitation

of the IPM approach is that it relies on phenotypic associations between parents and off-

spring traits to capture inheritance. However, it is well-established that many different pro-

cesses may drive these associations, and currently, no clear consensus has emerged on how to

model micro-evolutionary dynamics in an IPM framework.

3. We show how to embed quantitative genetic models of inheritance of labile traits into age-

structured, two-sex models that resemble standard IPMs. Commonly used statistical tools

such as GLMs and their mixed model counterparts can then be used for model parameteriza-

tion. We illustrate the methodology through development of a simple model of egg-laying

date evolution, parameterized using data from a population of Great tits (Parus major).

4. We demonstrate how our framework can be used to project the joint dynamics of species’

traits and population density. We then develop a simple extension of the age-structured Price

equation (ASPE) for two-sex populations, and apply this to examine the age-specific contribu-

tions of different processes to change in the mean phenotype and breeding value.

5. The data-driven framework we outline here has the potential to facilitate greater insight

into the nature of selection and its consequences in settings where focal traits vary over the

lifetime through ontogeny, behavioural adaptation and phenotypic plasticity, as well as pro-

viding a potential bridge between theoretical and empirical studies of labile trait variation.

Key-words: integral projection model, labile trait, ontogeny, Parus major, plasticity, Price
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Introduction

Labile traits are common in animal populations. In con-

trast to non-labile traits, which remain constant once they

have been expressed, a labile trait is one that is adjusted

continuously over the course of an individual’s lifetime

(Scheiner 1993). Many physiological and behavioural char-

acteristics – such as somatic growth rate and the seasonal

timing of reproduction – exhibit reversible development,

resulting in a labile phenotype. These kinds of developmen-

tal and behavioural changes may represent a form of adap-

tive plasticity, which has evolved in response to anticipated,

short-term environmental fluctuations (Lande 2014, 2015).

Alternatively, context-dependent constraints on physiology

or behaviour may filter variable environmental conditions

to generate labile trait variation. Evaluating the adaptive

significance of this variation in natural populations is chal-

lenging because: (i) observed trait variation may reflect

both adaptation and constraint, (ii) individual performance
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may vary as a consequence of many factors (e.g. sex and age),

and (iii) labile trait variation impacts vital rates directly and

through its effect on key life-history events such as maturation.

Integral projections models (IPMs) have been widely

adopted in population and evolutionary ecology to derive

population-scale processes from knowledge of continuous,

individual-level state variables (Easterling, Ellner & Dixon

2000; Rees, Childs & Ellner 2014; Griffith et al. 2016). These

variables are typically labile, in the sense that they vary over

the course of an individual’s lifetime, driving patterns of

variation in vital rates and life histories (Plard et al. 2016).

Although the majority of published IPMs have considered

body size, in principle the focal state variables can be any

demographically important continuous attribute such as

breeding date or territory size. The basic IPM has been

extended to incorporate multidimensional states that may

include both categorical (e.g. developmental stage, breeding

status) and continuous variables (Ellner & Rees 2006). Two

important special cases of such ‘complex’ IPMs for many

animal populations are sex- and age-structured models

(Childs et al. 2003; Schindler et al. 2013, 2015). Age is a reli-

able predictor of demographic performance in many popu-

lations, although the functional dependence of mortality

and reproduction on age is complicated by trait-mediated

effects (Brooks et al. 2016) and many other processes (e.g.

behavioural adaptation and senescence) that interact to

shape these relationships. Age-structured IPMs provide a

powerful framework for understanding how these effects

play out over the life cycle and at the population level.

Integral projection models have been applied to address

two broad categories of questions in evolutionary demog-

raphy. The first deals with evolutionary statics; that is, it

characterizes evolutionary endpoints. Starting with

assumptions about trait-dependent demography, trade-

offs between vital rates and the action of density depen-

dence, the goal is to predict parameter values that are an

evolutionary stable strategy (Dercole & Rinaldi 2008).

Several early applications of IPMs used this framework to

characterize optimal life-history traits, including flowering

size in plants (Childs et al. 2004; Rees et al. 2004, 2006;

Hesse, Rees & M�ueller-Sch�aerer 2008), seed germination

rates (Rees et al. 2006), and twinning frequency in a

mammal (Childs et al. 2011). The second class of question

deals with evolutionary dynamics. Two approaches to this

type of question have been adopted. The first forgoes an

explicit genetic model, and instead uses phenotypic

associations between parents and offspring to subsume

inheritance and parental effects into a single ‘inheritance

function’. This framework has been promoted for

studying the joint dynamics of ecological and evolutionary

change [‘eco-evolutionary’ processes, reviewed in Smalle-

gange & Coulson (2013)]. The second approach embeds

explicit assumptions about the genetic basis of a focal

trait into an IPM, and then uses the resulting model to

simulate short-term changes in the mean genotype of

competing clones [see Rees & Ellner (2016)], and allele

frequencies in diploid populations (Coulson et al. 2011).

However, a framework for accommodating quantitative

trait variation has not yet been formalized.

Integral projection models are frequently constructed so

that analytical tools from evolutionary demography can be

applied to investigate the mechanisms of change predicted by

the model (Coulson 2012; Smallegange & Coulson 2013).

Coulson & Tuljapurkar (2008) introduced one such tool, the

‘age-structured Price equation’ (ASPE), to decompose

changes in the population-level mean phenotype of age-struc-

tured populations. This extension of the Price equation (Price

1970) divides fitness into its age-specific survival and recruit-

ment components, which along with their demographic

weights (reflecting the population age structure) are used to

partition change in the mean phenotype into contributions

resulting from variation in demographic structure, age-speci-

fic selection via differences in survival and recruitment, phe-

notypic plasticity and growth, and differences between

offspring and parental trait values. The ASPE was initially

applied directly to observational data. Equivalent model-

based calculations were later derived by Coulson, Tul-

japurkar & Childs (2010). The ASPE has been used to exam-

ine apparent stasis in birthweight in red deer (Coulson &

Tuljapurkar 2008), and body mass dynamics of Soay sheep

(Ozgul et al. 2009) and yellow-bellied marmots (Ozgul et al.

2010). However, the Price equation and the derived ASPE

represent very general decompositions of change that may be

applied to any quantity that changes among time intervals,

including allele frequencies or breeding values (Frank 1997).

Despite its generality, the ASPE has not been used to investi-

gate the dynamics of genetic change in a demographic model.

Here, we describe a mathematical framework to incorpo-

rate labile traits with a quantitative genetic underpinning

into models of age-structured, two-sex populations. The

resulting data-driven modelling framework shares many of

the advantages of IPMs. It allows models to be constructed

from knowledge of individual-level processes and permits

quantitative genetic parameters – commonly estimated in

wild populations using the animal model (Kruuk 2004) – to

be incorporated so that microevolutionary dynamics can be

predicted under realistic assumptions about age structure,

life histories and individual trait–fate relationships. We

illustrate the methodology by constructing a simple model

of laying date ‘synchrony’, parameterized with data from a

population of Great tits (Parus major) and then use the

model to project change in the synchrony and density of

breeding pairs. To understand the behaviour of the model,

we develop a simple extension of the ASPE that accommo-

dates two sexes (under certain assumptions), and then apply

this decomposition to our model predictions to partition

sources of change in the mean laying date phenotype and

the breeding values. R scripts for the implementation of this

approach are made available on Figshare (Childs 2015).

Modelling framework

In this section, we outline a general family of discrete time

models that project the joint dynamics of a (multivariate)
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phenotype–genotype distribution and population density.

The approach parallels that developed by Barfield, Holt

& Gomulkiewicz (2011) to analyse quantitative trait

dynamics in stage-structured populations, but here we

consider continuous, labile traits in a sex- and age-struc-

tured population subject to a time-varying environment.

We do not prescribe the nature of temporal variation, but

the model can accommodate features such as density

dependence or a secular trend in vital rates. We assume

the infinitesimal model of inheritance (Fisher 1918;

Falconer & Mackay 1996) in the following derivations,

although alternative genetic models are possible.

definit ions and notation

We let x ¼ ðx1; x2; . . .; xuÞ denote the continuous,

multivariate ‘l-state’ of an individual. The l-state includes

any component of the phenotype that varies over the life

cycle as a result of ontogeny or phenotypic plasticity; that

is, l-states are labile at the individual level. We assume

that each component of the l-state influences one or more

vital rates, either directly or indirectly via its impact on

another component. Examples of possible l-states include

body mass or size, morphometric character states, physio-

logical markers of stress, or a measure of reproductive

timing such as first egg-laying date. Individuals are further

characterized by a constant ‘q-state’, denoted

z ¼ ðz1; z2; . . .; zvÞ. The q-state is a quantitative trait

assigned at birth, which remains constant over life and

influences one or more vital rates, either directly or indi-

rectly via its impact on the dynamics of x. Following the

usual conventions of quantitative genetics, we let

z = g + e, where g is the additive genetic value (i.e. the

breeding value) and e is the permanent environmental

deviation. Thus, an individual’s current state is uniquely

defined by three vectors x, z and g. Their state one time

step later is denoted x0, z0 and g0.
In the definitions that follow, we will only use the term

probability density function (pdf) to refer to functions that

‘sum to on’. A function that describes some general aspect

of continuous population structure – but does not possess

this property – is called a density function. Our model pro-

jects (at time t) the joint density function of l- and q-states

of female and male of age a, denoted n
ðtÞ
f ðx; z; g; aÞ and

n
ðtÞ
m ðx; z; g; aÞ, respectively. These are defined such that

N
ðtÞ
f ðaÞ ¼

Z Z Z
n
ðtÞ
f ðx; z; g; aÞdx dzdg

NðtÞ
m ðaÞ ¼

Z Z Z
nðtÞm ðx; z; g; aÞdx dzdg;

eqn 1

where N
ðtÞ
f ðaÞ and N

ðtÞ
m ðaÞ are the abundance of age a

females and males at time t, respectively (we exclude the

integration domain to keep our notation compact; all

integrals are over the entire range of all variables). The

total population abundance is then NðtÞ ¼ P
aðNðtÞ

f ðaÞþ
N

ðtÞ
m ðaÞÞ. The demography and trait dynamics are gov-

erned by a set of functions (defined below), any of which

may vary with time as a result of variation in the external

environment or population density. This time dependence

and/or density dependence is denoted by the superscript

(t). Finally, we use the notation hx; z; g; aif and

hx; z; g; aim to denote a unique combination of female and

male states, and use h
�hx; z; g; aif� as a shorthand for

hðxf; zf; gf; afÞ, where h is some general function.

survival and growth

The dynamics of a cohort are determined by their state-

dependent survival and ‘growth’. We use the term growth

generically to refer to any change in the l-state distribu-

tion over the life cycle, although the focal trait(s) need

not be related to body size or morphology. Our model

assumes that only x,z and a determine survival rates and

growth dynamics (note that, because g is a component of

z, this means an individual’s breeding value can affect

vital rates – we discuss this reasoning further in the

Parameterization section later). The survival probability

of age a females and males are described by the survival

functions, s
ðtÞ
f ðx; z; aÞ and s

ðtÞ
m ðx; z; aÞ, respectively. We

write each of these as a single function, although they

may subsume more than one process. For example, if

reproduction is fatal – such as in certain salmonids – then

s
ðtÞ
f ð. . .Þ will be defined in terms of two functions describ-

ing reproduction and mortality due to other processes

(Childs et al. 2003, 2004). The conditional distributions of

female and male l-states next year, x0, given their current

state, are governed by the growth kernels, G
ðtÞ
f ðx0jx; z; aÞ

and G
ðtÞ
m ðx0jx; z; aÞ, respectively. As an individual’s breed-

ing value does not change as it ages, the density functions

of female and male cohorts after one time step are then

n
ðtþ1Þ
f ðx0;z;g;aþ1Þ¼

Z
s
ðtÞ
f ðx;z;aÞ

G
ðtÞ
f ðx0jx;z;aÞnðtÞf ðx;z;g;aÞdx

and nðtþ1Þ
m ðx0;z;g;aþ1Þ¼

Z
sðtÞm ðx;z;aÞ

GðtÞ
m ðx0jx;z;aÞnðtÞm ðx;z;g;aÞdx:

eqn 2

These expressions are equivalent to the survival–growth
component of an IPM; an individual must survive to

remain in their cohort, and then, their contribution to the

labile component of the state distribution is projected

from their current state.

reproduction

The derivation of the density function of new recruits is

less straightforward; the existence of two sexes introduces

considerable complexity into population models, and the

calculations cannot be written in a completely general

form because the details will depend on the biology of the
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system. We give one example here that applies to an

annually breeding species exhibiting biparental care,

where stable pairs form once each year. The number of

recruits each pair produces and the l-state of these recruits

are jointly determined by some combination of the l- and

q-state of their parents. The case study we examine later

represents a much simpler, special case of this model.

Alternative models that may apply to different settings

are discussed in the next section.

Three processes need to be considered to project

reproduction. We first need to form the joint density func-

tion of breeding pairs, pðtÞ
�hx; z; g; aif; hx; z; g; aim�. This

will generally be the most challenging component of a

model to develop, as it results from frequency- and

density-dependent processes that govern formation of

breeding pairs, and may reflect other demographic

processes operating on parents. For example, if we aim to

project the dynamics of a population from a point in time

shortly after reproduction occurs, n
ðtÞ
f ð. . .Þ and n

ðtÞ
m ð. . .Þ

will be scaled by survival terms; individuals that do not

survive until the next breeding attempt cannot contribute

recruits. However, it will sometimes be possible to adopt

a fairly simple form for pðtÞð. . .Þ. For example, if we assume

that the number of breeding pairs is strictly limited by the

less abundant sex, but that every individual has an equal

probability of successfully forming a pair, then

pðtÞ
�hx; z; g; aif; hx; z; g; aim� ¼ N

ðtÞ
b n

ðtÞ
f ðx; z; g; aÞ

nðtÞm ðx; z; g; aÞ
.
fðtÞ

eqn 3

where N
ðtÞ
b ¼ minðNðtÞ

f ;N
ðtÞ
m Þ, and fðtÞ is the normalization

constant that converts the product of n
ðtÞ
f ð. . .Þ and n

ðtÞ
m ð. . .Þ

in this expression into a probability density function (note

that n
ðtÞ
f ð. . .Þ and n

ðtÞ
m ð. . .Þ are not evaluated at the same

values of the x, z, g and a arguments in this expression).

Where such simplifying assumptions cannot be justified, it

will be necessary to construct a ‘marriage function’, that

takes arguments n
ðtÞ
f ð. . .Þ and n

ðtÞ
m ð. . .Þ, and maps these to

the density pðtÞð. . .Þ (Schindler et al. 2013).
The second two processes describe the production of

offspring and their states. Here again, the effect of g on

offspring number and state (if modelled) plays out

indirectly through its contribution to z. The number of

female and male recruits produced by a pair are described

by fertility functions, b
ðtÞ
!f

�hx; z; aif; hx; z; aim� and

b
ðtÞ
!m

�hx; z; aif; hx; z; aim�, respectively, which are functions

of maternal and paternal states. The distributions of

female and male recruit l-states, conditional on the state

of their parents, are given by the kernels

C
ðtÞ
!f

�
x0jhx; z; aif; hx; z; aim

�
and C

ðtÞ
!m

�
x0jhx; z; aif; hx; z;

aim
�
, respectively. In mathematical terms, there is little

difference between this kernel and that defined in ‘classic’

IPMs, in the sense that both are just conditional probabil-

ity density functions of offspring state, where the condi-

tioning is with respect to parental state(s). However, as

classic IPMs are only structured by phenotypic traits, and

most have only considered a single sex [but see Schindler

et al. (2013, 2015)], the conditioning has typically been

simpler.

The density functions of new female and male recruits,

n
ðtþ1Þ
f ðx0; z0; g0; 0Þ and n

ðtþ1Þ
m ðx0; z0; g0; 0Þ, are calculated in

several steps. First, the expected number of new female and

male recruits, N
ðtþ 1Þ
f ð0Þ and N

ðtþ 1Þ
m ð0Þ, is calculated as

N
ðtþ1Þ
f ð0Þ ¼

X
af;am

Z Z Z Z
b
ðtÞ
!f

�hx; z; aif; hx; z; aim�

pðtÞ
�hx; z; aif; hx; z; aim�dxf dzf dxm dzm

Nðtþ1Þ
m ð0Þ ¼

X
af;am

Z Z Z Z
bðtÞ!m

�hx; z; aif; hx; z; aim�

pðtÞ
�hx; z; aif; hx; z; aim�dxf dzf dxm dzm;

eqn 4

where pðtÞ
�hx; z; aif; hx; z; aim� ¼ R R

pðtÞ
�hx; z; g; aif; hx;

z; g; aim
�
dgfdgm. We then calculate the joint probability den-

sity function of maternal genotype, paternal genotype and

recruit l-state among female and male recruits, denoted

vðtÞf ðgf; gm; x0Þ and vðtÞm ðgf; gm; x0Þ. For females, this is given by

vðtÞf ðgf; gm; x0Þ ¼
1

N
ðtþ1Þ
f ð0Þ

X
af;am

Z Z Z Z
b
ðtÞ
!f

�hx; z; aif;
hx; z; aim

�� C
ðtÞ
!f

�
x0jhx; z; aif; hx; z; aim

�
� pðtÞ

�hx; z; g; aif; hx; z; g; aim�
dxf dzf dxm dzm

eqn 5

where N
ðtþ1Þ
f ð0Þ normalizes the integrands in equation 5 to

ensure that we are working with probability density func-

tions. For males, the function has the same form. With

these pdfs in hand, the next step is to calculate the joint l-

and q-state probability density function of female and

male recruits, denoted Wðtþ1Þ
f ðx0; z0; g0Þ and Wðtþ1Þ

m ðx0; z0; g0Þ,
respectively. In brief, because we assume the infinitesimal

model of inheritance, we need to compute the mid-parent

distribution of gf and gm in offspring and then add the

Gaussian segregation variance to construct these distribu-

tions. These calculations are cumbersome, so we relegate

them to the (Appendix S1, Supporting information).

Finally, to calculate the density function of female and

male recruits, n
ðtþ1Þ
f ðx0; z0; g0; 0Þ and n

ðtþ1Þ
m ðx0; z0; g0; 0Þ, we

rescale Wðtþ1Þ
f ðx0; z0; g0Þ and Wðtþ1Þ

m ðx0; z0; g0Þ by the number

of female and male recruits, respectively, such that

n
ðtþ 1Þ
f ð. . .Þ and n

ðtþ1Þ
m ð. . .Þ are

n
ðtþ1Þ
f ðx0; z0; g0; 0Þ ¼ N

ðtþ1Þ
f ð0ÞWðtþ1Þ

f ðx0; z0; g0Þ
and nðtþ1Þ

m ðx0; z0; g0; 0Þ ¼ Nðtþ1Þ
m ð0ÞWðtþ1Þ

m ðx0; z0; g0Þ:
eqn 6

alternative models

The model implied by equations 2–6 is relatively high

dimensional compared to a standard IPM. Even a model
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with one-dimensional x, z, and g requires numerical inte-

gration to be implemented over four dimensions (equa-

tion 5). Standard numerical quadrature routines can be

employed to solve a problem of this size, but these will soon

become intractable as the dimension of the l- or q-states is

increased. Fortunately, considerable simplification of the

model will often be possible. In many populations, it may

be reasonable to assume that offspring production and the

sex ratio are solely determined by breeding females (‘mater-

nal demographic control’). Under these conditions, paren-

tal genotypes do not covary among offspring, which

somewhat simplifies the calculations describing genetic

transmission across generations. This case is considered in

Appendix A.2. Further simplification will be possible if one

can also assume that parental effects only operate via

females (‘maternal phenotypic control’). Under these condi-

tions, the dimensionality of the reproduction and transmis-

sion components of the model is much smaller, which

considerably simplifies the model. This case is examined in

Appendix A.3. Models that exclude parental effects alto-

gether, such as the case study below, are even simpler to

derive and numerically implement.

parameterization

Just as with a standard IPM, our model can be parame-

terized using individually structured, longitudinal data of

the kind now routinely collected in many long-term

studies (Clutton-Brock & Sheldon 2010). A series of

regression models may be fitted to such data to describe

trait variation over the life cycle, the relationship between

parental and offspring trait distributions, and trait–fate
relationships, with the additional requirement that suffi-

cient pedigree data must be available to partition genetic

variance in a parameter of at least one of these models. It

may not always be straightforward to decide a priori how

to associate a focal trait that has been measured in the

laboratory or in the field, with the l- and q-state compo-

nents of a model, but an appropriate designation should

become apparent once the data have been statistically

modelled. In order to understand how to reason about

these decisions, we make a distinction between

ontogenetic traits that change systematically over the

course of development, and plastic traits that vary over

the life cycle in response to environmental conditions. We

discuss these two possibilities in turn, denoting the focal

trait as y, to distinguish it from the l- and q-state

variables (x and z), which are properties of the model

rather than the data. We use standard subscript notation

to describe statistical models involving these variables –
for example xit may denote the size of individual i in year

t – but drop these subscripts when describing the

corresponding demographic model components. Finally,

for the purpose of simplifying this discussion we only con-

sider univariate focal traits.

When modelling an ontogenetic trait, it will often be

natural to define the l-state such that it corresponds

directly to the focal trait (i.e., y = x), and to work with a

growth kernel that is similar to those used in a standard

IPM. These kernels are usually derived from a non-sta-

tionary, first-order autoregressive model – that is an ant-

edependence model (Zimmerman & Nunez-Anton 2009) –
that is fitted by regressing successive trait values against

one-another. If we ignore age dependence, the simplest

statistical model for the trait of individual i is then,

xitþ1 ¼ c0 þ c1xit þ �it, where xit is the value in year t, c0
and c1 are regression coefficients, and �it is a normally

distributed iid error term. The growth kernel that arises

from this model is then, GðtÞðx0jxÞ ¼ fNðE½x0jx�;r2
GÞ,

where fN is the normal density function, the expected

value E½x0jx� ¼ c0 þ c1x, and r2
G is the variance in

growth. Various extensions to this model have been

employed. For example, where there is sufficient temporal

replication, the c0 and c1 coefficients may be allowed to

vary by time to capture fluctuating growth conditions.

Nonlinear dependence of xitþ1 on xit might be accommo-

dated by replacing the c1xit term with a flexible smooth

function, gðxitÞ, fitted using a generalized additive model.

Whatever the underlying growth model, the functional

dependence of the focal trait on age is not prescribed

directly, but is instead a consequence of its distribution at

birth, the growth kernel, and – at the population level –
the trait-dependent survival function.

To extend this basic kernel so that it may be used in the

modelling framework described here, among-individual dif-

ferences can be captured by including one or more normally

distributed, individual-level random effects (Rees et al.

2000; Ellner & Rees 2006, 2007; Vindenes & Langangen

2015), and where sufficient pedigree data are available,

these variance components may be further partitioned into

additive genetic and permanent environment effects. For

example, the linear model underlying a varying-intercept

growth model might be xitþ1 ¼ c0 þ zi þ c1xit þ �it,

where zi ¼ gi þ ei, such that gi and ei are the additive

genetic and permanent environment effects associated with

individual i. This model may be used as the basis of a

growth kernel in our framework, that is

GðtÞðx0jx; zÞ ¼ fNðE½x0jx; z�;r2
GÞ, where the expected value

is now, E½x0jx; z� ¼ c0 þ zþ c1x. The l-state (x) variable

corresponds directly to the trait of interest, while the q-state

(z) simultaneously captures heritable differences in the rate

of state change, conditional on current state, and the

asymptotic trait an individual may reach; that is, the q-state

does not prescribe a trait at any given age, but instead

determines the dynamics of the growth increments at each

age. Greater flexibility in growth trajectories might be

introduced by accommodating among-individual variation

in the trait-slope, or by allowing the intercept and slope

coefficients to vary with time.

When modelling a labile plastic traits that can change

repeatedly in life (contrary to plastic traits that take

one value during life), it may be reasonable to partition y

into separate l- and q-state components. A putative linear

model describing its dynamics is yit ¼ zit þ xit; where
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xit ¼ c0 þ c1et þ �it. Here, the l-state (x) is a function of

c0 and c1 – intercept and slope coefficients that define a

reaction norm with respect to an annually varying envi-

ronmental effect, et – and the normally distributed iid

error term, �it. The q-state in this model captures consis-

tent among-individual differences in the expression of the

focal trait, which do not vary over the life cycle. The

‘growth’ kernel corresponding to this model is simply

GðtÞðx0Þ ¼ fNðE½x0�;r2
GÞ, where E½x0� ¼ c0 þ c1etþ1 and

r2
G is the residual variance in the trait. Alternative models

are possible. In the simple case study below, we consider

a plastic trait in which there is no explicit environmental

driver of trait variation, but where the l-state component

of the focal trait is autocorrelated and the q-state only

contains an additive genetic component, g.

The distinction between ontogenetic and plastic traits is

not concrete. For example, if the intercept and slope coef-

ficients of an antedependence model vary with respect to

an explicit environmental covariate, then both ontogenetic

and plastic changes in the focal trait can be accommo-

dated by the ‘ontogenetic’ growth kernel described above.

The choice of model used to capture variation in the focal

trait has implications for how the remaining vital rate

functions are parameterized. Functions that describe com-

ponents of reproduction and survival are typically derived

from (G)LMs that include the focal trait as a covariate.

For example, if Sit is a binary index of annual survival, it

may be modelled using a logistic regression as

Sit �BernðE½Sit�Þ, where logitðE½Sit�Þ ¼ cðtÞ0 þ c1yit. If we

had directly modelled the dynamics of the focal trait using

the ontogenetic model, then y = x, and the resulting sur-

vival function, s(x), only depends on the l-state. On the

other hand, if we had partitioned y into l- and q-state

components using the plastic trait model, then y = x + z,

and the resulting survival function, s(x,z), depends on

both these components of the trait. Note that, in either

case, the reproduction and survival functions may depend

on additional components of the q-state, which capture

permanent among-individual differences in performance

that are not attributed to the focal trait.

Case study: egg-laying date synchrony

We now demonstrate an application of our framework

to predict the microevolutionary dynamics of breeding

phenology, using data from a long-term study of the

Great tit (Parus major) population at Wytham Woods,

Oxford, UK. This population has exhibited a marked

change in breeding date over time (Charmantier et al.

2008). The mean egg-laying date of females and the

timing of peak abundance of winter moth (Operophtera

brumata) larvae – an important food resource for juve-

nile great tits – have advanced by a similar amount (�
2 weeks) since the 1970s. These changes are very well-

matched, such that the average synchronization of laying

date with the timing of caterpillar emergence has

remained unchanged over the course of the study. This

consistent synchronization is thought to be driven by

phenotypic plasticity of egg-laying date in response to

temperature increases in the period preceding egg laying,

and by the fact that caterpillar timing is also phenotypi-

cally plastic and seems to be responding at similar rate,

perhaps because driven by similar temperature variation

(Charmantier et al. 2008).

Nonetheless, although phenotypic plasticity clearly

plays a central role in tracking environmental change in

the Wytham population, two lines of evidence indicate

that the degree of tracking is imperfect: (i) the mean

egg-laying date fluctuates relative to peak winter moth

abundance (Van Noordwijk, McCleery & Perrins 1995),

resulting in a degree of fluctuating selection, and (ii)

phenotypic selection analysis indicates that directional

selection for earlier egg-laying date operates in most

years (Charmantier et al. 2008). To better understand the

ecological and evolutionary consequences of these selec-

tive processes, we constructed a model to examine the

potential for egg-laying date synchrony to evolve. We

define this trait (S, ‘laying date synchrony’) to be the dif-

ference between egg-laying date (L) and ‘half-fall date’

(HFD), such that S = L�HFD. The half-fall date (the

median date that fifth-instar winter moth are caught

descending from trees to pupate) is a standardized

measure of the timing of the peak of larval biomass of

winter moth larvae in this population. In the face of

reliable, individual adjustment of behaviour in response

to the environment, this measure provides a simple phe-

nomenological means of capturing the (mis)match

between optimal egg-laying date and peak food availabil-

ity. Note that S takes negative values; females commence

laying approximately 35 days prior to peak winter moth

abundance.

population model

The population model projects the dynamics of breeding

pair density and female laying date synchrony in a tempo-

rally stochastic, density-dependent environment. We

model laying date synchrony as a strictly sex-limited, age-

dependent state variable. For simplicity, we also assume

that maternal effects and common environment effects

(e.g. nest effects) are absent; that is, a female’s laying date

synchrony depends on her own genotype. The resulting

model is a special case of the model considered earlier.

The focal state variable is defined by two univariate,

additive components in breeding females: a genetic (and

breeding) value, g, and an labile component x, which

corresponds to the individual-specific deviation from the

annual population mean, over and above that due to g.

We do not include a permanent environment effect.

Instead, we assume that successive x are autocorrelated

across successive ages, within individual females; this

autocorrelation term serves as a single proxy for various

different environmental sources repeatability in the trait

expression (see Supporting information). The realized
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laying date synchrony is then given by S ¼ x þ g þ cðtÞa ,

where cðtÞa is the annual, age-specific deviation from the

mean that captures annual fluctuations in the degree of

synchrony. The joint density function of age a female and

male states projected by the model are denoted n
ðtÞ
f ðx; g; aÞ

and n
ðtÞ
m ðg; aÞ, respectively. Notice that, because we assume

the absence of a permanent environment effect, z = g, we

can denote the arguments of functions in the model as (x,

g,a), rather than (x,z,a).

The survival probability of age a females is denoted

s
ðtÞ
f ðx; g; aÞ, and the conditional distribution of the

females’ labile component of laying date, given their cur-

rent state, is governed by the age-dependent kernel

G
ðtÞ
f ðx0jx; aÞ. The density function of a female cohort after

one time step is then

n
ðtþ1Þ
f ðx0; g; aþ 1Þ ¼

Z
s
ðtÞ
f ðx; g; aÞGðtÞ

f ðx0jx; aÞnðtÞf ðx; g; aÞdx:
eqn 7

The survival function, s
ðtÞ
f ðx; g; aÞ, is derived from a

logistic regression. The model includes second-degree

polynomial terms for laying date synchrony and age, and

linear breeding pair density and secular trend terms. The

resulting s
ðtÞ
f ðx; g; aÞ is density-dependent, but we fix the

secular trend effect to the value acting in the middle of

study period. The coefficients associated with the laying

date terms in the survival model are allowed to vary

among years to accommodate fluctuations in mean sur-

vival and selection. The ’growth’ kernel for the labile

component of laying date synchrony, G
ðtÞ
f ðx0jx; aÞ, is mod-

elled as a normal density function with conditional mean

given by lG ¼ qxþ cðtþ1Þ
2 , where q captures the autocor-

relation and cðtþ1Þ
2 age-specific annual deviation of estab-

lished females (i.e. non-recruits). Further details and

parameter estimation for both vital rate functions are

summarized in Appendix S2 (Supporting information).

We assume that the mean survival of age a males is equal

to that of females; that is, as males do not express the

trait, their survival just depends on age. The density func-

tions of males after one time step is then

nðtþ1Þ
m ðg; aþ 1Þ ¼ sðtÞm ðaÞnðtÞm ðg; aÞ; eqn 8

where

s
ðtÞ
m ðaÞ ¼ R R

s
ðtÞ
f ðx; g; aÞnðtÞf ðx; g; aÞdxdg= R R

n
ðtÞ
f ðx; g; aÞ

dxdg.

The number of successful recruits derived from age a

females (i.e. those surviving their first winter to breed at

age one) and the distribution of the female recruits’ labile

component of laying date at first breeding are denoted by

b
ðtÞ
f ðx; g; aÞ and CðtÞðx0Þ, respectively. The recruitment func-

tion has the same basic structure as the survival model,

with time-varying second-degree polynomial terms for lay-

ing date, second-degree polynomial age terms, and linear

breeding pair density and secular trend terms. The result-

ing b
ðtÞ
f ðx; g; aÞ is density-dependent. The recruit kernel for

the labile component of laying date synchrony is mod-

elled as a normal density function with conditional mean

given by lC ¼ cðtþ1Þ
1 , where cðtþ1Þ

1 is the stochastic annual

deviation of new recruits. Further details and parameter

estimation for both vital rate functions are summarized in

Appendix S2 (Supporting information).

To calculate the density functions of new recruits, we

need to construct the joint probability density function of

offspring x0 and g0 states in females and the probability

density function of g0 in males. To do this, we first calcu-

late the joint probability density function of maternal

genotype and female recruit l-state as

vðtÞf ðgf; x0Þ ¼ CðtÞðx0Þ
DðtÞ

X
a

Z
b
ðtÞ
f ðx; g; aÞnðtÞf ðx; g; aÞdx;

eqn 9

where DðtÞ is the normalization term, that is

DðtÞ ¼ P
a

R R
b
ðtÞ
f ðx; g; aÞnðtÞf ðx; g; aÞdxdg. Note that we

define a single recruitment function bf for the production

of male and female recruits, effectively assuming a 1:1 sex

ratio and equal probability of male and female recruit-

ment. The pdf of maternal genotype conditional on the l-

state in female offspring is then given by

UðtÞ
f ðgfjx0Þ ¼ vðtÞf ðgf; x0Þ=vðtÞf ðx0Þ. As the focal trait is only

expressed in females, the probability density function of

maternal genotype among male recruits l-state is calcu-

lated directly as

UðtÞ
m ðgfÞ ¼ 1

DðtÞ
X
a

Z
b
ðtÞ
f ðx; g; aÞnðtÞf ðx; g; aÞ dx; eqn 10

As our model assumes that male reproductive success is

independent of their state (i.e. their reproductive success

is independent of age), the probability density function of

paternal genotype among female and male recruits is

equal to the normalized paternal genotype density func-

tion, given by

UðtÞ
f ðgmÞ ¼ UðtÞ

m ðgmÞ ¼ 1

PðtÞ
X
a

nðtÞm ðg; aÞ: eqn 11

where PðtÞ
m is the normalization term, PðtÞ ¼ P

a

R
n
ðtÞ
m

ðg; aÞdg. Once the (conditional)UðtÞ are determined, the joint

probability density function of offspring x0 and g0 states in
females, Wðtþ1Þ

f ðx0; g0Þ, and the probability density function

of g0 in males, Wðtþ1Þ
m ðg0Þ, are straightforward to compute

using the calculations described in Appendix S1. Once they

have been calculated, we rescale Wðtþ1Þ
f ðx0; g0Þ and Wðtþ1Þ

m ðg0Þ
by the total number of recruits of each sex, N

ðtþ1Þ
f ð0Þ and

N
ðtþ1Þ
m ð0Þ, to calculate the final density function of female

and male recruits. As we assume that the sex ratio is 1:1, and

average female and male survival to age 1 are equal, so that

N
ðtþ1Þ
f ð0Þ = N

ðtþ1Þ
m ð0Þ, which are just the normalization con-

stant, DðtÞ, calculated above.

To implement the model, the integrations were approxi-

mated by the midpoint rule, using 50 nodes for both the x
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and g states. The stochastic environment component of the

model was generated using a resampling approach – at

each iteration we sampled the set of year effects associated

with a randomly chosen year (iid sampling), the density of

breeding pairs calculated, and then, these were used to

construct the model components for that step. Each simu-

lation was initialized with 100 individuals, and first run for

100 years with parent and offspring genotype uncoupled

(i.e. using a purely ’ecological’ model). The complete model

was implemented in R (R Core Team 2014).

decomposing annual change

We now describe a simple elaboration of the age-struc-

tured Price equation that is appropriate for two-sex sys-

tems subject to maternal demographic control (as

assumed in our case study). The latter assumption consid-

erably simplifies the development of the decomposition as

it ensures that contributions to the next generation from

breeding females and males are independent. The resulting

decomposition partitions the annual change in the mean

value of a state variable into components due to variation

in demographic structure and sex ratio, age-specific selec-

tion via differences in survival and recruitment, pheno-

typic plasticity and growth, and differences between

offspring and parental states. The principal advantage of

the ASPE is that it focusses on short time steps. This is

convenient for comparing components of phenotypic

change in species with overlapping generations, because it

evaluates change on a common scale and separates change

due to purely demographic processes from that occurring

via selection, inheritance, plasticity and growth.

We describe the partition with respect to a general uni-

variate state variable, denoted y, which may correspond to

either the ‘l-state’, the ‘q-state’ or a component of the ‘q-

state’ such as the breeding value. Following Coulson, Tul-

japurkar & Childs (2010), selection differentials in the

decomposition are expressed in terms of differences among

means, rather than covariances between components of fit-

ness and the focal trait distribution. Female and male terms

are denoted by the subscripts f and m, but we also use the ∘

subscript to denote m or f generically, to reduce repetition.

The mean state of females and males of age a in the base

population are �yfða; tÞ and �ymða; tÞ, respectively. The corre-
sponding mean state of age a individuals following selection

on survival and recruitment are �yS� ða; tÞ and �yR� ða; tÞ, respec-
tively. These expectations are calculated with respect to the

appropriate weighted density functions. For example, if we

are decomposing the labile component of the laying date

synchrony model, the female recruitment term, �xRf ða; tÞ, is
given by

�xRf ða; tÞ ¼
R R

xb
ðtÞ
f ðx; g; aÞnðtÞf ðx; g; aÞdxdgR R

b
ðtÞ
f ðx; g; aÞnðtÞf ðx; g; aÞ dx dg

: eqn 12

The mean state of age a individuals after ontogenetic [’(G)

rowth’] or plasticity-induced change is �yG� ða; tÞ, and the mean

state among recruits [‘(O)ffspring’] derived from reproducing

individuals is �yO� ða; tÞ. For example, the ‘growth’ term associ-

ated with the labile component is given by

�xGf ða; tÞ ¼
R R R

x0GðtÞ
f ðx0jx; aÞsðtÞf ðx; g; aÞnðtÞf ðx; g; aÞdx0 dx dgR R

s
ðtÞ
f ðx; g; aÞnðtÞf ðx; g; aÞdx dg

:

eqn 13

Five additional terms need to be defined to account for

demographic processes. The first, �wðtÞ, is the population fit-

ness, given by Nðtþ1Þ=NðtÞ. The second, qfðtÞ and qmðtÞ, are
the proportions of females and males in the population. The

third, cfða; tÞ and cmða; tÞ, are the proportion of age a indi-

viduals within each sex. The fourth, �Sfða; tÞ and �Smða; tÞ, are
the mean age-specific survival rates of females and males.

The fifth, �Rfða; tÞ and �Rmða; tÞ, are the mean age-specific

rates of recruitment from breeding females and males.

With these definitions in hand, the change in the overall

mean, D�yðtÞ, of the focal state variable can be written as

Here, D
�
q�ðtÞc�ða;tÞ

�¼ q�ðtþ 1Þc�ða;tþ 1Þ�q�ðtÞc�ða;tÞ,
and x is the maximum age an individual of either sex can

reach. For brevity, we have only shown the female terms

of the decomposition, although the full decomposition

includes an equivalent male term for each female term

shown here.

D�yðtÞ ¼
Xx qfðtÞcfða; tÞ �Sfða; tÞ

�wðtÞ
�
�ySf ða; tÞ � �yfða; tÞ

�
survival selection

þ
Xx qfðtÞcfða; tÞ �Sfða; tÞ

�wðtÞ
�
�yGf ða; tÞ � �ySf ða; tÞ

�
’growth’

þ
Xx qfðtÞcfða; tÞ �Rfða; tÞ

�wðtÞ
�
�yRf ða; tÞ � �yfða; tÞ

�
recruitment selection

þ
Xx qfðtÞcfða; tÞ �Rfða; tÞ

�wðtÞ
�
�yOf ða; tÞ � �yRf ða; tÞ

�
’inheritance’

þ
Xx�1

D
�
qfðtÞcfða; tÞ

�
�yfða; tÞ � qfðtÞcfðx; tÞ�yfðx; tÞ demography: survival

þ
Xx qfðtÞcfða; tÞ �Rfða; tÞ

�wðtÞ �yfða; tÞdemography: recruitment

þ Corresponding Male Terms.
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The modified version of the ASPE is very similar to the

original proposed by Coulson & Tuljapurkar (2008). The

only difference is that here we rescale the different contri-

butions according to the sex ratio. The first two terms

show how surviving females from extant cohorts con-

tribute to changes in the mean. The first term (‘survival’)

is a survival selection differential; it shows difference in

survival associated with the focal variable contribute to a

shift of the mean. The second term (‘growth’) shows how

phenotypic plasticity and/or ontogeny alters the mean.

The next two terms show how the addition of new

recruits to the population contributes to changes in the

mean. The third term (‘recruitment’) is the recruitment

selection differential; it shows how differences in recruit-

ment associated with the focal variable shift the mean.

We adopt the term ‘recruitment selection’ in place of ‘fer-

tility selection’ (Coulson, Tuljapurkar & Childs 2010) to

emphasize that this contribution is a consequence of both

the fertility of parents and the viability of offspring. Note

that ’recruitment selection’ acts on the phenotype of par-

ents. The fourth term (‘inheritance’) describes the mean

difference between offspring and parental states. We

retain the label ‘inheritance’ for consistency with previous

work, but it is important to realize that this term will

absorb changes due to parental effects and phenotypic

plasticity in offspring. In all four cases, the components

inside square brackets are the mean change associated

with a given age class and the components outside the

square brackets weight these potential contributions to

the overall change by the appropriate demographic

weights – the latter depend on age-specific mean survival

or recruitment and the age/sex composition of the

population. The final two terms describe how purely

demographic processes – differences in survival

and recruitment that are not linked to the focal state –
alter the mean, that is those changes caused by shifts in

sex-specific age structure under constant age-dependent

mean phenotypes, including the contributions from obli-

gate death in the final age class and recruits in the first

age class. The fifth term gives the contribution from dif-

ferences in mean age-specific survival rates, while the last

term describes how differences in reproductive rates

between age classes contribute to change.

Results

The modelled time-varying associations between laying

date synchrony and (a) survival and (b) recruitment are

shown in Fig. 1. The survival associations are largely lin-

ear, and although mean survival varies among years, there

is consistent directional selection for early breeding via

this component of fitness. The recruitment associations

are generally nonlinear and hump shaped, with substantial

variation in mean recruitment evident, and the strength

and direction of selection via this component of fitness

vary from weakly positive in a few years to negative in

others. Taken together, the survival and recruitment func-

tions indicate that the population should evolve towards

an earlier laying date, with an optimum value of the inter-

val laying date and half-fall date that is at least approxi-

mately 7–10 days larger than the current value. Once this

optimum is reached, it appears that (stochastic) stasis will

be maintained by antagonistic selection on recruitment

and survival, that is later laying will generally favour

recruitment but earlier laying increases survival.

We used the model to track the expected change in

population density and laying date synchrony. The

expected mean trajectory of laying date synchrony – given

as the change in the mean breeding value (�g) – and the

change in breeding pair density are shown in Fig. 2. As

expected, the model predicts that the interval between

half-fall date and egg-laying date will increase by just over

one week (Fig. 2a), although the predicted rate of change

is slow; on average, a change of approximately 1 day is

expected in the first 20 years. Although environmental

stochasticity introduces a degree of uncertainty into this

prediction, projections from independent simulations are

largely consistent. Earlier laying is predicted to increase

the survival of established individuals and the recruitment

of offspring, and concomitant with the change in laying

date synchrony, the model predicts an increase from

about 440 to 480 breeding pairs on average (Fig. 2b).

Next, we applied the modified ASPE to the model to bet-

ter understand the component drivers of change at both the

phenotypic and genotypic levels. Figure 3 shows how the

expected female contributions to annual change from each

term change over time for (a) the mean breeding value,
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Fig. 1. (a) Survival and (b) recruitment

of females as a function of laying date

synchrony in the Wytham great tit popu-

lation, which is defined as the difference

between mean first egg-laying date and

caterpillar half-fall date. The thin grey

lines show the annual fitness components

and the thick black line shows the mean

function. Vertical dashed line is the

population mean value of laying date

synchrony.
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D�gðtÞ, and (b) the mean phenotype, D[x(t)+g(t)], summed

over age classes. The lines show the mean contribution cal-

culated from 250 simulations, and the points show a sub-

sample of annual contributions from a single representative

simulation. Rather than separating the two demographic

process terms, we chose to summarize their combined effect

in Fig. 3.

In general, the different contributions to the change in

the mean breeding value are very small (Fig. 3a), reflect-

ing weak selection on the laying date synchrony near its

optimum value and its low heritability in the model

(h2�0�16). The survival selection component (purple line,

squares/crosses) is consistently negative and exhibits rela-

tively little variation among years. In contrast, the recruit-

ment selection component (blue line, ‘+’ symbols) tends to

be negative in the early phase of evolution and then posi-

tive, with much larger fluctuations overall. Selection acts

antagonistically on recruitment and survival once stochas-

tic, evolutionary stasis is reached. The mean inheritance

contributions (yellow line, filled triangles) are initially pos-

itive – recruits have more positive breeding values than

their mothers – and then decay to zero as stasis is

reached. There is no ‘growth’ contribution associated with

the mean breeding value, as this is invariant over an indi-

vidual’s lifetime. The aggregate demographic effect (red

line, circles) is negligible, reflecting the fact that the mean

trait value does not change much with age. The male

inheritance term (not shown) is the only nonzero contri-

bution to changes in the mean breeding value from males.

This term is always exactly equal in magnitude, but oppo-

site in sign, to that of females.

The annual contributions of different processes to

changes in the mean phenotype (Fig. 3b) are larger than

their breeding value counterparts, because they include

the shared, stochastic component of annual variation.

However, although they exhibit larger fluctuations, the

temporal change in the recruitment and survival contribu-

tions is identical to those associated with the mean breed-

ing value; the realized laying date synchrony is an

additive function of breeding value and so any change in

the latter is reflected in the phenotype. The aggregate

demographic contributions to phenotypic changes are also

very similar to the breeding value complements; these are

very small, again reflecting the limited age structuring of

vital rate and mean trait differences. The two largest

terms are those due to inheritance and plasticity, both of
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which exhibit relatively large annual fluctuations. These

terms are consistently nonzero (on average) even after

evolutionary stasis is reached. The inheritance term is gen-

erally positive, such that new recruits tend to have later

laying dates than established females, while the plasticity

term is generally negative, indicating that individuals start

egg-laying earlier as they grow older. However, the mag-

nitude of these average effects is modest relative to the

scale of their annual fluctuations.

Finally, we examined the age-specific component of the

two selection terms associated with the mean breeding

value (Fig. 4, lines show the mean contribution calculated

from 250 simulations). Initially, there is selection for early

laying date synchrony via recruitment differences (left

panel). The largest negative contributions were from new

recruits (age = 1), tending towards zero in older age

classes. As stasis is reached, this pattern becomes hump

shaped, such that these terms are near zero in new

recruits and older individuals, and positive in intermediate

age classes. This pattern reflects the opposing effects of an

age-dependent shift in mean and the decreasing demo-

graphic weights attached to older individuals. The age-

specific contributions due to survival selection are always

negative. The age-pattern is monotonic, such that the lar-

gest negative contributions are always from new recruits,

reflecting the decreasing demographic weights attached to

individuals as they age.

Discussion

Long-term, individual-based studies of birds and mam-

mals are now commonly used to explore the consequences

of variation in life-history, morphometric, behavioural

and social traits [reviewed in Clutton-Brock & Sheldon

(2010)]. The framework described here has the potential

to garner greater insight into the nature of selection and

its consequences in such systems when focal traits vary

over an individual’s lifetime through ontogeny or pheno-

typic plasticity. We have shown how the micro-evolution-

ary dynamics of labile traits and concomitant ecological

change can be predicted by integrating quantitative trait

information into data-driven structured models. The

resulting models are similar to standard IPMs, with many

of the advantages this entails (Rees, Childs & Ellner

2014): (i) given adequate knowledge of the life cycle and

careful demographic accounting, it is relatively straight-

forward to specify a data-driven model for organisms

with complex life histories; (ii) with sufficient longitudinal

data describing individual performance and trait dynam-

ics, each component function of the resulting model can

be efficiently parameterized using common regression

tools; (iii) the resulting models take a dynamic view of

labile traits, accommodating patterns of expression that

depend on abiotic and/or biotic components of the cur-

rent and past environments; and (iv) as the response to

selection is an emergent property, a model-based analysis

accounts for aspects of the biology that can be difficult to

accommodate using standard selection analyses, such as

sexual dimorphism in the life history or the expression of

focal trait(s).

Integral projection models are increasingly being used

to study contemporary evolutionary dynamics. Many such

studies have focussed on putative eco-evolutionary pro-

cesses, where the dynamics of ecological and phenotypic

change are thought to be mutually dependent and operate

over similar time-scales (Fussmann, Loreau & Abrams

2007; Pelletier, Garant & Hendry 2009; Ellner 2013).

While there remains general agreement that IPMs are

effective at capturing variation due to ontogeny and phe-

notypic plasticity, there is an emerging debate about the

ability of such models to describe microevolutionary

change (Hedrick et al. 2014; Traill, Schindler & Coulson

2014; Chevin 2015). In essence, these concerns derive from

disagreement over the capacity of the ‘inheritance func-

tion’ (CðtÞ, using our notation) to faithfully describe

genetic transmission in an age-structured population. Two

related concerns are evident: (i) CðtÞ may confound the

impact of genetic and parental effects on offspring

phenotype when it is parameterized using parent–off-
spring regressions; and (ii) phenotypic associations

between offspring and parents of different ages are a con-

sequence of accumulated differences in the latter owing to

individual variation in growth trajectories (Chevin 2015).

Incorporating individual heterogeneity into IPMs

addresses the latter criticism (Rees et al. 2000; Ellner &

Rees 2006, 2007; Rees & Ellner 2016; Vindenes &
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Langangen 2015). Our framework takes this idea further

by separating the focal traits/states into labile and perma-

nent genetic/environmental components, which deals with

the former concern.

In our case study, we used a form of retrospective anal-

ysis – the age-structured Price equation – to partition

sources of genetic and phenotypic change predicted by the

model. We found that at equilibrium genetic stasis is

maintained by a balance between antagonistic selection

between the recruitment and survival components of fit-

ness. This is not particularly surprising, given the form of

the two fitness functions summarized in Fig. 1. However,

the purely phenotypic analysis suggests that stasis addi-

tionally involves a balance between the ‘ontogeny’ and

‘inheritance’ contributions. This has nothing to do with

the transmission of genes or trade-offs among growth and

reproduction. Instead, it reflects two processes. First, suc-

cessive bouts of survival selection shift the mean towards

earlier laying dates as a cohort ages – this shift is inflated

by the autocorrelation in the labile component. Secondly,

the model includes a fixed difference between laying date

synchrony of new recruits and established females (sup-

ported by the data), whereby established females tend to

lay earlier than recruits. This difference might be a result

of experienced females outperforming inexperienced

recruits, or alternatively, it may reflect our failure during

the model parameterization step to account for selection

removing ‘low-quality’ individuals (Bouwhuis et al. 2009).

As our goal here was to illustrate the methods and their

uses, we adopted a very simple model of laying date

synchrony. A more mechanistic approach would be to

model the true lay date and half-fall date as functions of

spring temperature, although this would need to include a

submodel to project future temperature changes. More-

over, although we have explored the dynamics of the trait

with reference to population-scale variation, in the present

case the synchrony phenotype may show important scale-

dependent effects. As the effective foraging range of

parental birds is quite limited, spatial variation in the

phenology of caterpillar timing, which may be driven in

turn by spatial, or individual-level, variability in tree phe-

nology may select for different optima for different parts

of the population. Indeed, there is evidence to suggest

that breeding phenology of great tits is partially predicted

by very small-scale synchrony with their local environ-

ment (Cole et al. 2015; Hinks et al. 2015). In principle,

these kinds of mechanisms could be explored using a

spatial extension of our model.

Theoretical studies are beginning to reveal the general

conditions that favour the evolution of quantitative, labile

trait variation (Lande 2014). Evaluating the adaptive

significance of labile traits in animal populations is com-

plicated by factors such as sexual dimorphism in life his-

tories, state-dependent vital rate variation, and density

dependence. The benefit of constructing a demographic

projection model is that it can be used as a tool to not

only project, but also to understand the processes that

alter trait distributions, population structure and density.

Many tools devised to analyse matrix and integral projec-

tion models can be applied to our framework. For

example, summary statistics of demography such as

cohort-specific generation time, lifespan or age at first

reproduction can be calculated, and perturbation analyses

can then be used to understand how these summary statis-

tics respond to changes in the underlying vital rates

(Coulson 2012; Smallegange & Coulson 2013). Nonethe-

less, although it can accommodate many of the

complexities associated with ’realistic’ life histories, our

model-based framework is still subject to some of the

same limitations that afflict phenotypic selection analysis

of natural populations. Crucially, it assumes that esti-

mated fate–phenotype relationships are causal (Morrissey,

Kruuk & Wilson 2010). For example, our case study

assumes that differences in survival and recruitment are a

direct consequence of their modelled associations with

laying date synchrony (summarized in Fig. 1), yet these

may in reality be driven by unmeasured factors such as

differences in body condition, local density or nest site

quality (Wilkin et al. 2006; Browne et al. 2007). A second

practical limitation of the framework is that it can be

computationally expensive to implement, requiring multi-

dimensional integrals to be numerically evaluated at each

iteration. In practice, this effectively restricts its applica-

tion to situations where a small number of traits need to

be modelled.

Quantitative genetic analyses of selection on ontoge-

netic trajectories typically proceed by treating the focal

trait and associated breeding values as a multivariate,

age-dependent quantity (Kirkpatrick, Lofsvold & Bulmer

1990; Kirkpatrick & Lofsvold 1992), or by adopting a

random regression description of the age–trait relationship
(Wilson, Kruuk & Coltman 2005). These descriptions can

be accommodated by our model, although they may not

be optimal in a fluctuating environment. A key compo-

nent of every IPM is the ’growth’ kernel, GðtÞðx0jx; . . .Þ,
which, for ontogenetic traits, is derived from a first-order

antedependence model fitted by regressing the successive

states against one-another (as discussed in the Parameteri-

zation section). Under this model, the l-state variable

corresponds directly to the trait of interest and the q-state

captures heritable differences in the rate of state change,

conditional on current state. Similar models have been

previously been applied to the genetic analysis of cumula-

tive traits such as body size (Jaffr�ezic et al. 2004). The

advantage of such models is that they propagate the

cumulative effect of past environments; ‘growth’ at each

transition is conditioned on the current state, which is

itself a consequence of past environments. The framework

described here offers a way to integrate such analyses into

demographic models to predict the microevolutionary

consequences of ontogenetic trait variation.

The general model we have outlined here provides a useful

framework for predicting microevolutionary dynamics of

labile traits in natural populations, where longitudinal data
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describing trait, life history and vital rate variation have

been collected. A key advantage of this approach over stan-

dard selection analyses is that it can be used to project evolu-

tionary change using all the vital rates and genetic variance,

which is otherwise difficult to do in structured populations

subject to environmental stochasticity and density depen-

dence (Brommer et al. 2004; Childs et al. 2011). When cou-

pled with well-developed tools from evolutionary

demography, this will facilitate greater insight into processes

that govern ecological and evolutionary change. However,

in its most general form, this model is probably too complex

for analytical results to be derived, although it may be possi-

ble to derive important results for special cases. For exam-

ple, by assuming that vital rates are invariant with respect to

time and sex, Barfield, Holt & Gomulkiewicz (2011) were

able to show that Lande’s theorem applies to discrete stage-

classified populations. Similar derivations may be possible

for labile trait-structured populations subject to these same

constraints. Such efforts are clearly needed, as they will fos-

ter stronger links between theoretical and empirical studies

of the adaptive significance of trait variation.
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