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Using spindle noise to monitor tool wear in a turning process
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Abstract A tool condition monitoring system can increase
the competitiveness of a machining process by increasing
the utilised tool life and decreasing instances of part damage
from excessive tool wear or tool breakage. This article de-
scribes an inexpensive and non-intrusive method of inferring
tool condition by measuring the audible sound emitted during
machining. The audio signature recorded can be used to de-
velop an effective in-process tool wear monitoring system
where digital filters retain the signal associated with the cut-
ting process but remove audio characteristics associated with
the operation of the machine spindle. This study used a mi-
crophone to record the machining sound of EN24 steel being
face turned by a CNC lathe in a wet cutting condition using
constant surface speed control. The audio signal is compared
to the flank wear development on the cutting inserts for sev-
eral different surface speed and cutting feed combinations.
The results show that there is no relationship between the
frequency of spindle noise and tool wear, but varying cutting
speed and feed rate have an influence on the magnitude of
spindle noise and this could be used to indicate the tool wear
state during the process.
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1 Introduction

The automation of manual tasks is an important part of com-
petitive and capable manufacturing processes. It is important
to prevent productivity losses due to excessive tool changes or
quality losses due to excessive tool wear or breakage [1]. In
terms of tool wear, not only can such a tool failure be avoided
but also maximum use should be obtained from the tool. Re-
cent developments in cutting tool materials and optimisation
of machining process parameters have allowed longer tool
life, but the tools still wear out when used over extended
periods of time. Worn tools have a direct effect on the surface
finish and geometrical accuracy of the finished workpiece [2].
Unplanned tool replacement can cause machine downtime
and part non-conformance leading to economic loss [3]. To
avoid this, tool condition monitoring systems have been de-
veloped which can warn the operator of the condition of the
tool.

Tool wear monitoring systems have been developed over a
long period of time and numerous methods have been pro-
posed such as those summarised by Siddhpura et al., Teti et al.,
and Rehorn et al. [1, 3, 4]. An all-encompassing system has
yet to be developed but success has been found with some
research efforts. Methods can be categorised into direct (ra-
dioactive, optical, electrical resistance, etc.) and indirect
methods (acoustic emission, spindle motor current, cutting
force, vibration, temperature, sound, etc.) [5].

Currently, the use of multi-sensory signals, such as acoustic
emission, cutting force, vibration, current or power consump-
tion of spindle motor, has been adopted and all sensory data is
fused using artificial intelligence (AI) such as neural network
and fuzzy logic to increase the reliability and robustness of the
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system. Several AI algorithms and signal processing tech-
niques have been used to develop the tool wear monitoring
system summarised by Teti et al. [4] and Worden et al.[6].
Abellan-Nebot et al. [7] suggested the six key issues for the
development of intelligent machining systems: sensor selec-
tion, signal processing techniques, sensorial features normally
used, feature extraction and selection, design of experiment
(DoE) and characteristics of AI techniques. Several systems
based onAI approach have been successfully developed in the
past as reported in this article. However, the majority of tool
monitoring research has applied expensive sensing systems
not suitable for production, such as force dynamometers. Even
with expensive data acquisition hardware, obtaining high-
quality data to train the system is difficult and time-
consuming because of the complexity of the signals that can
be recorded from an operating machine. Ultimately, the reduc-
tion of the cost, intrusive nature and number of sensors will
promote industry application of these systems.

In this present work, audio signature in t process was
reviewed to extract features which are sensitive to tool wear.
Much of the vibrations being excited in the cutting zone dur-
ing machining are in the range at which they can be heard by
the operator, and therefore be recorded by a standard audio
microphone. Machine operators have been effective in the
detection of unacceptable cutting conditions, inferred through
the audible emissions from the cutting process. Microphones,
being a non-contact sensor, are very easy and flexible to instal
in the machine and there are a wide variety of inexpensive
models with different performance characteristics. Micro-
phones have been used extensively for chatter detection and
have also been used on occasion to monitor tool wear in turn-
ing processes [8–10].

In previous studies, Teti et al. [4] reviewed several sound
measurement techniques used to monitor flank wear during
the turning process. Several studies confirm that tool wear
state is correlated to the sound emitted during the machining
found in the following reviews.

Sound signature in the turning process was studied in order
to find the relationship between sound signal and cutting
speeds and feed rates. Sound pressure in a time domain has
been used by several studies to observe the change in ampli-
tude according to tool wear [8, 9, 11, 12].

Tekiner used a microphone connected to a computer to
record the cutting sounds in order to determine the best cutting
parameters for cutting AISI 304 stainless steel according to
process sound [11]. It was observed by Raja that the change of

cutting parameters, cutting sound pressure levels also change
and an increase in tool wear resulted in an increase of sound
signal amplitude [8]. Similarly, Kopac et al. concluded that
progressive tool wear correlates with an increase in amplitude
of the recorded sound between 6 and 20 kHz which is above
the frequency range within which machine background noise
is normally found [9]. Audio techniques were also used by
Quintana to determine the stability lobe diagram (SLD) in a
milling process by applying 3D sound mapping methodology.
A microphone was mounted inside the milling machine, and
audio signals from 600 cutting conditions were recorded and
processed. The sound pressure level of each condition was
plotted on a grid to identify the stable and unstable cutting
conditions that are a key to avoiding chatter in the milling
process [12].

The analysis of fast fourier transforms (FFT) of audible
sound generated from the turning process was used by Lu
et al. to introduce the model for tool wear monitoring [13].
This model includes the main effects of tool wear on system
dynamics during stable cutting of lathe machine. Alonso et al.
proposed a sound-processing technique using singular spec-
trum analysis (SSA). This processing technique was used to
extract the sound features from the cutting zone during the
turning process. The results showed that the extracted features
from sound and feed motor current signals correlate with tool
wear state [14]. Raja used sound signal analysis, using the
Hilbert-Huang Transform (HHT), to monitor flank wear [8,
15]. Cutting sounds from three states of tool wear (fresh,
slightly worn, and severely worn) were recorded under several
cutting conditions, and it is claimed that this signal processing
method can be considered as simple and reliable for flank
wear monitoring.

As flank wear has a direct effect on the surface finish of a
machined workpiece, measuring roughness of machined sur-
faces is normally performed to monitor the flank wear devel-
opment. Surface roughness by machine vision techniques and
sound processing techniques were attempted to develop the
tool condition monitoring systems, which can be found in a
number of studies. Manan et al. investigated the correlation
between tool wear and machined surface and sound pattern
from turning process. Sensorial features from a sound signal
were extracted for classifying tool wear states. The results
found that the propose system developed by machine vision
and sound processing techniques can be utilised to effectively
monitor the condition of the cutting tool [10]. Similarly, flank
wear, the surface roughness of machined sample, and machine

Table 1 Typical composition (wt%) of EN24 steel

C Si Mn S P Cr Mo Ni Fe

0.36/0.44 0.10/0.35 0.45/0.70 0.040 Max 0.035 Max 1.00/1.40 0.20/0.35 1.30/1.70 Bal.
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tool power consumption were used by Tekiner et al. as a
criteria to determine the best cutting condition for the machin-
ing of AISI 304 stainless steel [11]. Downey used a micro-
phone, connected to a laptop via a sound card, in order to
record the cutting sound in the turning machine. The cumula-
tive magnitude of sound spectrum and surface roughness (Ra)
was compared for the full life of cutting tool. The variation of
sound spectrum can be compared to the state of the cutting
tool interface. It can also notice the change in audible sound
spectra between normal tool and end of tool life [16].

To enhance reliability, multi-sensorial features from several
sensors can be combined in order to develop a tool wear pre-
diction and classification model by using artificial intelligence;
this is known as sensor fusion. Alonso et al. used sound and
feed motor current to develop the monitoring system to detect
the tool wear. The features extracted from sound and feed mo-
tor current signals by SSA correlate with tool wear state and
were trained by neural network to estimate the tool flank wear
[14]. A radial basis function was used by Manan to train the
network which consists of features extracted from sound signal
and surface roughness [10].This classification model is able to
recognise tool wear states which classify tool states (defined as
‘sharp’, ‘semi-dull’ and ‘dull’), and the proposed system can be
utilised to effectively monitor the condition of the cutting tool.
Tangjitsitcharoen et al. used a sensor fusion-based approach to
monitor tool wear using sound, force, vibration and AE signals
and found that the energy spectrum density of sound and AE
signals are sensible to tool wear [17].

Nevertheless, the major limitation of using a microphone to
record the cutting sound is the background noise from the
environment. This can be from vibrations in the cutting zone,
vibrations caused by the machine tool drive system, external
sources and, in particular, noise from the flowing coolant.

This article describes an inexpensive method of obtaining
tool condition information from an operating machine tool by
recording the sound emitted during machining and filtering
the unwanted noise to improve the effectiveness of an in-
process tool wear monitoring system. The data obtained can
also be used as a basic tool condition monitoring system in its
own right.

It should be noted that throughout this article, unless spe-
cifically referred to as ‘signal noise’ (as in ‘signal to noise
ratio’), all references to ‘noise’ should be taken to mean the
sound (noise) that is emitted from the cutting zone or from the
machine itself.

2 Experimental setup and procedure

2.1 Equipment and cutting conditions

A CNC lathe (MORI SEIKI NT4300DCG) was used to ma-
chine EN24 steel (Table 1). The workpiece was a round bar
with a diameter of 200 mm and of a length always shorter than
its diameter. It was cantilevered in the machine using a three-
jaw chuck with a face turning process performed across its
free end. All trials were conducted using CVD-coated carbide
tooling inserts of a grade commonly used for the basic turning
of EN24 and meeting ISO DNMG 15 06 08-PM (ANSI
DNMG 442-PM). In production, an operator would typically
use the process parameters for cutting as suggested by the
tooling manufacturer for the workpiece in question. In this
work, in order to accelerate tool wear and to consume less
workpiece material, process parameters were deliberately cho-
sen to be in excess of those typically used for these inserts.
Similarly, in order to reduce the number of machining trials
conducted, only two of the three main process variables, feed
and cutting speed, were varied (Table 2), with depth of cut
being constantly set at 0.5 mm. The cutting zone was flood
cooled with Hocut795b throughout all the experimental trials.

The experimental setup is shown in Fig. 1. A PCB
Piezotronics 130E21 microphone (Fig. 1a) was used to
record the cutting sound during the machining process.
These types of microphones are of a free-field condenser

Fig. 1 Arrangement of experimental apparatus showing the microphone
(a) and its position in the machine tool (b, c)

Table 2 Process parameters used during machining trials

Condition Cutting speed
(Vc) (m/min)

Feed rate (F)
(mm/rev)

Depth of cut
(D) (mm)

1 300 0.30 0.5

2 300 0.35 0.5

3 300 0.40 0.5

4 280 0.35 0.5

5 280 0.40 0.5

6 320 0.35 0.5

7 320 0.40 0.5
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type and have a frequency response of 20–10,000 Hz with
a dynamic range >122 dB. They also are prepolarised and
have an integral preamplifer which reduces the complexity
and cost of installation.

Prior to the experimental trials, the machine was ob-
served conducting a typical flood-cooled turning operation
to assess the optimum position for the microphone. It was
discovered that a position 1.2 m away from the cutting
zone was the best compromise between achieving a high
quality recording, minimising potential damage from cool-
ant spray and providing a secure location to attach a

magnetic stand to the machine (Fig. 1b). The microphone
was also suitably enclosed to further minimise the chance
of damage from the coolant. (Fig. 1c). The location of the
microphone inside a machine also isolates it from any sig-
nificant noise from nearby machines.

The microphone was connected to a National Instruments
NI-9234 DAQ. The sound was sampled at 50 kS/s; analysis
was performed using National Instruments LabView and The
Mathworks Matlab software. All sound signals recorded from
the microphone were transformed into the frequency domain
by FFT.

2.2 Experimental methodology

All trials were conducted until the observable flank wear
width (FWW) on the main cutting edge exceeded 0.4 mm.
For each condition, the inserts were removed from the tool
holder and the flank wear width was measured optically (to
ISO-3685) every 10, 20 and 30 cuts. The frequency of
measurement was then increased as the wear limit was
approached. The tool wear measurements and the audio
signature for each test were then compared in order to
establish the relationship between tool wear and sound sig-
nal. Figure 2 illustrates the observed relationship between
the width of flank wear width and the number of cuts for
three typical data sets obtained in the experiment. In this
particular example, the three datasets represent the mea-
sured flank wear width produced by three feed rates,
0.30, 0.35 and 0.40 mm/rev, at constant cutting speed

(a) 10th cut (b)20th cut 

(c) 30th cut (d)34th cut

Fig. 3 Flank wear development
from cutting condition
Vc= 300 m/min and
F= 0.35 mm/rev

Fig. 2 Typical tool wear evolution dataset for cutting conditions 1–3
classified into three wear states
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300 m/min (cutting conditions 1–3 in Table 2). Each data
point represents a single measurement. It is seen that the
tool wear state is classified into three regions; breaking-in
period, steady-state wear region and failure region as
shown by red dash lines. Figure 3 shows flank wear width
developed on the cutting insert, which was used in cutting
condition 2.

3 Results and discussion

3.1 Observation of the sound from a cutting cycle

The multiple sources of sound in the cutting process in-
clude those from the cutting mechanism itself, sound from
the machine tool spindle, drives and coolant delivery and

sound from adjacent machines and workshop activities in a
production environment. Previous studies have shown cor-
relation between sound emitted from the cutting mecha-
nism and the flank wear of the cutting insert and that the
amplitude of sound signal increases with increasing tool
flank wear when cutting low carbon and mild steels [8, 9,
15]. It has also been reported that the machine and work-
shop sound is an unwanted disturbance with respect to the
tool monitoring task [9].

In this work, the audio recorded from each test was
analysed in the time-frequency domain by short-time Fourier
transform (STFT) in order to establish the frequency content
in the audio signature that could be then used for tool condi-
tion monitoring. The analysis produced a spectrogram that
represents the sound signal resulting from the machining pro-
cess. The example spectrogram shown in Fig. 4 displays the

(a) (b) 

Fig. 5 Power spectrum of (a)
machine background noise with
no tool engagement (b) during
cutting operation

Fig. 4 Spectrogram of audio recorded from cutting cycle
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magnitude of frequency spectrum of the cutting sound record-
ed by the microphone during a 25-s cutting cycle at cutting
condition 1. The horizontal axis represents time, whilst verti-
cal axis displays frequency. The amplitude of a particular fre-
quency is represented by the colour intensity of each point.

The various events that occurred during the turning pro-
cess are labelled. Each of these is clearly heard by the
human ear when observing the machining process. It is
seen that throughout the cycle, the sound signal was con-
taminated by machine background noise (A) which has a
frequency of 0–3 kHz. The machine spindle is shown run-
ning by the higher amplitude horinzontal line between
points (B and D) with an example of spindle speed shifting
at point (C). The increase in noise amplitude representing
the engagement of the cutting tool with the workpiece is
shown at point (E). All trials were conducted in a wet
condition so a broadband frequency of coolant being ap-
plied to the cutting zone is also depicted (F to G). To iso-
late the machine background noise, a recording of the ma-
chine running with no cutting occurring was made and
Fig. 5a shows the test result in the frequency domain by
the power spectrum of the sound signal.

Clearly, the background noise frequency in Fig. 5a and b
is in the range of 0–3 kHz, and several studies agree that
background machine noise can be identified in the range of
0–2 kHz [9]. It should be noted that although the machine
used in these experiments has not been studied to fully
characterise the stability of its noise output, the data pre-
sented in Fig. 5 can be considered typical across all the
experiments conducted for this work. This means that this
part of the signal can be easily filtered without any effect to
the signal of interest. It should be noted, that whilst chatter
detection systems should include this frequency content,
the tool condition monitoring objective in this case study,

under non-chatter conditions, may benefit from removing
this data.

Similarly, further observation of Fig. 4 identify the noise
from spindle motor and can be seen as a long horizontal
high-intensity line from point (B) to (D). This noise of
spindle motor is found at 5.86 kHz as shown by power
spectrum in Fig. 5b. This peak spindle-sound frequency
magnitude is defined as a promising feature of tool condi-
tion monitoring.

Point (B) depicts the spindle start time as the motor is
speeding up to the desired rotational speed. Note the spindle
is accelerating due to the facing operation requiring constant
surface speed. ThemaximumRPMof the spindle is reached in
the middle of cutting time (point C), where the spindle in-
creased its rotational speed automatically to keep surface
speed constant. Finally, the spindle was stopped (point D).

Fig. 8 Spindle noise for each individual cut at different cutting
conditions

Fig. 7 Cumulative magnitude for a varying feed rate and constant cutting
speed

Fig. 6 Peak spindle-sound frequency magnitude vs the number of cuts
for a varying feed rate and constant cutting speed
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The frequency band representing the coolant entering the cut-
ting zone can be seen from point F to G.

Over the range of spindle noise frequency, it can be
observed that during cutting both intensity and frequency
of cutting sound change from high to low represented by
the broad sweep of higher intensity from top left to bottom
right of Fig. 4. Many of the previous studies in this area use
the sound signals present in the frequency range above
machine background noise to develop the tool wear mon-
itoring system [6–15]. However, as there is little reporting

of using spindle noise in tool wear monitoring, this present
work concentrates on the spindle noise signal as a signal of
interest to extract a promising feature for tool condition
monitoring. The changes in frequency and magnitude of
spindle noise were observed by FFT. This observation
was repeated for all of the machining trials performed
and it was observed that the spindle noise was detected at
5.86 kHz regardless of cutting conditions used on this par-
ticular machine.

This indicates that there is no significant correlation
between the frequency of spindle noise and the develop-
ment of tool wear. In order to study the influence of cutting
parameters on the magnitude of spindle noise frequency,
power spectrum of spindle noise frequency were plotted in
combination of cutting speeds and feed rates which are
now discussed.

3.2 The effect of feed rate on the spindle noise
and detecting tool wear

For the trials where cutting speed was held constant and feed
rate was varied (Fig. 6), it is seen that the onset of the rise in
magnitudes of the power spectrum of spindle noise occurs
earlier as the feed rate is increased. This means that the amount
of warning (time) the system can give the operator is depen-
dent on the feed rate being used, i.e. the greater the feed, the
earlier the warning.

a) Vc = 280, F = 0.35 b) Vc =  300, F = 0.35 c)   Vc = 320, F = 0.35

d) Vc = 280, F = 0.4 e) Vc = 300, F = 0.4 f) Vc = 320, F = 0.4

Fig. 10 Magnitude of power spectrum of spindle noise and flank wear width (FWW) vs. varying cutting speed and feed rate

Fig. 9 Cumulative magnitude of spindle noise for each cut at different
cutting conditions
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The cumulative magnitude of spindle noise frequency
was plotted in Fig. 7 that each of curve was clearly
separated and has a warning signal at the turning point
itself.

It is apparent that when the data set appears to grow expo-
nentially, this is the point at which the tool should be replaced
or warning occurs. In this case, for simplicity, a threshold
value has been set as a tool change criteria. For example, using
a threshold do 0.008, the ending points of tool usage are about
cut number 25, 30, 35 in feed 0.3, 0.35 and 0.4, respectively. It
is seen that the magnitudes of spindle noise increase according
to increasing of feed rate which suggests that the amount of
warning (time) the system can give the operator is dependent
on the feed rate being used, i.e. the greater the feed, the earlier
the warning.

3.3 The effect of cutting speed on the spindle noise
and detecting tool wear

In order to observe the effect of cutting speed on spindle noise,
the magnitude of the spindle noise frequency performed at
constant feed rate 0.35 mm/rev as shown in Fig. 8. It can be
seen that the spindle noise frequency of a new tool has a low
magnitude in the power spectrum (cuts 1–20) and high mag-
nitude for the worn tool. The magnitude of spindle noise fre-
quency gradually decreases until the cutting insert becomes
dull and broken.

The average magnitude of spindle noise increases with cut-
ting speed (Vc). As is expected, the cuts performed at a higher
cutting speed (Vc 320) have shorter tool life (cut 30) compared
to the lower cutting speed (Vc 280) (cut 40). Warning signals

(a) (b)

Fig. 12 Power consumption of
spindle motor (a) at constant
cutting speed 300 m/min (b) at
constant feed rate 0.35 mm/rev

a) Vc = 280, F = 0.35 b) Vc =  300, F = 0.35 c)   Vc = 320, F = 0.35

d) Vc = 280, F = 0.4 e) Vc = 300, F = 0.4 f) Vc = 320, F = 0.4

Fig. 11 Cumulative of the power spectrum magnitude of spindle noise and flank wear width (FWW)
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can be indicated by the rate of increase of magnitude, ob-
served in the plot as cut number 20 at cutting speed 300,
320 and 30 at 280 m/min, as shown in Fig. 9.

It can be concluded that magnitude of spindle noise fre-
quency has a good agreement with altered cutting conditions.
When the cutting process performs at high metal removal rate
(MMR), the spindle motor emits the noise with a higher mag-
nitude of power spectrum of spindle noise frequency. The
abrupt change in the power spectrum magnitude of spindle
noise can be used as a warning signal for tool replacement.

It is worth noting that prior to the characteristic increase in
magnitude indicating the onset on tool failure, the relative
magnitudes of the signals from each of the different cutting
speeds vary with the number of cuts (Fig. 8). Similarly, when
considering the cumulative magnitude, although the warning
signals are in the positions expected, the relative magnitude of
the signals prior to those points are not as expected (Fig. 9). It
is suggested that the cutting conditions used in these experi-
ments are not different enough from each other to ensure any
variation in the results due to non-uniformity of workpiece
material and error in the experimental setup (e.g. changing
workpiece position in the machine as it is consumed) do not
overlap.

3.4 Detecting tool wear

Although the frequency of the spindle noise remains constant,
this study found that the magnitude of spindle noise frequency
alters in conjunction with the tool wear progression. The pow-
er spectrum of all cuts was individually calculated and illus-
trates that the magnitude of the power spectrum of the spindle
noise frequency (multiple green lines) varies with tool wear
(single blue line) as cutting takes place for the cutting condi-
tions used in the machining trials (Fig. 10).

In general, and regardless of either considering the effect of
varying cutting speed or feed, the magnitudes of the power
spectrum of spindle noise are low when the tools are in their
break-in period and until half way through their steady-state
wear region. As cutting progresses, the power spectrum mag-
nitudes of spindle noise increase rapidly until reaching their
maximum value just prior to a sudden decrease just before tool
failure.

The cumulative of spectrum magnitudes comparing to
flank wear during cutting are shown in Fig. 11. It is observed
that the trends of the cumulative data slightly increase from
the start to half of the steady-wear period. Later, an abrupt
change is observed in the second half of the steady-state wear
period. This can be used as a warning signal to indicate im-
minent tool failure.

By considering the derivative of cumulative value, the con-
dition of the tool can be monitored. It is normally low in the
first and middle of the second periods of tool wear curve or
tool flank wear less than 0.2 mm. The significant change of

derivative value is warned at the middle of steady wear. In
failure region of tool wear curve, the derivative value intends
to decrease to zero which is the point of tool failure.

It has been seen that an increase in the spectrummagnitude
of spindle noise results from tool wear. As flank wear width
increases, the contact area between flank face and workpiece
increases which requires more cutting force and consequently,
the spindle motor requires more power to rotate the workpiece
at the desired speed to overcome the increasing friction force
on the cutting contact area. The power consumption of spindle
motor was monitored and Fig. 12 shows the power used of
spindle motor during cutting, which increase significantly.

This increasing power for workpiece rotation produces
more spindle noise. The increase in noise that this process
produces is clearly recorded by the microphone and can be
used as an indicator of the onset of unwanted levels of tool
wear; therefore, using spindle noise can be a candidate feature
for tool wear monitoring in a turning process.

It should also be noted that although a constant depth of cut
was used in this work (as discussed in Section 2.1) it is ex-
pected that a similar relative change in the signal would be
observed if it was also varied because the power consumption
of a cutting process is related to the material removal rate (i.e.
the product of depth of cut, cutting speed and feed). Similarly,
it would be expected that repeating this work using different
workpiece materials would produce measureable differences,
for example using a workpiece of higher hardness (e.g.
Inconel) would lead to higher tool wear (and therefore more
noise) for a given cutting condition.

A limitation of this work, however, is that monitoring tool
wear using spindle power consumption is not adequate for low
cutting force turning operations, and also has fluctuated pat-
tern resulted from the temperature effect of spindle motor.

4 Conclusions

The conclusions of this work were as follows:

1. It has been shown that the use of relative simple and
inexpensive instrumentation can produce data that is of
high enough quality to contribute to the condition moni-
toring of a running cutting process.

2. The sound analysis process described can be used to eas-
ily characterise a particular machining process by record-
ing its audio signature and remove any unwanted environ-
mental noise.

3. There is no significant correlation between the frequency
of spindle noise and tool wear, but it is possible to infer
basic knowledge about tool condition from the response
of the magnitude of power spectrum of noise from the
spindle to changing cutting speed and feed rate.

Int J Adv Manuf Technol



4. The magnitude of spindle noise frequency spectrum and
its cumulative value could be used as monitoring features
in tool condition monitoring to assist with the selection of
more expensive instrumentation hardware or in combina-
tion with similarly cost-effective sensors to provide a low
cost tool wear monitoring system.
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