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Abstract

This paper presents a novel approach to separate the effects of

speaker and background conditions by application of feature–

transform based adaptation for Automatic Speech Recognition

(ASR). So far factorisation has been shown to yield improve-

ments in the case of utterance-synchronous environments. In

this paper we show successful separation of conditions asyn-

chronous with speech, such as background music. Our work

takes account of the asynchronous nature of the background, by

estimation of condition-specific Constrained Maximum Like-

lihood Linear Regression (CMLLR) transforms. In addition,

speaker adaptation is performed, allowing to factorise speaker

and background effects. Equally, background transforms are

used asynchronously in the decoding process, using a mod-

ified Hidden Markov Model (HMM) topology which applies

the optimal transform for each frame. Experimental results are

presented on the WSJCAM0 corpus of British English speech,

modified to contain controlled sections of background music.

This addition of music degrades the baseline Word Error Rate

(WER) from 10.1% to 26.4%. While synchronous factorisation

with CMLLR transforms provides 28% relative improvement in

WER over the baseline, our asynchronous approach increases

this reduction to 33%.

Index Terms: Speech recognition, adaptation, factorisation,

asynchronous decoding

1. Introduction

State–of–the–art Automatic Speech Recognition (ASR) algo-

rithms often lack robustness in natural situations. Different and

varying acoustic environments are one of the main factors in

the degradation of the performance of ASR systems. Systems

that perform properly in controlled conditions may become not

suitable in the presence of other sound sources. Research has

focused mostly on situations where the background is syn-

chronous with the utterance, generally background noise. To

treat interfering signals as generic noise has its disadvantages,

and hence more general adaptation techniques are used in these

environments. Solid results have been achieved with techniques

operating in the model space, such as Parallel Model Combi-

nation (PMC) [1] or Maximum Likelihood Linear Regression

(MLLR) [2], or in the feature space, such as Constrained MLLR

(CMLLR) [3], Stereo-based Piecewise Linear Compensation

for Environment (SPLICE) [4] or Multi-Environment Model-

based LInear Normalization (MEMLIN) [5].

In recent works, factorisation was used as a way to further

improve the performance of ASR in mixed conditions. Tech-

niques based on joint factorisation of sources of variability, for

example Joint Factor Analysis (JFA) [6] as used in speaker

verification tasks, are now being considered for use in ASR.

Subspace Gaussian Mixture Models (SGMMs) incorporate this

joint factorisation idea [7]. Other approaches are based on com-

bining transforms for the speakers and the environments in a

joint way. This has been done with Vector Taylor Series (VTS)

and MLLR transforms in [8], CMLLR transforms in [9] and

CMLLR and MLLR transforms in [10]. The joint training of

speaker and background transforms has been shown to be more

robust to changes in the background conditions.

However, for all methods so far it has been assumed that

the environment for any input signal is maintained throughout

the utterance. That assumption is true for corpora like Aurora

[11], where one single type of noise was added to each speech

signal. In a more natural situation however this assumption is

often not valid. In media data, beyond the traditional and very

controlled broadcast news scenario, one can expect a number

of events which are completely independent and hence asyn-

chronous with the spoken words. These events can be back-

ground music in music shows, special effect sounds in drama

shows, applause in live shows or quiz shows. In other tasks as

meeting transcription asynchronous events like laughter, door

slamming, etc may be present. The common feature of such

events is that their occurrence is not tied to the beginning and

end of a speech utterance, hence modelling them as a single

static environment will be suboptimal.

Work presented in this paper follows up the idea of factoris-

ing speaker and background, but generalising to asynchronous

conditions. Environment transforms will be learned from differ-

ent sections of the input speech signal, and these will be used to

jointly learn a set of speaker transforms. Finally, in the decod-

ing stage, the transforms will be applied also asynchronously to

compensate for the changing background.

The paper is organised as follows: Section 2 presents a

review on adaptation and factorisation methods with CMLLR

transforms. Section 3 outlines our proposed method for asyn-

chronous factorisation and asynchronous decoding. Section 4

describes the experimental setup using WSJCAM0, with results

discussed in Section 5. Finally, Section 6 provides discussion

and conclusions to this work.

2. Adaptation and factorisation

CMLLR is an adaptation technique typically used for adapt-

ing Hidden Markov Models (HMMs) to a specific speaker. By

employing a linear transform to both mean and covariance CM-

LLR can be equally interpreted as a feature transform, which is

very useful in many practical situations. A transformation ma-

trix (A) and a bias vector (b) are estimated from data from the

desired speaker. Afterwards, given an input feature vector x it

transforms it to the vector y which is used in decoding.

y = Ax+ b (1)



The CMLLR transform for a speaker spk is defined as

the pair of transformation matrix and bias vector Wspk =
{Aspk, bspk} from Equation 1. The transform can also be

trained on all the utterances from different speakers in a

given environment env, providing an environment transform:

Wenv = {Aenv, benv}. CMLLR can be used in supervised

adaptation, with manually transcribed data, or in unsupervised

adaptation, using the output of a a first pass recognition stage.

2.1. Factorisation with CMLLR transforms

A method for factorising environment and speaker variability

was proposed in [9], by means of CMLLR transforms trained in

cascade. The method proposed to train an environment trans-

form Wenv = {Aenv, benv} for every possible environment

and across all speakers. These transforms are then used as

parent transforms when training speaker transforms Wspk =
{Aspk, bspk} for each speaker and across all environments.

Thus, given a utterance signal x, spoken by speaker spk in en-

vironment env, the observations are transformed to y:

y = Aspk(Aenvx+ benv) + bspk (2)

Using both transforms in cascaded fashion was shown to

improve results over conventional CMLLR adaptation on envi-

ronment and speaker. Also, the speaker transforms, which had

been decoupled from the environment, were shown to perform

well when used across different environments.

3. Asynchronous factorisation of speaker
and environment

One of the issues with factorisation as outlined above is the ap-

plicability of transforms to the complete utterance, as conditions

often change within a segment of speech. Describing this situa-

tion with a single transform is clearly suboptimal and will lead

to imprecise modelling. Here we propose that better results can

be obtained by identifying these environments asynchronously

within the speech, and then learn different environment trans-

forms. Once appropriate environment transforms are found,

standard speaker adaptation can be performed in conjunction.

Hence each frame requires classification as belonging to

one of the possible environments. Different CMLLR environ-

ment transforms Wenv = {Aenv, benv} are then generated

from each group of frames across all speakers. Then, these

transforms are applied to the frames of the input signal ac-

cording to their acoustic environment classification and a set

of speaker CMLLR transforms are then trained.

In the decoding stage, the input feature vector is trans-

formed according to Equation 3; for each frame t the most likely

environment transform Wenv(t) = {Aenv(t), benv(t)} is ap-

plied, and then the corresponding speaker transform Wspk =
{Aspk, bspk} is applied on top.

y(t) = Aspk(Aenv(t)x(t) + benv(t)) + bspk (3)

3.1. Asynchronous decoding with CMLLR transforms

A key issue in this approach is the way in which the presence

of a specific condition in a frame is determined. A classifier

can be built separately trained on supervised data. However, in

practice automatic on–line classification will often be required.

One option is to include such decisions in the decoding process

itself. The advantage of such an approach is consistency with

the actual recognition, however it can potentially lead to some

undesired effects. In this approach, all environment transforms

can be used during the decoding stage, and is the decoder itself
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Figure 1: Asynchronous topology with two environment trans-

forms (Wenv1 and Wenv2) and a speaker transform (Wspk)

(auto transitions have been removed for clarity).

who can select the most likely label for each frame, by aiming

to maximise the overall likelihood.

Figure 1 presents how the asynchronous decoding works

when there are two possible environment transforms, Wenv1

and Wenv2, with a speaker transformation Wspk on top. This

approach naturally generalises to any limited number of envi-

ronment transforms. The usual three–state left–to–right topol-

ogy with states 0 and 4 as entry and exit states respectively is

modified to include 3 extra states. Now state 7 is the exit state

and states 4, 5 and 6 are replicas of the states 1, 2 and 3 respec-

tively. However, states 1, 2 and 3 are associated to the environ-

ment transform Wenv1 and states 4, 5 and 6 to the transform

Wenv2. The same speaker transform is used for all the states.

The topology in Figure 1 is Fully asynchronous, since it al-

lows transitions among the two possible transforms from one

frame to the next. This topology could be restricted to be

Phone–synchronous by removing all the dashed transitions. In

this case, the environment transform can not be switched in-

side a phoneme, but can be switched in the transition to another

phoneme. This choice of topologies will be studied in our ex-

perimental work.

This frame–by–frame asynchronous decoding is similar

to the proposal for on-line Vocal Tract Length Normalization

(VTLN) in [12]. In that work, the model space was augmented

to consider different VTLN warping values, and the decoder au-

tomatically chose the path that maximized the total likelihood

through the augmented space.

3.2. Asynchronous training of CMLLR transforms

The same topology presented in Figure 1 can be used when

learning transforms from adaptation data. This topology aligns

the input speech to the best sequence of states which can change

asynchronously among environments. Afterwards, a new set of

transforms can be updated from the alignment statistics.

However, it is required to already have an initial set of en-

vironment transforms. In our work, which will be based on two

possible environments, we will initialise one of the environment

transforms to be the identity (W = {I, 0}) and the other to

be a single-class CMLLR transform trained on all the adapta-

tion data. These initial transforms can be, then, reestimated to

model both the clean and corrupted parts of the input signals re-

spectively. Once the environment transforms are calculated, it is

direct to apply this topology to jointly train speaker transforms.



4. Experimental setup

In this paper, we will evaluate the proposed methods with a

modified version of the WSJCAM0 corpus. WSJCAM0 was

recorded by CUED in 1994 to provide a resource similar to

the original WSJ corpus, but with a British English pronuncia-

tion [13]. Equivalently, it defines sets for training, development

and evaluation. In our work, we used the original speaker inde-

pendent training set (si tr) of 7,861 utterances for model train-

ing and the 4 development sets (si dt5a, si dt5b, si dt20a and

si dt20b), with 368, 374, 361 and 368 utterances each, for test-

ing. The first two test sets are designed as a 5,000-word closed

vocabulary task with a bigram language model, the reamining

two sets are designed for a 20,000-word open vocabulary task

with a trigram language model. The test sets contain the same

20 speakers, and can be used for unsupervised adaptation.

We created equivalent corrupted test sets, where bursts of

music were added in the following manner: A group of 25

pieces of instrumental orchestral music was taken as source for

the background music. Each speech signal in the original test

sets was contaminated with a burst of music randomly chosen

from the source music pieces. These bursts had a uniform ran-

dom length between 0 and the total length of the clean signal.

Any music segment was scaled randomly, but to ensure that its

overall energy was between 5 and 15dB below the energy of the

overlapping speech signal (to avoid dominance of the music sig-

nal). Also, a simple fade effect was used at the very beginning

and end of the music burst, to avoid signal discontinuities. In

these corrupted test sets, 48.8% of the total frames will contain

some level of music in the background. From now on, we will

call these different test sets as Clean for the original set, and

Music for the set contaminated with music.

The ASR system was based on a Hidden Markov Model

Toolkit (HTK) [14] setup. Crossword triphone models were

trained using Maximum Likelihood (ML) from the training set,

with 16 Gaussian mixtures per state. We used 39-dimension

feature vectors with 13 Perceptual Linear Predictive (PLP) fea-

tures [15] and their first and second derivatives. Cepstral Mean

Normalization (CMN) was applied to the static features.

4.1. Baseline results

The baseline word error rates (WER) of our system on the WSJ-

CAM0 set are shown on Table 1. The results on Clean data

show an average WER of 6.3% on the 5K tasks, and 13.9% on

the 20k tasks. Using the Clean models on the sets corrupted by

Music, the results are significantly worse, with an increase of

16.3% in WER. To provide a baseline with properly matched

models, additional acoustic models were trained. The training

set was modified to include background music in similar ways

to the test sets. A different set of 67 music pieces was used

to ensure that the music patterns in the training set would not

reappear in the test sets. Table 1 shows that, without adaptation,

the best performance is obtained with models trained on Music

data. While the global WER is 6.5% poorer than for the Clean

case, it is 9.8% lower than the mismatched case.

Table 1: Baseline WER on the WSJCAM0 corpus, with models

trained and tested in the Clean and Music conditions.

Train Test 5K sets 20K sets Total

Clean Clean 6.3% 13.9% 10.1%

Clean Music 21.0% 31.8% 26.4%

Music Music 11.3% 21.7% 16.6%

5. Results

This section presents the results of the use of CMLLR trans-

forms, factored CMLLR transforms and asynchronous factored

CMLLR transforms. The models were trained on Clean data

and adaptation was performed in unsupervised fashion.

5.1. CMLLR adaptation

The results when using CMLLR speaker transforms are shown

in Table 2. All experiments are based on a regression class tree

with 4 classes. Speaker adaptation reduces the error rate by 10%

relative for Clean data and 30% for the Music data. The second

part of Table 2 presents results when applying these speaker

transforms in mismatched conditions, i.e. transforms derived

from Clean or Music data, applied to Music and Clean data re-

spectively. In both cases there is some benefit (compared to

results in Table 1), but matched adaptation gives significantly

better results. It is this effect what first prompted work on fac-

torised transformations.

Table 2: WER with CMLLR speaker transforms trained on the

Music data and tested on Clean and Music data.

Test Transform 5K sets 20K sets Total

Matched conditions

Clean Clean 5.4% 12.7% 9.1%

Music Music 13.6% 23.2% 18.5%

Mismatched conditions

Clean Music 5.6% 13.2% 9.5%

Music Clean 19.7% 30.4% 25.1%

5.2. Factored CMLLR adaptation

We applied the recipe in [9] to our setup in the following way.

We trained an environment transform from all the utterances

in the Music test sets, and used it as a parent transform when

training the speaker transforms. We used a regression tree of

2 classes for the environment transform and 2 classes for the

speaker transforms, which gives the same number of parameters

to learn, making results comparable with CMLLR adaptation.

The results of the evaluation of the different transforms in

the Clean and Music data are shown in Table 3. They show

that the joint use of both transforms does not improve the re-

sults of having a single speaker transform on the Music set; this

can be explained by the fact that having defined a single en-

vironment, the two transforms are effectively working as one.

When using the speaker transforms alone, which have had the

environment influence factored out, we see solid improvement

over the baseline. In the case of using these factored speaker

transforms trained from the Music set in the Clean set it reaches

the improvement achieved by the CMLLR transforms trained

on Clean data. As it was shown in [9] and [10], speaker trans-

forms trained in a factored approach achieve good results in

mismatched conditions.

Table 3: WER with factored CMLLR transforms trained on the

Music data and tested on Clean and Music data.

Test 5K sets 20K sets Total

Speaker and environment transforms

Music 13.6% 23.8% 18.8%

Speaker transforms

Clean 5.4% 12.6% 9.0%

Music 17.8% 28.2% 23.1%



Table 4: WER with asynchronous factored CMLLR speaker and background transforms from Music data used on Clean, Music data.

Adaptation Decoding Test 5K sets 20K sets Total

Phone synchronous Phone synchronous
Clean 5.9% 12.8% 9.4%

Music 13.3% 22.8% 18.1%

Phone synchronous Fully asynchronous
Clean 5.8% 12.6% 9.2%

Music 12.6% 22.8% 17.7%

Fully asynchronous Phone synchronous
Clean 5.8% 12.7% 9.3%

Music 13.4% 23.1% 18.3%

Fully asynchronous Fully asynchronous
Clean 5.9% 12.6% 9.3%

Music 12.9% 23.0% 18.0%

5.3. Asynchronous factored CMLLR adaptation

A set of experiments was conducted to investigate our proposed

method for asynchronous factorisation of speaker and back-

grounds (Section 3). To keep results comparable, we used a

single regression class for each of the two environment trans-

forms and two classes for the speakers. Hence the same number

of parameters are used when compared to previous situations.

First the effect of the two model topology options is stud-

ied. Both the Phone–synchronous and the Fully asynchronous

topologies can be used in either adaptation or decoding, thus

leading to four possible configurations The results with speaker

and environment transforms are shown in Table 4 for these four

cases. The best result is achieved with the Phone–synchronous

topology in adaptation and Fully asynchronous topology in de-

coding. In the Music data, WER reductions of 0.8% compared

to CMLLR and 1.1% compared to factored CMLLR are ob-

tained, which represents a 5% in relative WER reduction. In

the Clean set, the use of both transforms yields a WER of 9.2%,

which shows that the asynchronous decoding works success-

fully even in the presence of only one background condition.

Table 5 presents results when using the speaker transforms

learned in the asynchronous setup, without application of the

environment transforms. This allows to study the influence of

speaker adaptation only on the final results. The best results

are obtained with the Phone–synchronous model topology dur-

ing adaptation, yielding 9.0% and 19.5% on the Clean and Mu-

sic data respectively. This indicates good factorisation of the

speaker, as the WER improvement is only 4% lower than when

applying CMLLR adaptation.

Table 5: WER with asynchronous factored CMLLR speaker

transforms from Music data used on Clean, Music data.

Adaptation Test 5K sets 20K sets Total

Phone synchronous
Clean 5.5% 12.5% 9.0%

Music 14.4% 24.5% 19.5%

Fully asynchronous
Clean 5.5% 12.6% 9.1%

Music 14.7% 25.0% 19.9%

5.4. Frame classification with the asynchronous topology

To understand how the proposed model topologies are separat-

ing speech from speech with background music, one can in-

vestigate the effective frame classification performance. We

studied the output state sequence provided by the asynchronous

topology on the test sets, as the state sequence implicitly holds

information on the environment selected for each frame. We

can then compare this distribution of environments with ground

truth information which is very precise due to the approach tak-

ing in defining the test conditions.

Table 6 shows the results of such comparisons, in the form

of the percentage of frames correctly assigned to the class of

being speech or speech with music. The frame accuracy for

Phone–synchronous topology and Fully asynchronous topology

are 82% and 76% respectively. Typically classifiers for acoustic

events (see e.g. [16]) require constraints on transitions. How-

ever despite frame by frame decisions the asynchronous topol-

ogy is able to keep track of the correct speech background. This

allows for the improvements in recognition detailed above.

Table 6: Accuracy in framewise classification.

Phone-synchronous Fully-asynchronous

Speech 83.6% 76.2%

Speech & music 80.5% 76.9%

Global accuracy 82.1% 76.5%

Table 6 can also explain why the best combination of

topologies is Phone–synchronous in adaptation and Fully asyn-

chronous in decoding. The Phone–synchronous topology pro-

vides a smoother transition between environments and is bet-

ter in deciding which is the background condition of a frame.

That seems to benefit in the training of the environment trans-

forms. In decoding, the Fully asynchronous topology makes

more frame errors, but provides a higher degree of freedom to

the decoder, whose goal is not to maximise the classificaton ac-

curacy but to maximise the overall likelihood.

6. Conclusions

In this work we have proposed a new method for asynchronous

factorisation with CMLLR transforms and have shown that it is

helpful in adaptation to dealing with speech corrupted by asyn-

chronous bursts of background music. The results presented

show a additional significant WER reduction, from 18.5% to

17.7%, in comparison with a standard synchronous approach.

The better description of the acoustic environment also helps in

more effective factorisation of the speaker variability. Speaker

transforms now become usable across different, even unseen,

environments.

The paper further investigated a method for asynchronous

application of transforms in decoding. The proposed framework

can be used for switching of transforms in an asynchronous

manner to input speech. The results, presented here for two

transforms, will easily generalise to more transforms by an in-

crease in the number of branches in topology proposed.

In the future, this framework can be applied in more realis-

tic data where asynchronous acoustic events occur naturally. In

media data, for instance, background music is a common fea-

ture and the application of asynchronous factorisation can be

expected to improve recognition performance.
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