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Optimal and Quasi-Optimal Energy-Efficient Storage 
Sharing for Opportunistic Sensor Networks 

A. H. Kabashi and J.M.H. Elmirghani 

Abstract—This paper investigates optimum distributed storage techniques for data preservation, and 

eventual dissemination, in opportunistic heterogeneous wireless sensor networks where data 

collection is intermittent and exhibits spatio-temporal randomness.The proposed techniques involve 

optimally sharing the sensor nodes' storage and properly handling the storage traffic such that the 

buffering capacity of the network approaches its total storage capacity with minimum energy. The 

paper develops an integer linear programming (ILP) model, analyses the emergence of storage traffic 

in the network, provides performance bounds, assesses performance sensitivities and develops quasi-

optimal decentralized heuristics that can reasonably handle the problem in a practical implementation. 

These include the Closest Availability (CA) and Storage Gradient (SG) heuristics whose performance 

is shown to be within only 10% and 6% of the dynamic optimum allocation, respectively. 

Index Terms—; Algorithm/protocol design and analysis; Distributed Systems; Dynamic Storage 
Sharing; Energy Efficiency; Opportunistic Connectivity; Optimization; Wireless Sensor Networks.  

——————————      —————————— 

1 INTRODUCTION

The recent evolution in the research and development of wireless sensor networks (WSN) has made 

them one of the key enabling elements of the next generation heterogeneous networks; featuring ubiq-

uitous computing, technology convergence and context-aware applications. This is enabled by ad-

vances in micro-processing, device miniaturization, wireless communications and networking tech-

niques [1-3]. Research in this field spans a wide scope of topics including protocol design, topology 

control, survivability, energy efficiency and network management [1]. 

Due to the wide scope of the application domain of WSNs, their architectures, design requirements 

and modes of operation are quite diverse [1, 3]. For instance, the essential data collection and dissemi-

nation functionality can employ a variety of approaches ranging from conventional fixed base-stations 

to data Mules, city buses, aerial vehicles and robots [4]. As such, an instantaneous and continuous data 
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collection capability is not a practical assumption in many cases. This is due to either an employed in-

termittent data collection mode or an imposed connectivity problem in the core and edge of the net-

work that causes the network to devolve and partition frequently. Intermittent collection might be in-

herent in the application context [5] or intentionally designed through sleep scheduling for energy 

conservation purposes [6]. Network devolution and fragmentation might arise due to radio-wave 

propagation impairments, mobility, failures or misbehavior [7-8]. This study proposes storage-aided 

operation in such highly opportunistic scenarios by optimally and dynamically sharing the distributed 

(nodal) storage in such a way that avoids jeopardizing the network lifetime by excessive energy con-

sumption. 

2 RELATED WORK AND CONTRIBUTION 

 The use of the ad hoc and sensor network’s internal storage for additional functionalities has recent-

ly become feasible with the rapid advancements in non-volatile storage manufacturing techniques. For 

instance, the pioneering work in [9,10] shows that equipping the MicaZ WSN platform with NAND 

flash memory can dramatically alter the capacity and energy efficiency of local storage making its en-

ergy consumption two orders of magnitude lower than communication, and comparable to computa-

tion. This opens the door to a variety of in-network processing possibilities that were once hindered by 

the storage limitations. 

The use of optimization techniques in networked storage systems has been around for a while with-

in the area of file assignment and sharing in wired networks [11, 12]. The objectives here are reducing 

access time and flow and improving the network’s robustness to disk failures, at the cost of increased 

memory capacity and complexity of file-consistency control. This is especially empowered by using 

coded storage through utilizing Maximum Distance Separable codes (MDS). Recent advancements in 

this area have also looked at the problem of optimal storage allocation to coded information that max-

imizes the probability of successful recovery from a random subset of unreliable disks [13]. Distributed 

data caching has been proposed for ad-hoc and peer-to-peer networks for content distribution and ac-
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cessibility benefits [14].    

In WSNs optimal buffering schemes have been recently proposed to help achieve power efficient 

operation [15]. These are local (non-networked) buffering approaches that achieve energy conservation 

by utilizing batched transmissions and amortize the radio wake-up energy costs among larger data 

units. The interesting study in [15] gives the optimum buffer sizes and buffering times for a large 

range of operational conditions.   

This paper proposes the use of optimal distributed storage for data preservation, and eventual dis-

semination, in heterogeneous sensor networks with intermittent and random data collection. Over-

loaded nodes use other nodes in the network as temporary storage nodes until a collection opportuni-

ty arises. The goal is to find optimum storage strategies that consider energy consumption as well as 

data perseveration. The essential question to be answered is: given a data generation profile, how to 

make the buffering capacity of the network approach its total storage capacity with minimum energy. 

This involves finding an optimum ‘storage plan’ that specifies the optimum storage location for each 

packet generated and properly handles the storage traffic such that the distributed storage in the net-

work is maximally utilized with the minimum possible energy. The study targets a generic sense-

store-collect context where: 

 Sink (collector) is not always available for continuous upload. This is either due to connectivity 

problems or due to scheduled data collection.   

 Sink does not have a fixed location. Hence the sink can ‘appear’ virtually anywhere in the vicinity 

of the network. This incorporates applications where the access to the WSN is through a mobile 

agent or through a form of mobile ad-hoc network. An example of the former is agricultural sens-

ing where data is collected by an ‘E-bike’ that traverses a large agricultural area to collect the data 

from groups of sensors [16]. An example of the latter is an environmental sensor network that ex-

ploits the movements of vehicles to upload its data [2, 4].   

Hence there is an inherent spatio-temporal randomness associated with the data collection process. 
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Figure (1) illustrates the scenario.  

The paper first develops an integer linear programming (ILP) optimization model to solve the dis-

tributed storage problem and analyses the emergence of storage traffic in the network. A comprehen-

sive ‘off-line’ study is then conducted to assess different performance sensitivities. The paper then ex-

amines dynamic optimum storage sharing in a realistic WSN scenario and develops efficient decentral-

ized heuristics that can reasonably handle the problem in a practical implementation. Finally the paper 

shows how the ILP model can be utilized to find performance bounds for the distributed storage prob-

lem and proposes future directions to achieve further efficiencies.   

3 OPTIMIZING DISTRIBUTED STORAGE SHARING  

3.1 Objectives of optimum distributed storage 

The objectives of optimizing distributed storage in the mentioned application contexts are twofold. 

First we want to minimize data loss at overloaded nodes that have exhausted local storage. Due to the 

lack of a continuous upload feature (continuous sink availability and global connectivity) such over-

loading conditions lead to dropping new packets or overwriting old packets, resulting in data loss in 

both cases. To minimize data loss we try to maximum the utilization of the distributed storage in the 

network by using appropriate peer nodes as storage nodes. 

Second, the distributed storage energy costs have to be minimized so that the network lifetime is ex-

tended. This involves finding an optimum selection of storage nodes for each piece of data (where to 

store?) and optimum storage routing (how to deliver?) so that the overall storage energy consumption 

in the network is minimized throughout its operation cycle.   

3.2 Optimization model 

To jointly achieve the objectives outlined in the previous section, the optimization model developed 

employs different concepts from the Network Optimization and Operations Research. The main con-

cepts are summarized below: 

 The optimum storage selection objective is modelled as a minimum energy resource allocation prob-
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lem. Resource allocation has been extensively used in network optimization at different levels; e.g. 

routing, rate control and channel allocation - see [17, 18] for more examples. 

 The optimum storage routing problem is modelled by utilizing conventional network flow optimiza-

tion techniques [18, 19]. 

 The minimum data drop rate objective is modelled as a storage-supply deficit minimization prob-

lem. This ensures that the storage demand (generated data) is met as far as the storage supply 

(available storage capacity) allows, hence maximizes storage utilization and minimizes drop rate. 

Furthermore, the model drives the optimizer to prioritize deficit minimization over energy minimi-

zation by proper weighting, as will be explained next. 

A complementary consideration is to optimize the final collection of data from the network. This prob-

lem has already been studied in the WSN optimization-based routing literature [20-22]. Note that the 

spatio-temporal randomness characterizing the targeted application context enables the separation of 

the data generation and storage phase from the final collection phase without loss of rigour.    

 

3.2.1 Node energy consumption model 

The relevant energy consuming components in this work are the transceivers and storage elements. 

For the transceiver energy we adopt a model close to the widely used radio energy dissipation model 

proposed in [23]. In this model the transmission energy consumption comprises of a transmitter elec-

tronics component and a transmitter’s RF amplifier component.  The reception energy consumption, 

on the other hand, is approximated by the electronics consumption only. The energy consumed by the 

transmitter’s RF amplifier depends on the distance to the receiver ሺݏሻ and the path-loss exponentሺߙሻ. 

Hence we assume a log-distance radio propagation model and assume that the node can adaptively 

change its transmission power level to reach a given destination. Accordingly, a byte consumes ሺߝ  ߝ ή   used areߝ  andߝ ሻ Joules in reception. The values ofߝఈሻ Joules in transmission and ሺݏ

shown in Table 1. These were calculated from the values given in [21-23]. 

For storage we assume the use of the recently developed energy-efficient NAND Flash technology 
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[9, 10]. Flash memories differ in the way they perform different operations (e.g. access, Write, Read, 

Erase). To reach a reasonable estimation for energy consumption of storage per byte ሺߝ௦ሻ we used the 

results in [10] to estimate storage cost such that the proportionality is preserved with our selected ra-

dio parameterization. The estimated value of ሺߝ௦ሻ is also shown in Table 1. 

3.2.2 The ILP model 

 To enable modelling our optimization problem we first model the different flows traversing a node. 

This conceptual model of the inside of a node is shown in Figure (2) for an arbitrary node ݆ where ሺ ݄ሻ  
denotes the data load at the node (in bytes), ሺ݀ሻ denotes the storage flow (in bytes) from node ݅ to 

node ݆ and ൫ ܿ൯ denotes the memory capacity of node  ݆. The data of each node is injected to the net-

work’s storage at a single point. With reference to Figure (2), ሺ݀ሻ represents the amount of data of 

node ݆ that is injected in the network’s storage. Part of it may be stored locally and the rest can flow 

out of the node to be stored externally. Hence ሺ ݀ሻ represents the total network’s “storage supply” to 

node ݆. 

 Based on this, the per-node components of the objective of the optimization model are: 

1- The energy consumption of node ݆’s receiver; expressed as: ൫σ ሺߝሻ ڄ ݀ஷ ൯. 

2- The energy consumption of node ݆’s transmitter; expressed as: ൫σ ൫ߝ  ఈ൯ݏڄߝ ڄ ݀ஷ ൯Ǥ 
3- The energy consumption of node ݆’s Flash memory; expressed as: ቀ൫σ ݀ െ σ ݀ஷ ൯ ή  .௦ቁߝ

4- The amount of lost data of node ݆ ; expressed as: ൫ ݄ െ ݀൯ . 

The Optimum Distributed Storage Allocation ILP Model (ODSAM), jointly minimizing storage en-

ergy and data loss, is thus constructed as follows: 

Minimize: 

࣠ ൌ  ൮ቌ  ሺߝሻ ڄ ݀ஷ ቍ  ቌ  ൫ߝ  ఈ൯ݏڄߝ ڄ ݀ஷ ቍ൲   ൮ቌ ݀ െ  ݀ஷ ቍ ή ௦൲ߝ  ߣ ڄ ൫ ݄ െ ݀൯      ሺͳሻ 
Subject to: 

 ݀ െ  ݀ஷ  ܿ        Ǣ  ሺʹሻ                                                  ݆
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݀  ݄Ǣ  ሺ͵ሻ                                                                                ݆ 

 ݀ െ  ݀ஷ  Ͳ       Ǣ  ሺͶሻ                                                  ݆

݀  ͲǢ   ݅ǡ ሺͷሻ ݀                                                                         ݆ א ԺାǢ ǡ݅       ሺሻ                                                                        ݆
 

(݅ǡ ݆ א ȁࢂdenotes the set of nodes in the network, ȁ ࢂ where , ࢂ ൌ ܰ). 

Table 2 outlines the symbols used in ODSAM.  

 The constraint in (2) represents the storage load at node ݆ which is upper-bounded by the storage ca-

pacity. It is important to distinguish between the data load of a node which is the amount of generated 

data at the node that needs to be stored somewhere in the network, and the storage load at the node 

which is the amount of data granted storage at the node and which might come from different sources. 

Constraint (3) ensures that the supply doesn’t exceed the demand. In (4) the storage flow is conserved 

at each node, while considering possible storage at the node, hence the inequality. Constraints (5) and 

(6) are the non-negativity and integerality constraints of the flows, respectively.   

The objective function is composed of three components with direct physical correspondence. The 

first term aggregates the total energy consumed by the transceivers in carrying the total storage traffic 

(including both transmission and reception).  The second term calculates the total storage energy con-

sumption. The third term aggregates the total deficit in meeting the storage demands. Constant ߣ is  a 

prioritization weighting factor and will be discussed next. The number of variables to be evaluated by 

this model is ܰଶ, where ܰ is the number of nodes in the network. 

As any storage flow ݀ will be counted twice in the first term of (1); one in the transmitter cost of 

node ݅ and another in the receiver cost of node ݆, we can rewrite the first term in the objective in a more 

compact form by considering the flow cost rather than the nodal cost. Furthermore, the second term 

can be simplified by considering the storage supplies rather than storage loads. The simplified objec-

tive can now be rewritten as follows: 
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࣠ ൌ   ቀ൫ʹߝ  ఈݏڄߝ ൯ ڄ ݀ቁஷ  ௦ߝ ή  ݀  ߣ ڄ ൫ ݄ െ ݀൯Ǥ                                      ሺሻ  

The weighting factor ሺૃሻ: 

Parameter ߣ is the weighting factor that drives the optimizer to prioritize storage-supply deficit min-

imization (i.e. data loss minimization) over energy minimization. For the prioritization to work 

properly, the weighting factor ɉ has to be greater than the largest value of the summation of the first 

two terms in the objective. This will automatically drive the optimizer to minimize the deficit before 

minimizing energy as any positive deficit will appear as a higher cost than any possible energy cost.  

Note that the maximum flow that can be received by a node ݆ is σ ݄ஷ , and the maximum flow that 

can leave a node (assuming the node doesn’t store any data) is σ ݄ . Note also that the total storage 

load of the network is equivalent to  σ ݄ . Consequently we can parameterize ɉ asǣ 
ߣ   ൮ሺߝሻ ڄ  ݄ஷ ൲   ቌሺߝ  ௫ఈݏڄߝ ሻ ڄ  ݄ ቍ  ௦ߝ ή  ݄  Ǥ 

Relaxing the restriction ሺ݅ ് ݆ሻ we can safely select the value of ɉ as: 

ߣ                           ൌ ൭ ݄ ൱ ή ሺܰ ڄ ሺʹߝ  ௫ఈݏڄߝ ሻ   ௦ሻ                                                           ሺͺሻߝ

where ݏ௫ is the largest distance between two nodes in the network. It is worth noting that ሺߣሻ is di-

mensioned in (Joules/byte) in order to maintain the physical consistency of the objective function.  

4 OFF-LINE STUDY 

In this section we will utilize the developed ILP model ODSAM to provide a quantitative analysis of 

the distributed storage problem so as to gain insights into the different sensitivities, trends and per-

formance bounds. This will be an off-line static study where the optimization model is fed aggregate 

loads at different sites (nodes). The off-line approach enables us to capture more fundamental limits 

and basic behaviors. Later in Section 5 we will consider a more realistic dynamic context where instan-

taneous loads are considered and decentralized solutions (heuristics) are developed. 
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4.1 Emergence of storage traffic (࣋) and its analytical bounds  

Before proceeding with the off-line study it is worth making a basic note about the storage traffic 

and its occurrence in the network. For storage traffic to emerge a positive storage gradient has to build 

up in the network. That is; some nodes’ storage has to be overloaded while others underutilized. This 

implies that when all nodes generate data at the same rate, hence simultaneously reaching their stor-

age capacity, no storage traffic will occur (unless some sort of controlled overwrite is allowed at some 

nodes). Hence heterogeneity in data generation is implicit here.  

  With this in mind, we can develop an analytical expression for the lower bound on storage traffic in 

the network. Once storage traffic emerges in the network, then it can be calculated and lower bounded 

as follows: 

ߩ                                                      ൌ   ݀ஷ ǡ                                                                      ሺͻǤ ܽሻ          
ߩ                                         min ቄσ ൫ ݄ െ ܿ൯ǣೕவೕ ǡ ቚσ ൫ ݄ െ ܿ൯ǣೕழೕ ቚቅǤ              ሺͻǤ bሻ 

Note that if the storage gradient doesn't exist then there is no storage traffic and equation (9.b) is not 

applicable. 

    The lower bound in (9.b) follows from the fact that the basic amount of data responsible for the 

emergence of storage traffic is the minimum of either the data overload or the storage surplus over the 

whole network. The actual traffic may diverge from the lower bound set in (9.b) mainly due to multi-

hopping in delivering the storage traffic. As will be shown later, multi-hopping might become superi-

or under certain conditions. Another reason for the possible increase is the non-optimal selection of 

storage nodes which leads to the eventual situation where the storage nodes themselves be in need for 

external storage.  

4.2 Investigation Methodology 

For this study we generate random network instances by distributing ܰ nodes uniformly at random 

in a square area of dimensions ሺܮͳ ൌ ʹܮ ൌ ሻ. A set of data loads ൛ܮ ݄ൟ is generated randomly and as-

signed to the deployed nodes. The set of loads is generated such that its summation exactly packs the 
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total storage in the network, (i.e. σ ݄ேୀଵ ൌ ܰ ή ܿ), while the individual loads take arbitrary values to 

mimic the rate heterogeneity in the network. 

The study investigates the following performance metrics and assesses their sensitivity to different 

operational parameters: 

 Total energy consumption ሺܧ௧௧ሻ: this is calculated from the inter-nodal storage flow matrix ࢊ as 

follows: 

௧௧ܧ                 ൌ   ቀ൫ʹߝ  ఈݏڄߝ ൯ ڄ ݀ቁஷ  ௦ߝ  ݀ Ǥ                  ሺͳͲሻ 

 Storage traffic (ߩ): as calculated from (9.a).  

 Average storage hop-countሺߴሻ: this metric characterizes the multi-hopping behaviour in routing the 

storage traffic. It is estimated as follows: 

ߴ                        ݈݀ܽ ݕݐ̴݅ܿܽܽܿݎ݁ݒ ݈ܽݐݐݓ݈݂ ݁݃ܽݎݐݏ ݈ܽݐݐ ൌ σ σ ݀ஷσ ൫ ݄ െ ܿ൯ǣೕவೕ          ሺͳͳሻ 

The estimation in (11) is based on the fact that the original stimulus for inter-nodal storage flow is data 

overload at specific nodes. Multi-hopping is implied whenever the aggregate storage flow exceeds the 

aggregate over-capacity data load in the network. The ratio of the two aggregate values gives a good 

estimation for the average storage hop-count.   

Max-to-average energy consumption ratio is also analysed in the study. Furthermore, optimum 

storage distribution topologies are also investigated, but not shown here for brevity. These are repre-

sented by the directed graphs resulting from taking the 'sign' of the inter-nodal storage flow matrix. 

They give a pictorial representation of how storage is selected and storage flow is routed over the net-

work. Furthermore they also help superimpose energy consumption and data loading over the spatial 

characteristics of the network (e.g. node locations). Some insights from this metric will be briefly con-

sidered in the discussion. 

  The operational parameters considered include Network sizeሺܰǡ ͳǡܮ  and (ߙ) ሻ, path-loss exponentʹܮ

different loading effects. The first part of the investigation is conducted on a reference network gener-
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ated by randomly and uniformly distributing 20 nodes over an area of initial dimensions of 100x100 

metres and then scaled up to 500x500 metres. The purpose of this part is to make an initial evaluation 

of the performance sensitivities and trends. The second part is done on a large number of random real-

izations in order to get more statistically representative outcomes. Collective results are shown in Fig-

ure (3) and are discussed next. Figure (3.a) through Figure (3.f) also show the results of a restricted 

routing case where the ILP model of section 3.2.2 is amended by adding the following constraint: 

                  ݀  ሼͲǡݔܽ݉ ሺ݄ െ ܿሻሽஷ Ǣ  Ǥ              ሺͳʹሻ ݅         

This constraint allows a node to send storage traffic out only if it suffers data overload and for as 

much as its own overload only. This restricts the emergence of storage routers and enables quantifying 

the effect of storage routing on other performance metrics. 

4.3 Results and discussion 

The effect of network size and path-loss exponent on the total network’s energy consumption well 

resembles the ן ሺݏఈሻ relationship of energy dissipation at the transceivers. Figure (3.a), where ߙ ൌ ʹ, 

clearly reflects the quadratic increase of energy consumption with network dimensions, while Figure 

(3.c) shows a more rapid exponential increase with path-loss exponent.  

These figures also reflect the fact that restricted routing cases consume more energy, and this is more 

evident when the network dimensions and/or path-loss exponent are large. Under these conditions 

single-hop routing loses its superiority from an energy point of view.  

    By looking at the storage distribution topologies (not shown here for brevity) we recognize an inter-

esting pattern. As the network size and path-loss exponent increase, the storage topology itself evolves 

indicating changes in the optimum storage solution. Part of this change is a gradual migration from 

single hop routing to multi-hopping and the emergence of storage routers. This is due to the single 

hop routing becoming more expensive as the link length or path-loss exponent grows, and hence mul-

ti-hopping becomes superior in energy consumption. This effect is fully captured in the storage hop-

count results Figures (3.b & 3.d) where we recognize the slow increase in average hop-count from 1 to 
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2. A closer analysis of the resulting storage topologies shows that, in addition to multi-hopping, the 

optimum solution might adaptively change its storage selection decisions resulting in a change in the 

list of storage nodes which serve an overloaded node. Hence the changes in network dimensioning or 

propagation characteristics make the optimum distributed storage solution update both the storage 

selection decisions and routing decisions.   

 Figures (3.e & 3.f) reflect the effects of network dimensioning and path-loss exponent on the gener-

ated storage traffic. The lower bound on traffic developed in (9.b) is also depicted in these figures. It is 

clear from these figures that storage traffic for the optimum (unrestricted) case grows rapidly with 

both network dimensions and path-loss exponent, hence diverges from the lower bound. The trend of 

traffic growth follows that of average storage hop-count, shown in Figures (3.b & 3.d). On the other 

hand the restricted routing cases converge to the lower bound throughout. These observations render 

multi-hopping as the main cause for storage traffic growth in the optimum (unrestricted) cases. Note 

that despite traffic growth, the unrestricted cases keep their superiority in terms of energy consump-

tion, as observed previously from Figures (3.a & 3.c). It can be concluded that the energy consumption 

of distributed storage is governed by the compound effect of storage traffic superimposed on both 

network geometry and propagation conditions.  Consequently it is for the general good of the net-

work, in terms of distributed storage, to have the heterogeneous data rates well interleaved spatially 

so that storage availability is globally maintained as close as possible to overloaded nodes and over-

loaded zones are avoided. 

To get a more statistically representative picture further experiments were conducted over a large 

number of random realizations. Appropriate results are shown in Figures (3.g-h). For this set of results 

the experiments were run over 1000 randomly generated networks (i.e. 1000 random node distribu-

tions over 100m x 100m area) and associated 1000 randomly generated load sets൛ ݄ൟ. The obtained re-

sults were then averaged over all realizations.   

Figure (3.g) shows the averaged results of the average storage hop-count with both ߙ and ܰ. The 



 13 

 

hop-count steadily increases with ߙ, agreeing with the previous results on our reference network, and 

the rate of increase generally drops as ߙ gets sufficiently large. The new insight gained from Figure 

(3.g) is the behaviour of the storage hop-count with ܰ, where this result gives a more comprehensive 

idea about the effect of network density on hop-count than that given before by Figure (3.b) when the 

network size was changed.  A fall in hop-count with increased node density can be seen in this result, 

agreeing with the previous result in Figure (3.b) - (note that an increase in the network dimensions can 

also be viewed as a decrease in node density). However, Figure (3.g) shows the additional observation 

that this relationship is not strictly preserved for all conditions. The curves at higher values of ߙ show 

that the, more accurate, trend is a sharper increase followed by a long-tailed decrease, resulting in a 

peaking behaviour at intermediate values of node density. The peak occurs at different values of ܰ 

that are dependent on, and increase with, path-loss exponent; ሼሺܰ ൌ ͷ ݏݏ݈݁ ݎǡ ߙ ൌ ʹሻǡ ሺܰ ൌ ͳͲǡ ߙ ൌʹǤͶሻǡ ሺܰ ൌ ͳͷǡ ߙ ൌ ʹǤሻǡ ሺܰ ൌ ʹͲǡ ߙ ൌ ʹǤͺሻǡ ሺܰ ൌ ͵Ͳǡ ߙ ൌ ͵ሻሽ . This behavior can be explained as follows: 

In both the sparse and sufficiently dense cases the distance to a storage node is comparable to the dis-

tance to potential router nodes, on average, resulting in the superiority of less hopping. In the inter-

mediate cases, on the contrary, there are higher effective differences among the inter-nodal distances 

in the overloaded-storage zones. This gives multi-hopping more degrees of freedom to emerge. Note 

that uniform node distribution is dealt with here. Another potential reason (especially for the dense 

case) is a better spatial data rate interleaving which keeps storage availability closer to storage need. 

Figure (3.h) shows the ratio of max-to-average energy ratio (MAER) among the deployed nodes. The 

ratio increases with both ܰ and ߙ and ranges from 2 in the low ሺܰǡ -ሻ corner to over 7 in the high corߙ

ner. The increase is relatively slow with ܰ and more rapid with ߙ.   Load heterogeneity is a basic cause 

for this relatively high MAER. Other causes include locations of storage availability, as compared to 

location of storage need, and how the storage traffic is routed. Note that in our optimization formula-

tion we have focused on minimizing the overall energy consumption and this might yield considerable 

variation in the nodal energy consumption and an increased MAER. An interesting extension to this 
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work might be including some metric of uniformity or fairness in nodal energy consumption in the 

optimization model and then quantifying the resultant loss of efficiency in the overall energy con-

sumption. 

5   DYNAMIC OPTIMUM STORAGE SHARING 

This part introduces two extensions. First the optimization model developed for the distributed stor-

age problem (ODSAM) is used in a realistic dynamic scenario, rather than the static off-line scenario 

used previously. Using the model dynamically, where the model is fed instantaneous storage de-

mands and availabilities, enables achieving a dynamic optimum allocation of the distributed storage. 

In fact this is the practical way where the optimization model can be envisioned to run in a network. 

The previous theoretical off-line study assumes that the aggregate loads can be known a-priori and 

hence exploits additional knowledge and gives performance bounds rather than practical results. A 

comparison between both approaches will be presented at the end of this section. 

Second, decentralized efficient heuristics are developed for the storage problem and compared to the 

optimum solution. These heuristics represent the practical solution that can readily be employed in a 

real network, rather than ILP model which needs a centralized coordinated operation and whose com-

plexity can be prohibitive in a sensor node. 

5.1 Dynamic setting and data generation model 

    In the dynamic scenario data generation follows a discrete model where a packet generation is al-

lowed only at discrete time epochs along the time dimension. Depending on the current data genera-

tion rate at each node a new data packet originates at appropriate time epochs.  At each epoch, nodes 

specify their instantaneous loads depending on whether or not a data packet is generated at the node, 

according to the current rate. This set of instantaneous loads ൛ ݄ఛൟ along with the instantaneous storage 

availabilities ሼ ܿఛሽ are fed to the model ODSAM and the optimization result is then used to update the 

storage availabilities according to: 
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          ܿఛାଵ ൌ ܿఛ െ ቌ ݀ఛ  
ே

ୀଵ െ  ݀ఛே
ୀଵǡஷ ቍ                         ሺͳ͵ሻ 

where ܿ ൌ ܿ. The scenario then continues with the instantaneous flows ݀ఛ  accumulated in the global 

inter-nodal flow matrix ൣ݀൧such that: 

                                 ݀ሺݐሻ ൌ  ݀ఛ௧
ఛୀ Ǥ                                     ሺͳͶሻ 

This matrix is eventually used to calculate the results. These steps are summarized in Figure (4).  

Hence the dynamic optimum allocation approach yields a centralized coordinated data storage plan 

that jointly minimizes energy and drop rate on a per epoch basis. 

5.2 Decentralized distributed-storage heuristics  

  To reduce the complexity and centrality drawbacks of the ILP solution, decentralized heuristics are 

developed here. Decentralized heuristics enable nodes to take independent decisions without the need 

for a central coordinator. Despite this, nodes may coordinate in exchanging information that helps all 

of them take better decisions independently. Although at the price of accuracy, the use of heuristics in 

real communications systems is in many cases the only way for practical implementation [17, 18]. 

 In the following sections two heuristics are presented and thoroughly discussed.  

  5.2.1 Closest Availability Single-Hop (CASH) 

CASH is a simple heuristic that elects the closest node with storage availability as the storage node 

for each newly generated packet at an overloaded node. The intuition behind CASH is that delivery 

costs dominate the distributed storage costs and hence CASH tries to minimize the costs by storing as 

near as possible. 

CASH can be summarizes as follows: 

 Decision policy: Select the closest node that has storage availability. 

 Metric: inter-node distances. 

 Information needed:  
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1- Distances to other nodes. This can be estimated through various localization approaches or by 

simpler signal strength approaches (e.g. Radio Signal Strength Indicator RSSI). 

2- Storage availability at all nodes. This can be collected through continuous declaration (broadcast) 

of storage loads. The energy cost of exchanging this information can be minimized if it is inte-

grated with the various broadcast operations used in conventional routing protocols in ad-hoc 

and sensor networks. However, more efficient approaches can use load estimation locally by ex-

ploiting rate information. Here nodes exchange only their rate information and only when rate 

change happens. 

Hence CASH consists of three functional blocks; distance estimation block, load estimation block 

and storage selection block. The execution of CASH is illustrated in Figure (5). 

  5.2.2 Storage Gradient Single-Hop (SGSH) 

One of the potential deficiencies in CASH is the blind selection of storage closest availability without 

considering the amount of storage load in the selection metric. The problem with this approach is that 

some selected storage nodes might soon become overloaded themselves and hence re-generate storage 

traffic. This increases the total storage traffic in the network and drives the total energy consumption 

high. A better strategy would then be a more storage-load-aware mechanism that jointly considers dis-

tance and amount of current storage loads at the potential candidates. The storage gradient heuristic 

(SGSH) pursues this approach. It favours closer nodes with higher storage availability. SGSH is sum-

marised in the following points:  

 

 Decision policy: select the node with highest storage gradient from the source node. 

 Metric: storage gradient.  

The storage gradient is defined as the ratio of storage load difference and inter-nodal distance. The 

storage gradient from node ݅ to node ݆ at time ߬ is expressed in a normalized form as:  
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                   ݃ఛ ൌ ൫൫ܿҧఛ െ ܿҧఛ൯ ܿΤ ൯ቀݏ ඥሺܮଵଶ  ଶଶܮ ሻΤ ቁ                             ሺͳͷሻ 

where ሺܮଵ ǡ ଶ ሻ are the dimensions of the deployment area,  ሺܮ ҧܿ ݅߬ ሻ denotes the instantaneous storage load and  ሺܿሻ  denotes the maximum memory capacity in the network. Note that the sub-divisions in the numer-

ator and denominator of (15) is for normalization purposes which produces a metric independent of 

the exact values of the operational parameters:  ܮଵǡ  ଶ ܽ݊݀ ܿ. Note also that the definition of the storageܮ

gradient in (15) is similar to that mentioned in Section 4.1 with an added weighting by distance recip-

rocal. 

 Information needed: same as CASH. 

Refining the metric of SGSH:  

The storage gradient as expressed in (15) can be better refined by appropriate dimensioning and 

weighting. In its current form the metric suffers from two potential weaknesses. First the numerator 

features rapid variations due to the continuously evolving operation of the network. Second the con-

tributions from both sub-metrics (storage load and distance) are kept equal, hence not allowing the 

distance factor to stabilize and drive the overall metric in a proper way. Hence we need to compress 

the storage load contribution in a way that yields a diminishing return behavior (i.e. giving high stor-

age load differences less ‘gain’ than smaller ones). On the other hand the distance contribution has to 

be magnified with inverse proportionality (i.e. giving short distances more ‘gain’ than longer distanc-

es). In this way we guarantee that distance (especially shorter one) is properly weighted and at the 

same time large storage-load differences are not allowed to mislead the metric. 

Different approaches can be adopted to implement the suggested modifications. A good choice is to 

use a ሺ݈݃ሺݔሻሻ function for the storage load compression and, given that the distance appears in the 

denominator, use a ሺξݔೝ ሻ function for the distance. The refined storage gradient metric is expressed as: 

                   ݃ුఛ ൌ ݈݃ ൬ͳ  ቀ൫൫ܿҧఛ െ ܿҧఛ൯ ܿΤ ൯ ڄ ଵ݂ቁ൰ට൬ቀݏ ඥሺܮଵଶ  ଶଶܮ ሻΤ ቁ ڄ ଶ݂൰ೝ Ǥ                      ሺͳሻ 
In (16) we have also included scaling factors ( ଵ݂ and ଶ݂) to enable projecting the normalized values 
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properly on the x-axis of the selected functions1. The values of these factors will be a design choice 

learned through experimental experience. Generally the best values of these constants would be those 

maximally supporting the compression/magnification effects of the functions used.  The value of ݎ is 

another design value. It is intuitively expected that we will need to use lower ݎ values for higher path-

loss exponents in order to disadvantage larger distances (less weight). SGSH heuristic is functionally 

summarized in Figure (6). 

To avoid data collisions at a storage node, due to simultaneous transmissions, or data loss due to un-

successful delivery, standard hand-shaking mechanisms are proposed for both heuristics. 

5.3 Results and discussion  

       Using the dynamic data generation model highlighted in Section 5.1, a dynamic scenario was sim-

ulated and used to evaluate the relative performance of the optimum distributed storage model and 

the sub-optimum heuristics developed. The general parameters used in these experiments are typical 

of those used before in Table 1.  The path-loss exponent was set at ሺߙ ൌ ʹሻ and the number of nodes at ሺܰ ൌ ͳͲሻ for these experiments. The optimum model was employed within the simulator as highlight-

ed in Figure (4), while the heuristics were implemented according to Figures (5-6). The resulting global 

inter-nodal flow matrices, as calculated through (14), were used to obtain the results presented next. In 

addition, the averaged results of runs over large number of random realizations are also presented at 

the end of the section. The experiments assess the performance sensitivities to different factors includ-

ing data load distributions, network scaling and network density. 

Figure (7.a) shows the total energy consumption of distributed storage, as calculated from the inter-

nodal flow matrices through (10), for different load settings. For all of the 7 loading cases the total 

amount of data generated across the network ሺ݄௧௧ ൌ σ ݄ሻ ேୀଵ is kept constant while arbitrary varying 

the nodal data loads ሺ݄ሻ from one case to the other. This is to get a fair idea about relative perfor-

mance over a wide range of load distributions. The figure compares the performance of the heuristics 

 
1 Recall that the storage gradient initial values were normalized to the interval [0-1]. 
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(CASH, SGSH) to that of the dynamic optimum ILP solution (opt_dyn). The performance of the direct 

storage gradient heuristic without the refinement introduced in (16) is also shown.  

This result reflects a very good performance for both CASH and SGSH heuristics as they are both 

capable of approaching the optimum performance to a good extent. The SGSH heuristic is, however, 

consistently superior to the CASH heuristic. The direct storage gradient heuristic (SGSHD), using met-

ric (15) directly, on the other hand, shows severely worse performance. While it is still able to mimic 

the general trend of the optimum case, its gap from the optimum energy consumption is large. This 

verifies the reasons we had when refining the SG metric to (16). We will later present a proper quanti-

fication of the relative performance gaps. 

 The network scaling effect is shown in Figure (7.b) where the deployment area side length was var-

ied from 10m to 1000m. This result shows that as the network dimensions are scaled the heuristics per-

formance diverge from the optimum. In our earlier off-line study, Figure (3.b), network scaling result-

ed in an increased average storage hop-count. To check this for the current experiment, Figure (7.c) 

plots the average storage hop-count for the dynamic optimum solution. The rise in hop count with 

network scaling is clear.  

This should have contributed to the divergence observed as the developed heuristics employ direct 

single hop delivery only. To quantify the effect of this, a multi-hopping extension was added to the 

developed heuristics such that, after storage node selection, data is delivered through minimum ener-

gy routes. This is done on a per-hop basis where each node elects best router node through which 2-

hop routing is better than direct delivery. The same is repeated at each intermediate router until reach-

ing the storage node. The new results are also shown in Figure (7.b) where we see that the multi-

hopping capability (CAMH, SGMH) has enabled the heuristics’ performance to converge back to-

wards the optimum consistently. This indicates that it was the routing part that has caused the diver-

gence, not the storage selection part. 

To demonstrate the benefits of using distributed storage, Figure (8) compares the performance of the 
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developed heuristics to that of a simple local storage policy where overloaded nodes overwrite older 

(undelivered) data. The results were obtained by using an aggregate data load that starts at around 

80% of the total network's storage and then increased gradually. Individual data loads were assigned 

randomly to the deployed nodes. In terms of data drop rate, Figure (8.a) reflects the considerable gains 

achieved by employing distributed storage, especially when the aggregate data load is below the net-

work's capacity. Due to the lack of an external storage capability, a local storage policy loses much of 

the network's data even when the aggregate data load is less that the network's capacity, due to the 

existence of overloaded nodes. Figure (8.b) compares the energy consumption, where the price of ex-

ternal storage is clear (recall the difference between the energy cost of storage and radio as shown ear-

lier in Table I).      

To characterize the performance of the developed heuristics we conducted statistical quantification 

of the performance gaps from the optimum. To achieve this, the experiment was run over 100 random-

ly generated networks (i.e. 100 random node distributions over 100m x 100m area) each with a corre-

sponding random load distribution. For each realization the energy consumption performance gaps 

were calculated and then averaged over all realizations. The whole experiment was then repeated for a 

number of node densities. The resulting percentages of the averaged gaps are shown in Figure (8). 

These results show that the heuristics yield a distributed storage performance that is only 10% away 

from the optimum, on average. The sub-optimality of the Closest Availability heuristic's average per-

formance is within the range (8%-10%) while that of the Storage Gradient is only (3%-6%). 

5.4 Notes on SG heuristic design constants  

 The constants incorporated in the metric of the storage gradient heuristic ሺݎǡ ଵ݂ǡ ଶ݂ሻ were said to be 

design parameters learned through experimental experience.  

To this end, Table 3 summarizes the best values obtained by looking into a large range of values and 

combinations. These are not claimed to be absolute optimum values, as the search was not meant to be 

strictly exhaustive, but they rather provide a general guide and ‘rule of thumb’. As seen in the table, 
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the values of these constants were found to be sensitive to the value of path-loss exponent used. High-

er values of ߙ favour lower values of ݎǡ and ଵ݂. This confirmed our previous expectation regarding ݎ, as 

the influence of the distance factor has to be reduced at higher ߙ values. This is done through using 

root functions with lower ݎ values (recall that distance contributes to the denominator of the metric). 

The observed trend for the scaling factor ଵ݂ can be explained by noting that higher values of this fac-

tor lead to further ‘activation’ of the ݈݃ compression behavior in the numerator. Table 3 implies that 

this behavior is more desirable in low path-loss cases where the distance contribution to the SG metric 

is more stressed. In higher path-loss exponent cases, on the other hand, the compression behavior is 

better marginalized and this is achieved by using the more linear part of the ݈݃ function (low ଵ݂ val-

ue).  

5.5 Performance bounds  

  Figure (7) also shows bounding performance results which were obtained by using the ODSAM 

ILP model in a static ‘off-line’ manner, similar to that of Section 4. Obviously the off-line approach uses 

more information than the dynamic one. That is; in the off-line approach we feed the optimizer the ag-

gregate data loads at each node and hence enable it to take better decisions and yield an optimum 

global storage plan. For the dynamic approach, as in a realistic setting, this information is not known 

a-priori and hence the optimizer yields the optimum network-wide storage plan for each time epoch, 

given current conditions. The heuristics try doing the same in a decentralized way. Hence the off-line 

static solution is expected to yield absolute lower bounds for the performance.  The appropriate results 

in Figure (9) confirm this expectation as the off-line solution always lower-bounded all other results.  

 The off-line static approach is obviously impractical. However, the performance gap seen in these 

results indicates that there are still significant savings that might be achieved if more knowledge about 

load evolution can be incorporated in the dynamic approaches. This opens the door for future exten-

sions to this work by investigating estimation-based techniques.   
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6 CONCLUSIONS  

This paper has studied the problem of optimum storage sharing in heterogeneous sensor networks 

where data collection is spatio-temporally opportunistic. The study focused on finding optimum stor-

age strategies that consider energy consumption as well as data preservation. Static and dynamic op-

timum performances have been thoroughly investigated and decentralized sub-optimal heuristics 

were proposed.  Moreover, the emergence and bounds of storage traffic have been characterized ana-

lytically and the overall performance has been assessed under different conditions.     

 The storage traffic was shown to be initiated by the emergence of storage gradient in the network, 

and further driven by the dynamics governing the optimality of energy consumption and storage se-

lection decisions. The effect of network size and path-loss exponent on the total energy consumption 

well resembled the relationship of energy dissipation at the transceivers. Changes in the operational 

parameters were found to cause the optimum distributed storage solution to update both the storage 

selection decisions and routing decisions. The energy cost of distributed storage was found to be de-

termined by the compound effect of storage traffic superimposed on both network geometry and 

propagation conditions.  For the benefit of the network, in terms of distributed storage, it is better to 

have the heterogeneous data rates well interleaved spatially. The results indicated that while optimum 

distributed storage achieves minimum total energy consumption it might introduce non-uniformities 

in the energy budget of the nodes. Max-to-average energy ratio can also reach considerable values.   

The developed heuristics have shown very good performance compared to the dynamic optimum 

solution, especially when having the multi-hop routing capability. Their sub-optimality incurs an ad-

ditional energy consumption of within only 10% for the Closest Availability heuristic and 6% for the 

Storage Gradient heuristic, on average. Absolute performance bounds indicated that further energy 

savings might be achieved if more knowledge about load evolution can be incorporated proactively, 

through techniques such as load estimation.   
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TABLE 1 

NODE ENERGY CONSUMPTION PARAMETERS. 

 

TABLE 2 

KEY OF SYMBOLS USED IN ODSAM MODEL 

Symbol Representation Unit 

 ௦ Memory energy  consumption J/byte ݀ Storage flow from node ݅ to ݆ byteߝ  Tx amplifier energy  consumption J/byte/ ݉ఈߝ  TxRx electronics energy consumption J/byteߝ

݄ Data load at node ݆ byte 

ܿ Memory capacity of node ݆ byte 

ݏ  Euclidean distance between two nodes m 

 Weighting factor J/byte ߣ Path-loss exponent - ܰ Number of nodes in the network node ߙ ௫ largest distance between two nodes mݏ

 

 

TABLE 3 

SELECTED VALUES FOR SG HEURISTIC’S CONSTANTS. 

Constant ߙ ൌ ሾʹ െ ʹǤͷሿ ߙ ൌ ሾʹǤ െ ͵ǤͲሿ ݎ ͵Ǥʹ ͲǤͲͳ 

ଵ݂ ͳͲͲͲͲ ͳͲ 

ଶ݂ ͳ ͳ 

 

 

Tx amplifier energy cons.  ሺߝሻ 800 pJ/byte/ ݉ఈ  

TxRx electronics energy cons. ሺߝሻ 400 nJ/byte 

Storage energy consumption ሺߝ௦ሻ 4 pJ/byte 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Node’s flow model 

Figure 1. Opportunistic Data Collection Scenario 

݄ 

 

ܿ 

 

݀ ݀ሺஷሻ ݀ሺஷሻ 
+ - 



 

                 

                                                      (a)                                                                         (b) 

                    

                                                     (c)                                                                        (d) 

               

                             (e)                                                                (f) 

                 

        (g)                                           (h) 

 Figure 3. Optimum distributed storage results (off-line solutions): (a) effect of network size on energy consumption (b) effect of 
network size on storage hop-count (c) effect of path-loss exponent on energy consumption (d) effect of path-loss exponent on 
storage hop-count (e) effect of network size on storage traffic (f) effect of path-loss exponent on storage traffic (g) storage hop-
count with node density and path-loss exponent (averaged).  (h) MAER with node density and path-loss exponent (averaged).  
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        Figure 4. Using the optimization model dynamically                                                    
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Input:       ࡿ ൌ ൛ݏൟ   ǡ ࡸࡿ ൌ ൛ ܿఛൟ    Ǣ      ݆ א  ࢂ

Output:   ݊ݏ   /* storage node */ 

1: Initialization:   ࡿഥ ึ INDICES ൛SORT̴ASCEND ሼࡿሽൟ   

        /*list of nodes sorted according to their  

      distances from node ݅ */ 
2: New_Pkt 

ݓ  :3 ൌ ͳ   /* indicator */ 

4: if ܿఛ ൏ ܿ 

݊ݏ      :5 ൌ ݅ 

ݓ      :6 ൌ Ͳ    
7: else  

8:      for   ݍ ൌ ʹǣ ܰ 

ሻ൯ݍഥሺࡿ൫ ࡸࡿ           :9 ൏ ܿ 

݊ݏ               :10 ൌ  ሻݍഥሺࡿ

ݓ               :11 ൌ Ͳ    
12:               exit for  

13:       end if 

14:     end for 

15: end if 

ݓ    :16 ൌ ͳ    
݊ݏ     :17 ൌ  

18: end if 

19: STORE (New_Pkt, ݊ݏ)    /* when ሺ݊ݏ ൌ   ሻ the packet
                    is discarded, when ሺ݊ݏ ב ሼǡ ݅ሽሻ  
                    the packet is routed to  

                    external storage*/ 

 

 

 Figure 5. CASH heuristic 



 

 

Input:       ࡿ ൌ ൛ݏൟ   ǡ ࡸࡿ ൌ ൛ ܿఛൟ    Ǣ      ݆ א  ࢂ

Output:   ݊ݏ   /* storage node */ 

1: Initialization I: SET{ ଵ݂} , SET{ ଶ݂}, SET{ݎ}  

         /* set heuristic constants */ 

2: Initialization II:   ࡿഥ ึ INDICES ൛SORT̴ASCEND ሼࡿሽൟ  

         /*nodes sorted according to their  

               distances from node ݅ */ 
3: New_Pkt 

ݓ  :4 ൌ ͳ   /* indicator */ 

5: if ܿఛ ൏ ܿ 

݊ݏ      :6 ൌ ݅ 

ݓ      :7 ൌ Ͳ    
8: else  

ࡳ      :9 ൌ ൛݃ුఛ ൟ ǡ   ݆ א  ࢂ

ഥࡳ    :10 ึ INDICES ൛SORT̴DESCEND ሼࡳሽൟ 

11:      for ݍ ൌ ͳǣ ሺܰ െ ͳሻ 

ሻ൯ݍഥሺࡳ൫ ࡸࡿ           :12 ൏ ܿ 

݊ݏ                :13 ൌ  ሻݍഥሺࡳ

ݓ                :14 ൌ Ͳ    
15:               exit for 

16:       end if 

17:     end for 

18: end if 

ݓ    :19 ൌ ͳ    
݊ݏ     :20 ൌ  

21: end if 

22: STORE (New_Pkt, ݊ݏ)    /* when ሺ݊ݏ ൌ  ሻ the packet is
discarded, when ሺ݊ݏ ב ሼǡ ݅ሽሻ the 

packet is routed to external 

storage*/ 

 

 

 Figure 6.  SGSH heuristic 



 
 
 
 

  

         

                     

Figure 7. Dynamic storage sharing results 
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(b) 
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Figure 8. Comparing the performance of distributed and local storage 

(a) 

(b) 



 
 

                                  Figure 9. Heuristic average performance gap from optimum.                         


