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We perform a detailed analysis of the properties of the finite-range tensor term associated with the
Gogny and M3Y effective interactions. In particular, by using a partial wave decomposition of the
equation of state of symmetric nuclear matter, we show how we can extract their tensor parameters
directly from microscopic results based on bare nucleon-nucleon interactions. Furthermore, we show
that the zero-range limit of both finite-range interactions has the form of the N3LO Skyrme pseudo-
potential, which thus constitutes a reliable approximation in the density range relevant for finite
nuclei. Finally, we use Brueckner-Hartree-Fock results to fix the tensor parameters for the three
effective interactions.

PACS numbers: 21.30.Fe 21.65.Mn

I. INTRODUCTION

One of the key ingredients of the bare nucleon-nucleon
(NN) interaction is the tensor part, which represents
the most distinct manifestation on meson exchange
processes. Among the most important properties re-
lated to the tensor interaction, one can mention the
quadrupole moment of the deuteron, the properties of ex-
cited states [1–4], the contribution to the spin-orbit split-
ting [5], and the shell evolution along isotopic chains [6].
Within the context of phenomenological interactions, one
should in particular keep in mind that the strong com-
petition between spin-orbit and tensor on the shell struc-
ture properties of atomic nuclei [2, 7–9], prevents to fix
these two terms independently, since a variation in the
tensor can lead to a substantial change in the shell struc-
ture with the appearance of new magic numbers. Such
a problem has been well described in Ref [2], showing
that this could represent a major problem in a fitting
procedure since when entering in such a region of the pa-
rameter space a tiny variation of the coupling constants
leads to a massive change in the binding energy and thus
to a non-convergence of the fit. A detailed discussion
and a list of references about these issues are given in
the recent review article of Sagawa and Coló [10].

Despite their importance, only a few exploratory at-
tempts have been made in the past [11, 12] to include ex-
plicit tensor terms within non-relativistic self-consistent
mean-field or density functional nuclear models. More
recently, such terms have been added to existing zero- or
finite-range effective interactions, as the popular families
of Skyrme [13], Gogny [14] or M3Y [15]. The parame-
ters are usually fixed to reproduce some selected spin-
orbit splittings, with either a partial or a complete fit of
parameters. However, the parametrizations can lead to
the appearance of unphysical instabilities of the Fermi
surface both in the zero- and long-range regimes [16–
18]. To avoid them we have proposed [19, 20] to in-

corporate into the fitting procedure the constraints ob-
tained from linear response theory. Furthermore, we have
also suggested [19, 21, 22] some new constraints from
microscopic calculations based on the bare NN interac-
tion: specifically, a partial wave decomposition on the
so-called N3LO Skyrme pseudo-potential of the symmet-
ric nuclear matter (SNM) equation of state (EoS) allows
one to clearly identify the contribution of each term of the
effective interaction, even for the tensor part. This de-
composition can be used for an initial guess of the interac-
tion parameters. The N3LO pseudo-potential represents
the most general non-local zero-range pseudo-potential
that includes all possible terms up to the sixth order in
derivatives, that is up to the next-to-next-to-next leading
order. It has been constructed several years ago [23, 24]
and has been recently written explicitly in the more fa-
miliar Cartesian basis, constraining it to be gauge in-
variant [25, 26]. In this approach, the standard Skyrme
interaction with tensor terms corresponds to N1LO plus
the usual density-dependent term.

In the present article, we use as a guide the partial wave
decomposition of the symmetric nuclear matter EoS to
isolate the spin-orbit and tensor contributions of some
finite-range interactions. Specifically, we consider the
finite-range interactions D1ST2a [27] and M3Y-P2 [28],
and the N3LO pseudo-potential as well. We show that
new constraints are obtained on the sign (even the sign
is not known with certainty) and the order of magnitude
of the tensor parameters.

II. RESULTS

The potential contribution to the SNM energy per par-
ticle can be decomposed by using a coupled spin-isospin
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(S, T ) basis as

E

A
=
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~
2k2F
2m

+
∑

ST

V
(ST )(kF ) , (1)

where kF = (3π2ρ/2)1/3, ρ being the density, and V(ST )

is the potential energy per particle projected onto the dif-
ferent channels. Neither the tensor nor the spin-orbit in-
teractions contribute to the (S, T ) components. To study
them one has to go one step back in the calculation and
project the potential energy terms onto the J, L, S, T sub-
spaces, where J and L are the total and orbital angular
momenta, respectively. Using the standard spectroscopic
notation 2S+1LJ , the EoS is written as

E

A
=

3

5

~
2k2F
2m

+
∑

JLS

V(2S+1LJ) , (2)

where for simplicity the explicit kF -dependence in the
potential energy terms has been suppressed. The value
of T is immediately deduced from the antisymmetry of
the matrix elements. Adding up V(2S+1LJ) for all J and
L values, one gets V(ST ), with an exact cancellation of
tensor and spin-orbit contributions.
Our analysis is based on Brueckner-Hartree-Fock

(BHF) calculations [29] of the partial wave contributions
to the potential energy per particle, derived from the mi-
croscopic Argonne v14 nucleon-nucleon two-body inter-
action plus the Urbana model for the three-body term.
Although the SNM saturation point given by this calcu-
lation is slightly shifted to higher values of density and
energy per particle, these results provide us with a help-
ful guide to assess the properties of effective interactions
in a mean-field scheme. Other microscopic calculations
exist, as low-k chiral effective field (χ-EFT) [30] or the
many-body perturbation theory (MBPT) [31, 32], but all
of them have been limited to the (S, T ) channels. In this
respect it is worth noticing that for these channels all
these calculations agree below saturation density.
To make a proper comparison of the tensor and spin-

orbit contents of the effective interactions we realise that
for a given L, S pair, the central part of the interaction
gives the same contribution apart from a factor 2J + 1.
Therefore, it is possible to get rid of the central con-
tributions –including the density-dependent terms– by
considering weighted differences as

1

2J + 1
V(2S+1LJ)−

1

2J ′ + 1
V(2S+1LJ ′) . (3)

In practice, we have considered the following three com-
binations

δP = V(3P1)/3− V(3P0)
δD = V(3D2)/5− V(3D3)/7
δF = V(3F3)/7− V(3F4)/9







(4)

and neglected combinations involving partial waves with
L > 3, which gives smaller contributions. ALE Al-
though such combinations allow us to isolate in

our model the contribution of the two-body ten-
sor and spin-orbit component, this is not nec-
essary the case for the BHF result, where pos-
sible contribution form explicit (or induced) 3-
body term could also enter in these combinations.
In the present context, it is not possible to fur-
ther separate out these contributions since the
structure of our interaction is much less sophisti-
cated than the original Argonne v14. Within the
current Skyrme model it is not possible to sep-
arate out the two and three-body contributions
for all the terms of the effective interaction., al-
though some attempt has been done for the cen-
tral part [33].
We proceed now to give the explicit expressions for

these combinations as calculated from several effective in-
teractions. The Gogny interaction includes a zero-range
spin orbit term

V G
LS(r) = iW0(σ1 + σ2) · [k

′
× δ(r)k] , (5)

where r is the relative coordinate of the pair, and k′ and
k are the relative momentum operators acting on the
left and right, respectively. For the tensor interaction
we follow the authors of Ref. [27], which on top of the
standard Gogny interaction [14] have added a finite-range
tensor effective interaction of the form

V G
T (r) = [VT1 + VT2Pτ ] r

2ST (r̂) exp
−r2/µ2

G , (6)

where Pτ is the isospin exchange operator, ST (r̂) =
3(σ1 · r̂)(σ2 · r̂)−σ1σ2 is the tensor operator, and a single
Gaussian has been used. Due to the chosen isospin struc-
ture of the interaction, VT1 + VT2 is the strength of the
force acting between proton-proton or neutron-neutron
pairs whereas VT2 is the strength of a neutron-proton
pair.
The differences (4) we are interested in are written as

δP = −W0

80 ρk
2
F −

27µ2
G

40
√
π
(VT1

+ VT2
)G1(kFµG)

δD = −
27µ2

G

280
√
π
(VT1 − VT2)G2(kFµG)

δF = −
3µ2

G

10
√
π
(VT1 + VT2)G3(kFµG)















(7)

The functions GL(kFµT ) are given by the sum over mo-
menta on the SNM Fermi sphere of the radial multipole L
of the matrix elements of the tensor interaction. They are
obtained after some tedious, but straightforward calcu-
lations, and are expressed as a polynomial in a = kFµG.
See Appendix A for detailed expressions.
The M3Y interaction [28] is based on the so-called

Michigan three-range Yukawa (M3Y) interaction [15],
which was derived from the bare NN interaction, by fit-
ting the Yukawa functions to the G-matrix. The central
part is completed with a zero-range density dependent
term, while the spin-orbit and tensor components are
written as

V Y
SO(r) =

[

t(LSE)PTE + t(LSO)PTO

] e−rµLS

rµLS
L12 · S12 ,

(8)
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V Y
T (r) =

[

t(TNE)PTE + t(TNO)PTO

] e−rµT

rµT
r2ST (r̂) ,

(9)
where PTE and PTO are the triplet-even and triplet-odd
operators, and L12 = r×p12 is the relative orbital angu-
lar momentum operator, with p12 = i(∇1−∇2), and S12

is the total spin of the pair. Actually, both components
contain a superposition of two radial functions with dif-
ferent ranges, and a sum over them is to be understood
in the following.
The differences given in Eq. (4) are written as

δP = − 3t(LSO)

128π Y
(LS)
1

(

kF

µLS

)

− 27t(TNO)

80πµ2
T

Y
(T )
1

(

kF

µT

)

δD = t(LSE)

128π Y
(LS)
2

(

kF

µLS

)

− 27t(TNE)

560πµ2
T

Y
(T )
2

(

kF

µT

)

δF = t(LSO)

32π Y
(LS)
3

(

kF

µLS

)

− 3t(TNO)

40πµ2
T

Y
(T )
3

(

kF

µT

)



















(10)

where the functions Y
(LS)
L (kF /µLS) and Y

(T )
L (kF /µT )

are given by the sum over momenta on the SNM Fermi
sphere of the radial multipole L of the matrix elements of
the spin-orbit and tensor interactions, respectively. The
detailed expressions are also given in Appendix A.
For the Gogny interaction we have used the

parametrization D1ST2a [27], whose single tensor range
has been fixed to be equal to the longest range of the
Gogny D1S interaction, i.e. µG = 1.2 fm. The spin-orbit
and tensor strengths have been obtained by making an
adjustment on the neutron 1f spin-orbit splitting for the
nuclei 40Ca, 48Ca, and 56Ni. The resulting spin-orbit pa-
rameters is W0 = 103 MeV fm5, a value which is smaller
than the original D1ST one (W0 = 130 MeV fm5). The
tensor parameters are given in Tab. I. ALE: We notice
that a small variation on the W0 term has a very
weak impact on the reproduction of the quanti-
ties given in Eq.7, we thus present our results by
keeping the value adopted in Ref. [27]. Following
the discussion of Ref. [27], the combination VT1 + VT2

represents the the strength of the tensor force acting in
the like-nucleon pairs while VT2 represents the strength
for the neutron-proton channel. For the M3Y interaction
we have used the parametrization M3Y-P2, for which the
ranges are µ−1

LS = 0.25 and 0.4 fm, and µ−1
T = 0.4 and

0.7 fm. The M3Y-P2 set of tensor parameters is fixed
so as to reproduce the single-particle energy ordering for
208Pb. Its values are given in Tab. II.

Ref. [27] Fitted
VT1 + VT2 -75 82.3

VT2 60 177.9

TABLE I: Tensor parameters (in MeV fm5) of interaction
D1ST2a [27]. The last column displays the fitted values to
the combinations δP and δD, as explained in the text.

In Fig. II are displayed the three combinations δP ,
δD, and δF as a function of the Fermi momentum kF ,
with the BHF results [29] represented as black circles.

Ref. [28] Fitted

tTNE
1 -131.52 1299.3
tTNE
2 -3.708 -299.50
tTNO
1 29.28 1734.5
tTNO
2 1.872 29.709

TABLE II: Tensor parameters (in MeV fm−2) of interaction
M3Y-P2 [28]. The last column displays the fitted values to
the combinations δP and δD, as explained in the text.
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FIG. 1: (Colors online) Results for the combinations
δP , δD, δF defined in Eq. (4). Black circles are the BHF re-
sults [29], while filled red squares and blue triangles have been
calculated with interactions D1ST2a [27] and M3Y-P2 [28],
respectively. Open symbols and solid line are the result of a
fit of the tensor parameters, except for δF , as explained in the
text.

Filled squares and triangles are the results obtained with
the interactions D1ST2a and M3Y-P2, respectively. One
can see that both interactions lead to results which are
in disagreement with BHF ones. For D1ST2a we can
roughly say the value of VT1 +VT2 has the right order of
magnitude, but should be changed of sign in order than
the calculated δP and δF be in agreement with BHF re-
sults. Similarly, the absolute value of VT1−VT2 should be
slightly increased. As for M3Y-P2 interaction, the com-
parison shows that while the interaction coefficients pro-
duce the right sign for these combinations, the strengths
should be increased in absolute value to get agreement
with BHF results.

Similar drawbacks of D1ST2a and M3Y-P2 interac-
tions have been signaled in Ref. [21], where tensor Lan-

dau parameters H
(n)
ℓ for pure neutron matter were calcu-

lated with these interactions and compared to the values
obtained within the Correlated Basis Function (CBF) of
Ref. [34] and the Chiral Effective Field Theory (CEFT)
of Ref. [35]. Although these methods provides results
which could differ up to a factor of ≃ 2, they all agree
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on the sign, which is opposite to what has been obtained
for the D1ST2a interaction. On the contrary, the results

obtained with M3Y-P2 interaction gives values of H
(n)
ℓ

which are systematically much smaller than those given
by bare-interaction based methods, but with the same
sign. These points can be quantitatively assessed by fit-
ting the tensor parameters to the BHF results of partial
waves. Consider first the corresponding Gogny interac-
tion combinations (7). As we have realized that the spin-
orbit contribution to δP is relatively small, we have kept
unchanged W0, and fit the strengths VT1 ± VT2 to the
BHF δP and δD, conserving the same value for the range
µG. The combination δF is not included in the fit, and
provides a control about its overall quality. The fit has
been limited to values of the Fermi momentum relevant
for finite nuclei, that is kF ≤ 1.7 fm−1. Similarly, for
the M3Y-P2 interaction we keep the original spin-orbit
parameters as well as the tensor ranges, and have fitted
the tensor parameters entering Eqs. (10). The fitted val-
ues of the parameters are given in Tables I and II, and
the partial wave results are displayed as open symbols
with dotted lines in Fig. II. Comparison between the
original and fitted parameters confirms the drawbacks of
these effective tensor interactions. In their present form
and/or fitting procedure they lead to inconsistencies in
the simultaneous description of finite nuclei and infinite
matter splittings (see [11, 27]).
Let us now turn to the non-local zero-range pseudo-

potential N3LO [23, 24]. Imposing local gauge invariance,
the tensor component is written as [22]

V
(N3LO)
T =

1

2
teTe +

1

2
toTo

+ t(4)e

[

(k2 + k′2)Te + 2(k · k′)To

]

+ t(4)o

[

(k2 + k′2)To + 2(k · k′)Te

]

+ t(6)e

[(

1

4
(k2 + k′2)2 + (k · k′)2

)

Te

+(k · k′)(k2 + k′2)To

]

+ t(6)o

[(

1

4
(k2 + k′2)2 + (k · k′)2

)

To

+(k · k′)(k2 + k′2)Te

]

, (11)

where Te and To are the following even and odd tensor
operators

Te(k
′,k) = 3(σ1 · k

′)(σ2 · k
′) + 3(σ1 · k)(σ2 · k)

− (k′2 + k2)(σ1 · σ2) ,

To(k
′,k) = 3(σ1 · k

′)(σ2 · k) + 3(σ1 · k)(σ2 · k
′)

− 2(k′
· k)(σ1 · σ2) .

As for the spin-orbit part, it has been shown [25] that the
form given in Eq. (5) is the only possible one consistent
with local gauge invariance. The N3LO combinations (4)

then read

δP = − 1
80k

2
FW0ρ

+ 9
160k

2
F toρ+

27
200k

4
F t

(4)
o ρ+ 27

500k
6
F t

(6)
o ρ

δD = 27
7000k

4
F t

(4)
e ρ+ 9

3500k
6
F t

(6)
e ρ

δF = 1
875k

6
F t

(6)
o ρ



















(12)

Presently there is no parametrization of a N3LO pseudo-
potential that incorporates finite-nuclei constraints. We
have therefore fitted the tensor parameters to the BHF
results, by keeping the value for W0 fixed in Ref. [27].
The results are plotted as solid lines in Fig. II. It can
be seen that a N3LO pseudo-potential contains the rel-
evant degrees of freedom. In fact, the results for combi-
nations δP and δD are of a quality comparable to those
obtained from the fits with D1ST2a and M3Y-P2 finite-
range expressions. As shown in (12), the predicted δF is
proportional to k9F ; it is not surprising to get a disagree-
ment with BHF results for values of kF ≥ 1.5 fm−1. One
should keep in mind that a N3LO pseudo-potential can
be viewed as a low-momentum expansion (k, k′ ≤ 2kF )
of a finite-range interaction, as was explicitly shown for a
central interaction [13, 36]. Considering the momentum
matrix elements of the tensor interactions (6) and (9)
and limiting ourselves to the first non-vanishing contri-
bution for F -waves, it can be easily shown that in both
cases the obtained structure is the same as the N3LO
pseudo-potential. Actually, this result is general and it
is straightforward to see that Eq. (11) represents the com-
mon low-momentum expansion of any finite-range tensor
interaction. The N3LO parameters are thus related to
those of a finite-range interaction.

This relation between parameters can be alternatively
obtained by expanding in powers of kF the combina-
tions (4) as calculated with a finite-range interaction and
identifying the coefficients of kF with the corresponding
powers of (12). Since the spin-orbit term of D1ST2a in-
teraction coincides with the N3LO one, one has simply
to Taylor expand the functions GL entering (7). One
can immediately see that the resulting N3LO coefficients
are not independent, since the following equalities hold:

t
(4)
o = −µ2

Gto, and t
(6)
o,e = −µ2

Gt
(4)
o,e. That means that the

tensor D1ST2a interaction has not the most general form,
and at least a second Gaussian term should be included in
Eq. (6) to get independent N3LO parameters. This pro-
cedure of relating interaction coefficients is more involved
in the case of M3Y-P2 interaction due to its finite-range
spin-orbit term. Indeed, in that case the local-gauge in-
variance is not satisfied, and both spin-orbit and tensor
terms contribute to the N3LO partial wave combinations
given in Eq.(4). In any case, the N3LO Skyrme pseudo-
potential provides a reliable approximation to any finite-
range effective interaction in the density range relevant
to nuclear structure and astrophysical issues [37].
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III. CONCLUSION

In this article, we have derived the derived the partial
wave decomposition of the EoS for two finite-range inter-
actions, namely M3Y [15] and Gogny [14], with partic-
ular attention to the contribution arising from the tenor
term of the interaction. The partial waves analysis allow
us to compare directly the results extracted from finite
nuclei, either from a complete fit [28] or a perturbative
method [27], with the corresponding data extracted from
more advanced many-body methods applied on the bare
NN interaction. As shown in Ref. [2], the strong competi-
tion between spin-orbit and tensor term does not allow to
put a strong constraint on the tensor parameters of the
effective interaction, thus other constraints are manda-
tory. The future development of many-body methods
could offer the unique opportunity of producing an ex-
cellent starting point for a complete fitting procedure of
the tensor parameters. Furthermore, combined with the
values of Landau parameters [18], it will ensure to start
the fit away from regions of instabilities [17]. Finally, we
have shown in this article that N3LO constitutes a reli-
able substitute of any finite-range tensor interaction and
that the tensor parameters of any effective interaction, ei-
ther finite-range or non-local zero-range, can be obtained

from microscopic calculations based on bare NN inter-
actions. In particular, BHF results have been used as
an illustrative example, but other methods as χ-EFT or
MBPT could be used once these quantities will be made
available. These results can be used as a strong con-
straint, together with finite nuclei results, in the fitting
protocole of effective interactions.
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APPENDIX A

In the present appendix we give the detailed expres-
sions of the auxiliary functions appearing in the tensor
and spin-orbit contributions to the EoS. The auxiliary
functions GT

L(a) for the tensor part of the Gogny inter-
action read

G1(a) =
1

a3

{

6− 6a2 − a4 − 6e−a2

+ 4a2S(a)
}

, (A1)

G2(a) =
1

a3

{

10− 34a2 − a4 − 10e−a2

+ 12(2 + a2)S(a)
}

, (A2)

G3(a) =
1

a5

{

120− 94a2 − 86a4 − a6 − (120 + 26a2)e−a2

+ 24a2(5 + a2)S(a)
}

, (A3)

with

S(a) = γ − Ei(−a2) + log(a2) (A4)

where γ is the Euler gamma constant and Ei the exponential integral [38].
For the M3Y interaction we need to define two set of auxiliary functions, one for the spin-orbit

Y
(LS)
1 (a) =

1

a3
{

−4a2 − 88a4 + 128a3arctan(2a) + (1− 24a2 + 16a4)log(1 + 4a2) + 16a2Li2(−4a2)
}

, (A5)

Y
(LS)
2 (a) =

1

a3
{

−172a2 − 312a4 + 640a3arctan(2a) + (31− 24a2 + 48a4)log(1 + 4a2) + 12(−1 + 12a2)Li2(−4a2)
}

,

(A6)

Y
(LS)
3 (a) =

1

a5
{

12a2 − 596a4 − 344a6 + 896a5arctan(2a) + (−3 + 83a2 + 168a4 + 48a6)log(1 + 4a2)

+12a2(−5 + 24a2)Li2(−4a2)
}

, (A7)

and an other for the tensor

Y
(T )
1 (a) =

1

a3
{

4a2(3− 2a2)− 3(1 + 4a2) log(1 + 4a2)− 8a2Li2(−4a2)
}

, (A8)

Y
(T )
2 (a) =

1

a3
{

4a2(29− 2a2)− 17(1 + 4a2) log(1 + 4a2) + 12(1− 2a2)Li2(−4a2)
}

, (A9)

Y
(T )
3 (a) =

1

a5
{

−4a2(15− 176a2 + 4a4) + (15− 26a2 − 344a4) log(1 + 4a2) + 24a2(5− 4a2)Li2(−4a2)
}

. (A10)
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where Li2(z) is the polylogarithmic function [38].
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