
This is a repository copy of IMPROVED MAGNETIC LOSS FOR TLM.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/101517/

Version: Accepted Version

Article:

Dawson, J F orcid.org/0000-0003-4537-9977 (1993) IMPROVED MAGNETIC LOSS FOR 
TLM. Electronics Letters. pp. 467-468. ISSN 0013-5194 

https://doi.org/10.1049/el:19930312

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Other licence. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Improved Magnetic loss for TLM

J. F. Dawson 1 University of York

"This paper is a postprint of a paper submitted to and accepted for publication in Electronics Letters

and is subject to Institution of Engineering and Technology Copyright. The copy of record is available

at IET Digital Library"

IMPROVEDMAGNETIC LOSS FOR TLM

Indexing terms

Transmission line matrix, TLM, Modelling, Electromagnetic waves

Abstract

A method of modelling magnetic losses which closely approximates the behaviour of real ferrite

materials is described and compared with earlier formulations. The scattering matrix for the

symmetrical condensed node is given and numerical results are presented which show the accuracy

possible with this method.

Introduction

The transmission line matrix (TLM) method of numerical electromagnetic analysis with the

symmetrical condensed node is well known [1]. The representation of conductivity by means of a shunt

conductance has been described in [2]. The concept of a series resistive element to represent magnetic

loss was first proposed in [3] however the method used emulates a material with a constant real part of

its permeability and an imaginary part which varies inversely with frequency. Most real materials (e.g.

ferrites) exhibit a change in both real and imaginary parts of the permeability. The variation of

permeability of ferrite materials can approximated by the function:

r = 1 +
( )'r0 - 1

1 +

r

(1)

where r is the complex permeability, 'r0 is the real part of the low frequency permeability of the
material,  is the angular frequency and r is the angular frequency at which the real and imaginary
parts of the permeability are equal in magnitude.

Conceptual model

The the voltages and currents in the transmission lines in the TLM model are analogous to the electric

and magnetic fields in the medium being modelled. The inductance and capacitance per unit length in

the transmission line are analogous to the real parts of the material permeability 'r and permittivity 'r.
For "free-space" let the line inductance and capacitance per unit length be L0 and C0 respectively then

for a medium of relative permeability and permittivity additional stubs are added so that the

inductance and capacitance per unit length become 'rL0 and 'rC0 respectively.

A shunt conductance (G) in the line represents accurately material conductance but the series

resistance used in the old magnetic loss formulation (see Fig. 1a and [3]) indicates an energy loss

associated with a direct current (analogous to a constant magnetic field) which does not occur in real

materials.

A shunt conductance (G) in the line represents accurately material conductance but the series

resistance used in the old magnetic loss formulation (see Fig. 1a and [3]) indicates an energy loss

associated with a direct current - analogous to a constant magnetic field, which does not occur in real

materials.
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If the magnetic loss resistance is placed in parallel with the part of the line inductance representing the

effect of the magnetic susceptibility of the material (see Fig. 1b) then a frequency dependent magnetic

loss, which has the characteristic of equation (1), can be represented.

R
'r0L0

G  'rC0

l

R

'r0-1)L0

G 'rC0

L0

l

a Original b New

Fig. 1 Transmission line models showing the magnetic loss resistance R

The complex permeability represented by the transmission line model of Fig. 1a is:

r = 'r0 +
R

jL0
(2)

whereas the model of Fig. 1b gives a permeability of:

r = 1+
( )'r0 - 1

1 +
jL0
R

(3)

which corresponds with equation (1) if:

R = r( )'r0 - 1 L0 Ohm (4)

Formulation

The conceptual model fits well with the TLM symmetrical condensed node because the line

inductances representing the material permeability are already split into two parts in the correct

proportions - the stubs associated with the interconnecting ports of the matrix and the additional short-

circuit 'permeability' stubs used to increase the inductance of the transmission line to represent magnetic

materials. Resistances can therefore be connected in parallel with the permeability stubs to provide

magnetic loss with an equivalent circuit similar to that of Fig. 1b.

In the symmetrical condensed node 4 stubs of inductance L0l/2 are connected in series with the short
circuit stub, for each axis (see [4]), which must be of inductance:

Lm = 4('r0 - 1)L0
l
2

Henry (5)

to produce the correct increase in overall inductance for an initial permeability of 'r0. In order to retain
the same frequency dependence the shunt resistance, normalised to the impedance (Z0) of the

interconnection stubs, must be:
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Rm =
2r( )'r0 - 1 L0l

Z0
(6)

Not to be included in final text

(read between eqns (6) and (7))

Z0 =
L0

C0

and since the wave progresses l from the input stub to the output stubs in one time-step t , but a
plane-wave in the mesh progresses l/2 in one time-step then the apparent propagation velocity in the
transmission lines is 2c therefore:

2c =
1

L0C0

so:

L0

Z0
=
1

2c

hence:

In line with earlier work this should be expressed only in terms of the mesh size rather than the line

inductances and impedances and becomes:

Rm =
r( )'r0 - 1 l

c
(7)

where c is the velocity of electromagnetic waves in free space.

The elements of the new scattering matrix S' can be developed from the elements of the old scattering

matrix S (as in [1]) by considering the effect of the parallel resistance Rm on waves incident upon the

junction of the "permeability" stub, the resistance, and the remainder of the node.

The elements which were previously dependant upon Zm (the normalised impedance of the

permeability stub) now depend on both Zm and Rm.

Let Z'm be the parallel combination of Zm and Rm:

Z'm =
ZmRm

Zm+Rm
(8)

Using the notation of [1] for the elements of S: a', c', d', and f' of S' can be determined by simply

replacing Zm by Z'm in a, c, d, and f of S. All scattering related to these elements will see the apparent

impedance of the "permeability" stub altered from Zm to Z'm by the addition of the new loss stub.

Elements b, e, and h are unaffected since Zm and hence Z'm do not appear in the expressions for these

parameters. Elements i' and j' can be determined by considering the loss resistance in parallel with the

remainder of the node as the termination for waves returning after reflection at the short circuit end of

the "permeability" stub.

The elements of the new scattering matrix S' are therefore:

a' =
-Ye

2(Ye + 4)
+

Z'm

2(Z'm + 4)
(9)
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c' =
-Ye

2(Ye + 4)
+

-Z'm

2(Z'm + 4)
(10)

d' =
4

2(Z'm + 4)
(11)

f' = Z'md' (12)

i' =

4Rm

4+Rm

2




4Rm

4+Rm
+ Zm

(13)

j' =

4Rm

4+Rm
- Zm

4Rm

4+Rm
+ Zm

(14)

where Ye is the normalised admittance of the 'permittivity stubs'. The scattering matrix can easily be

extended to include conductivity and the magnetic loss proposed in [3].

Results
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Fig. 2 Reflectivitivy of 6.3 mm Ferrite tile (r0 = 1051, fr = 7.02 MHz, r = 12)

Manufacturers data

TLM

Analytic solution

In order to verify the the above formulation the reflectivity of a number of ferrite tiles was determined

by the TLM method using values of r0 and r estimated from the manufacturers data.
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Fig. 3 Reflectivitivy of 6.3 mm Ferrite tile (r0 = 1051, fr = 7.02 MHz, r = 12) with
TLM r0 reduced to 680

Manufacturers data

TLM

Analytic solution
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The results for one tile are presented and compared with both the manufacturers reflectivity figures and

that calculated using an analytical solution including the approximation for the permittivity given in

equation (1). It can be seen (Fig. 2) that the TLM results match the manufactures and computed values

reasonably well. The greatest error occurs at low frequencies near the reflection minimum. The values

of reflectivity (particularly near the minimum) are highly dependent on the material parameters and tile

thickness. It should be noted that the values of r0 and fr (r = 2πfr) were chosen to provide a good fit
to the manufacturers permeability curves over the frequency range of interest; this resulted in the value

of r0 being different from the manufacturer's stated initial permeability.

It was observed that if the value of permeability entered in the TLM model was reduced to 680, with

fr increased in proportion (Rm stays constant) then the TLM results correspond almost exactly with the

analytical data (Fig. 3). The phase of the reflection coefficient also follows the analytical value closely.

Modelling the broadband characteristics of ferrite absorbing tiles using the earlier formulation of [3]

is not possible as the frequency dependence of permeability is entirely different. Single frequency

computations are possible but this is very wasteful in a time domain method.

Conclusions

A method has been presented which allows the simulation of the performance of lossy magnetic

materials with greater accuracy than was previously possible using the TLM method. Currently the

technique is being applied to determine the performance of partially lined screened enclosures and in

predicting the effect of ferrite absorber within equipment enclosures on radiated emissions.
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