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Abstract. Nitrous acid (HONO) has been quantitatively

measured in situ by differential photolysis at 385 and 395 nm,

and subsequent detection as nitric oxide (NO) by the chemi-

luminescence reaction with ozone (O3). The technique has

been evaluated by Fourier transform infrared (FT-IR) spec-

troscopy to provide a direct HONO measurement in a sim-

ulation chamber and compared side by side with a long ab-

sorption path optical photometer (LOPAP) in the field. The

NO–O3 chemiluminescence technique is robust, well char-

acterized, and capable of sampling at low pressure, whilst

solid-state converter technology allows for unattended in situ

HONO measurements in combination with fast time resolu-

tion and response.

1 Introduction

Nitrous acid (HONO) is a major source of hydroxyl (OH)

radicals in the boundary layer (Elshorbany et al., 2008; Kim

et al., 2014; Levy II, 1973). HONO can be formed homo-

geneously through reaction of nitric oxide (NO) with OH,

heterogeneously through several pathways, or emitted di-

rectly (Kleffmann, 2007; Lammel and Cape, 1996; Spataro

and Ianniello, 2014; Su et al., 2011). HONO is formed het-

erogeneously on surfaces through the reaction of NO2 with

H2O (Bröske et al., 2003). This heterogeneous formation of

HONO is a net source of OH radicals in the troposphere and

is an important mediator of air quality, particularly in pol-

luted environments (Finlayson-Pitts et al., 2003; Gutzwiller

et al., 2002; Lee et al., 2016). Combustion sources of HONO

are direct emission from on-road vehicle exhausts (Rap-

pengluck et al., 2013), aircraft and diesel emissions (Lee et

al., 2011a), and biomass burning (Roberts et al., 2010). Emis-

sion from snowpack has also been documented (Beine et al.,

2008; Zhou et al., 2001), and more recently biogenic sources

of HONO have been identified from nitrite-producing bac-

teria (Oswald et al., 2013; Su et al., 2011) and soil crusts

(Weber et al., 2015).

In urban areas HONO can be the major net source of OH

(discounting radical cycling driven by e.g. NO), contributing

up to 80 % of daytime OH production in winter and 50 %

in summer (Elshorbany et al., 2008; Kleffmann, 2007; Vil-

lena et al., 2011b). However, the sources of HONO and the

many processes by which it forms are not well understood

(Kleffmann et al., 2006; Sörgel et al., 2011; Spataro and Ian-

niello, 2014; Villena et al., 2011a). There is a clear need for

in situ measurement of HONO in order to better understand

its chemistry and emissions.

Currently, methods of detecting HONO are either remotely

through differential optical absorption spectroscopy (DOAS;

Febo et al., 1996; Hendrick et al., 2014; Stutz et al., 2010)

or by filter/denuder sampling (Acker et al., 2005, 2006;

Febo et al., 1993, 1996; Ianniello et al., 2007). A vari-

ety of in situ techniques exist: namely, quantum cascade–

tuneable infrared laser differential absorption spectrometry

(QC-TILDAS) (Lee et al., 2011b); ion drift chemical ioniza-
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tion mass spectrometry (ID-CIMS) (Levy et al., 2014); am-

bient ion monitor–ion chromatography (AIM-IC) (Markovic

et al., 2012; Vandenboer et al., 2014); stripping coil–visible

absorption photometry (SC-AP) (Ren et al., 2011); negative-

ion proton-transfer chemical ionization mass spectrome-

try (NI-PT-CIMS) (Roberts et al., 2010); incoherent broad-

band cavity-enhanced absorption spectroscopy (IBBCEAS)

(Pusede et al., 2014); and, as used in this study, long path ab-

sorption photometry (LOPAP) (Heland et al., 2001). LOPAP

has been characterized quite extensively by other authors

(e.g. Clemitshaw, 2004; Kleffmann and Wiesen, 2008; Kl-

effmann et al., 2006, 2013; Ródenas et al., 2013).

Here, we demonstrate the exploitation of a known HONO

interference for photolytic NO2 conversion systems (Pollack

et al., 2011; Ryerson et al., 2000; Sadanaga et al., 2010, 2014;

Villena et al., 2012) to provide a simple photolytic technique

for quantitative analysis of HONO.

2 Experimental

The differential photolytic HONO technique, henceforth re-

ferred to as pHONO, was developed from an existing fast

NOx analyser, described in Sect. 2.1. The photolytic con-

verter is described specifically in Sect. 2.2. Characterization

and calibration are described in Sects. 2.3 and 2.4. The pre-

cision, limit of detection, artefacts, interferences, and uncer-

tainties are described in Sects. 2.5 and 2.6.

2.1 Differential photolysis instrument

Measurement were performed using a dual-channel Air

Quality Design Inc. (Golden, Colorado, USA) instrument

equipped with a UV-LED-based photolytic NO2 converter

– commonly referred to as a blue-light converter (BLC) as

described in Reed et al. (2016).

Briefly, a dual-channel NO chemiluminescence analyser

operates in parallel with duplicated independent equipment.

The two channels share a common inlet allowing for par-

allel calibration. One channel is equipped with a photolytic

NO2 converter so that NOx can be determined with that

channel whilst also measuring NO concurrently. This allows

for fast (1 Hz or greater) determination of NO and NO2.

A chemiluminescent zero is taken every 5 min by increas-

ing the NO + O3 reaction time. Practically, the sample flow

is diverted to a PFA volume so that > 99 % of NO is con-

verted; any residual chemiluminescence signal arises there-

fore from slower (∼ 2 orders of magnitude) O3+ alkene re-

actions (Drummond et al., 1985).

In order to be able to also measure HONO, the NOx chan-

nel was redesigned so that the photolytic converter (Sect. 2.2)

operates in a switching mode. That is, the two lamps of dif-

ferent wavelengths operate alternately on a 50 % duty cycle.

The lamps switch every 30 s, allowing for 1 min time resolu-

tion data.

2.2 NO2–HONO photolytic converter

Photolytic converters were based on those supplied by Air

Quality Design and manufactured according to their propri-

etary standards (Buhr, 2004, 2007), and they are described

in Reed et al. (2016). Two UV-LED arrays are positioned

at opposing ends of a cavity which is highly reflective to UV.

Sample gas is introduced at one end of the illuminated cavity,

exiting at the other. NO in the sample exiting the converter is

enhanced over the original by photolysis of NO2 or HONO;

thus by calibration of the conversion efficiency these can be

quantified.

Modifications were made to the control of the UV-LED

elements to allow independent switching of the lamps. The

wavelength of one lamp was changed from standard (395 nm)

to 385 nm in order to overlap better with the HONO absorp-

tion spectrum, whilst the actual UV-LEDs (3 W, LED Engin,

Inc.) are more efficient and higher powered than those used

in previous work (Reed et al., 2016).

The volume of the illuminated sample chamber is 16 mL,

which, with a standard flow rate of 1 standard L min−1, gives

a sample residence time of 0.96 s, assuming plug flow, at

standard atmospheric temperature and pressure (SATP). The

NO2-to-NO conversion efficiency of the standard BLC with

the sample flow of 1 standard L min−1 was ∼ 89 % with both

lamps illuminated. Individual lamp conversion efficiencies

were 72.9 and 81.3 % ± 0.1 for the 385 and 395 nm lamps,

respectively. Determination of the conversion efficiency is

detailed in Sect. 2.4.

2.3 Characterization

Spectral radiograms of the UV-LED output were obtained us-

ing the same procedure and equipment described in Reed et

al. (2016) using an Ocean Optics QE65000 spectral radiome-

ter coupled to a 2π quartz collector within a light-sealed

chamber.

Figure 1 shows the measured spectral emission of two UV-

LED units of two different wavelengths; 385 and 395 nm.

Also shown is the absorption cross section of HONO,

BrONO2, and the NO2 quantum yield (Burkholder et al.,

2015). It is clear that there is greater overlap, calculated to

be 30 %, of the HONO absorption features with the 385 nm

LED than at 395 nm. In Reaction (R2) we see that NO is pro-

duced stoichiometrically through the photolysis of HONO.

In this way, illuminating an air sample at either wavelength

yields a signal, which we shall denote as NO
†
2 and which rep-

resents the sum of contributions from NO2 and HONO (Re-

actions R1 + R2) in differing proportions depending upon

wavelength.

NO2 + hv(< 410nm) → NO + O(3P) (R1)

HONO + hv(< 390nm) → NO + OH (R2)

Atmos. Meas. Tech., 9, 2483–2495, 2016 www.atmos-meas-tech.net/9/2483/2016/
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Figure 1. The measured spectral output of two UV-LED elements,

nominally 385 nm output in dark blue and 395 nm in red. The

HONO absorption spectrum is shown in light blue, whilst the NO2

quantum yield is shown in dashed black. The absorption cross sec-

tion of BrONO2 is shown in green.

The difference in NO
†
2 signal measured at 385 and 395 nm

corresponds to the difference in conversion efficiency of

HONO and NO2 between the two wavelengths. Differences

in NO2 conversion efficiency of each lamp may be readily

calibrated for and so taken into account (see Sect. 2.4). The

difference in NO
†
2 signal measured at 385 and 395 nm can

therefore be used to calculate the HONO present in the sam-

ple Eq. (1):

NO2
†

385 − NO2
†

395

HONO CE385 − HONO CE395
= [HONO]. (1)

Apparent HONO conversion efficiency (CE), HONO CE385–

HONO CE395, is determined experimentally as described in

Sect. 2.4.

2.4 HONO and NO2 conversion efficiencies

The NO2–HONO converter system was calibrated for both

NO2 and HONO conversion efficiency. NO2 conversion ef-

ficiencies were determined following the procedure outlined

by Lee et al. (2009). Conversion efficiency is the extent to

which the equilibrium position of Reactions (R1) and (R2)

are to the right. This is dependent on the jNO2 and jHONO

of the UV source, the residence time, and the concentra-

tion of oxidants of NO in the photolysis cell as described

by Eq. (2) (Ryerson et al., 2000). Here t is the residence time

within the photolysis cell, and k[Ox] is the concentration and

rate constant of any oxidant that reacts with NO. Typically

this would be ozone; however, OH formed from HONO pho-

tolysis must also be considered.

CE =
[

j t

j t + k [Ox] t

]

[

1 − exp(−j t−k[Ox]t)
]

(2)

The NO + OH back reaction occurs after an air sample

has exited the photolytic converter but before entering the

high vacuum of the analyser, causing a decrease in signal

from HONO as discussed in Sect. 2.5. A similar reaction of

NO + O3 also occurs; however this is ∼ 3 orders of magni-

tude slower than NO + OH (Atkinson et al., 2004) and in-

significant on the short (0.11 s) timescale in our instrument.

The sensitivity of a detector in counts per second per

part per trillion (cps / ppt) is determined by adding a

7.5 mL min−1 mass-flow-controlled flow (MFC) of NO cal-

ibration gas (4.78 ppm NO in N2, BOC) to the inlet of the

analyser whilst sampling an overflow of zero air free from

NOx , VOC, and ozone. This equates to a calibration con-

centration of 12.5 ppbV NO per channel. Zero air was gen-

erated by scrubbing dried (−40 Td) compressed air using

Sofnofil (Molecular Products) and activated charcoal (Sigma

Aldrich) traps. As described by Reed et al. (2016), this com-

bination results in the lowest NO2 signal. The sensitivity

was ∼ 6.8 and ∼ 6.4 (±5 %) cps / ppt for the NO and NOx

channels, respectively. In order to determine the NO2 con-

verter efficiency, a portion of the NO added to the inlet is

first titrated to NO2 by reaction with ozone, typically gener-

ating 10.0 ppbV NO2. Ozone is generated by illuminated a

small flow (∼ 10 mL min−1) of O2 with a broad-output low-

pressure mercury UV lamp (BHK Inc.) The analyser signal

(photomultiplier counts in Hz) is then recorded with neither

UV-LED illuminated and then with each illuminated in turn

to determine the increase in signal arising for each lamp. The

conversion efficiency (CE) is then determined as in Eq. (3),

where, when calibrating in zero air or at high mixing ratios

relative to the measurement, ambient (Amb) values may be

neglected. Ambient signals must be considered when calibra-

tion and measurement levels are comparable, and in a chang-

ing background.

CE = 1− (3)

(NO.HzUntitrated − NO.HzAmb.1) − (NOx .HzIlluminated − NOx .HzAmb)

(NO.HzUntitrated − NO.HzAmb.2) − (NO.HzTitrated − NO.HzAmb.3)

The NO2 conversion efficiency was determined to be 72.9

(j = 1.3 s−1) and 81.2 % (j = 1.7 s−1) ± 0.1 for the 385 and

395 nm lamps, respectively.

Calibration for HONO was achieved by sampling a perme-

ation source over a range of dilutions using methods modified

from Taira and Kanda (1990) and Febo et al. (1995). Nitrous

acid was generated by the reaction of hydrochloric acid with

sodium nitrite salt as described by Febo et al. (1995), shown

in Reaction (R3).

HCl + NaNO2 → HONO + NaCl (R3)

In order to achieve a continuous source of HONO, a perme-

ation tube (Kin-Tek, HRT-010.00-BLANK/U) was filled with

HCl (37 %, Fluka, AR grade) and placed in a thermostated

(30 to 55 ◦C) permeation oven (Kin-Tek, 585) with NaNO2

salt (Fluka, AR grade). The permeation oven was flushed

with 1.5 standard L min−1 zero air. The reaction is limited by

HCl which permeates at a low rate thus allowing low concen-

trations (< 50 ppb) of HONO to be generated continuously.

As side products of Reaction (R3) can also be produced,

the output of the permeation source was continuously anal-

www.atmos-meas-tech.net/9/2483/2016/ Atmos. Meas. Tech., 9, 2483–2495, 2016
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ysed for impurities. In Reaction (R4) NO and NO2 can be

formed by the gas phase self-reaction of HONO. In Reac-

tion (R5), HNO3 can be formed by reaction between ad-

sorbed and gas phase HONO.

2HONO(g) → NO + NO2 + H2O (R4)

HONO(ads) + NO2 → HNO3 + NO (R5)

To quantify HONO without any direct measurement and

close the nitrogen balance, NO, NO2, and total NOy

(NO + NO2+ other reactive oxidized nitrogen species such

as HNO3, HONO, PAN) were measured continuously. The

differential photolysis instrument itself was used to quan-

tify the NO. NO2 was measured directly using an EPA cer-

tified Teledyne API T500U which uses Cavity Attenuated

Phase Shift (CAPS) spectroscopy from Aerodyne Research

Inc. (Kebabian and Freedman, 2007; Kebabian et al., 2005,

2008), to avoid any HONO interference which would have

been present in a photolytic measurement. This is because the

T500U uses a 450 nm band-pass for NO2, whereas HONO

absorbs only below 390 nm as shown in Fig. 1. Glyoxal is

a possible interference in the CAPS technique as it also ab-

sorbs in the 440–460 nm range (Volkamer et al., 2005), how-

ever all VOC are scrubbed from the zero air during cali-

bration. The nitrate radical (from particulate nitrate) is also

an interference in the CAPS technique as it absorbs above

∼ 400 nm (Stark et al., 2007), however the T500U is fitted

with a high-efficiency particulate air (HEPA) filter to mit-

igate this. Nitric acid which absorbs below 340 nm (Ratti-

gan et al., 1992) is also not an interference. Total NOy was

quantified using a Thermo Environmental 42c TL NOx anal-

yser equipped with a molybdenum catalytic converter which

has been shown to quantify NOy species such as HONO and

HNO3 (Clemitshaw, 2004; Fehsenfeld et al., 1987; Villena

et al., 2012; Williams et al., 1998). The TEI 42c TL and

Teledyne API T500U were calibrated either directly with an

NO standard or by gas phase titration of NO to NO2 using a

Monitor Europe S6100 Multi Gas Calibrator. Production of

HNO3 (Reaction R5) would be indicated by an enhancement

in NO over NO2, as NO and NO2 are produced stoichio-

metrically through the self-reaction of HONO (Reaction R4),

whereas HNO3 production consumes NO2 and produces NO.

Thus, HNO3 can be indirectly quantified by the NO : NO2 ra-

tio, and was found to be a minimal contribution to total NOy .

As such, HONO can reasonably be presumed to be equivalent

to [NOy] – ([NO] + [NO2] + [HNO3]). Measured quantities

are shown in Table 1.

The stability of the HONO permeation source was

recorded over a 12 h period using NOx measured by the

differential photolysis analyser (the most sensitive measure-

ment available) as a proxy for NO, NO2, and HONO. The

stability was found to be ±0.01 ppb h−1, with a standard de-

viation of 0.4 ppb. The uncertainty in the HONO source is

determined by a combination of the accuracy of the NO,

NO2, and NOy measurements and their respective calibra-

Figure 2. Difference in HONO conversion between 385 and 395 nm

UV-LEDs over a range of dilutions. Median values are in red, whilst

all data are shown in grey. Linear fit is in black; error bars show

standard deviation of the mean values.

tions. The NO calibration uncertainty, due to MFC flows and

standard gas accuracy is 5 %, similarly for the CAPS NO2

and Thermo 42i TL NOy . This results in an overall uncer-

tainty in [HONO] of 8.7 %.

In Fig. 2 the observed conversion of HONO, that is the dif-

ference between HONO conversion by the 385 and 395 nm

lamps, is shown. As can be seen HONO conversion is con-

sistently 6.54 ± 0.21 % more at 385 nm than 395 nm. The

fact that the “apparent HONO conversion” (HONO CE385

–HONO CE395 in Eq. 1) is constant as a function of HONO

means that the determination of [HONO] should be a linear

function of the difference in NO
†
2 signal at 385 and 395 nm.

2.5 Measurement precision and limit of detection

The precision of NO chemiluminescence detection is the

ability to discriminate signal from photon counting noise.

The photon counting noise is taken as the standard devia-

tion of the pre-chamber zero signal (determined every 5 min

as described in Sect. 2.1) in Hz (counts per second) di-

vided by the sensitivity in cps pptV−1. The average zero

count rate was ∼ 3000 Hz on both channels with a 1 σ stan-

dard deviation of ∼ 75 Hz, giving a precision for NO of

11.0 and 11.7 pptV for 1 s data with sensitivities of 6.8 and

6.4 cps pptV−1 for channels 1 and 2, respectively. The preci-

sion for NO2 and HONO (channel 2) must be divided by their

conversion efficiencies. This results in a precision for NO2

of 16.0 and 14.4 pptV for 1 s data at 385 and 395 nm, respec-

tively. The HONO precision is calculated from the (constant)

differential conversion efficiency as 179.9 pptV for 1 s data.

The limit of detection is defined as the precision multiplied

by 1/
√

n, where n is the number of data points (Lee et al.,

2009). For 1 min data the LOD for NO is 1.4 pptV. As the

Atmos. Meas. Tech., 9, 2483–2495, 2016 www.atmos-meas-tech.net/9/2483/2016/
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Table 1. Showing the distribution of NOy species NO, NO2, HNO3, and HONO produced from the HONO permeation source.

No. NOy ppb NO ppb NO2 ppb HNO3 ppb HONO ppb

measured measured measured calculated calculated

1 20.40 3.34 2.64 0.35 14.08

2 19.29 2.96 2.35 0.30 13.68

3 16.82 2.59 2.10 0.26 11.89

4 14.95 2.27 1.87 0.20 10.62

5 13.40 2.05 1.73 0.16 9.45

6 12.15 1.86 1.58 0.14 8.57

7 11.09 1.70 1.46 0.12 7.81

8 10.17 1.60 1.35 0.11 7.14

Percent – 15.5 12.8 1.3 70.4

NOx channel operates on a 30 s switching cycle, the 1 min

data are actually only averaged over 30 s. Thus, the 1 min

NO2 limit of detection is 2.6 pptV (calculated from the CE

of the 395 nm lamp), and the limit of detection of HONO is

32.8 pptV averaged over 1 min. However the HONO limit of

detection must also account for the NO2 limit of detection at

both 385 and 395 nm, resulting in an overall HONO LOD of

38.3 pptV averaged over 1 min.

2.6 Measurement artefacts, interferences, and

uncertainties

It is noted that at both 385 and 395 nm there is potential pho-

tolytic interference from BrONO2 (or in fact any other com-

pounds which photolyse to give NO at either wavelength),

with similar spectral overlap (Fig. 1). Assuming a quan-

tum yield of 1 integrated over all wavelengths for BrONO2,

21.5 ppt of BrONO2 at 385 nm and 18.1 ppt at 395 nm would

be required to produce a 1 ppt error in the NO2–HONO sig-

nal. Due to the low abundance (< 10 pptV) of BrONO2 in the

lower atmosphere (Yang et al., 2005), interference is there-

fore likely to be minimal (Pollack et al., 2011). The differ-

ence in conversion for the different lamps equates to a maxi-

mum error in HONO determination of 3.4 % [BrONO2]: typ-

ically much less than 1 pptV.

Thermal interferences can also become apparent if the

photolytic converter raises the temperature of the sample

gas above ambient (Reed et al., 2016). Thermally labile

NOy compounds, e.g. peroxyacetyl nitrate, may decompose

within the converter, resulting in a positive signal when mea-

suring in NOx mode. This will be true at either 385 or

395 nm wavelengths. Under the reasonable assumption that

the temperature of the photolysis cell is the same at both

wavelengths, then, as shown in our previous work (Reed et

al., 2016), the interference scales with NO2 conversion ef-

ficiency. In this case the difference in thermal interference

at 385 nm is 10.2 % greater than at 395 nm owing to having a

lower NO2 conversion efficiency. This represents a small bias

in the HONO measurement, which can be eliminated by hav-

ing NO2 conversion efficiencies equal at both wavelengths as

was the case during field measurements in Sect. 3.2. When

NO2 conversion efficiencies are equal, thermal interferences

affect only the NO2 measurement; when they are unequal,

some uncertainty proportional to the difference in NO2 CE is

introduced.

Zero offset artefacts have been shown to manifest in pho-

tolytic converters (Gao et al., 1994; Del Negro et al., 1999;

Pollack et al., 2011; Ryerson et al., 2000). That is, when

sampling NOx-free synthetic air, a non-zero signal is ob-

served when the photolytic converter is illuminated. This is

attributed to NOx production from species adsorbed on the

walls of the photolytic converter once illuminated by UV

(Pollack et al., 2011). These artefacts were accounted for

during calibration by sampling an overflow of NOx-free zero

air whilst recording the analyser signal when the photolysis

cell was illuminated at 385 and 395 nm. The artefacts were

found to be 368 and 319 (±5 %) pptV, respectively. There

was 0 pptV artefact in NO. UV-induced artefacts vary with

time (Ryerson et al., 2000) and have intrinsic uncertainty in

their determination; they thus contribute to overall measure-

ment uncertainty.

This spurious artefact signal can be minimized by periodic

cleaning of the inside of the photolysis cell (Pollack et al.,

2011; Reed et al., 2016; Ryerson et al., 2000), by choice of

cell material (Reed et al., 2016), and by lensing the UV light

so as not to illuminate the walls of the cell – sacrificing some

conversion efficiency (Ridley et al., 1988).

The effect of the back reaction of OH + NO to reform

HONO before detection of NO, thus reducing the NO signal

in the NOx–HONO measurement in the presence of HONO,

is another possible source of uncertainty. As a greater pro-

portion of HONO is photolysed at one wavelength respec-

tive to another, the sample inside and exiting the converter

necessarily has differing OH concentrations. The effect on

the NO signal detected was calculated using a box model

in FACSIMILE kinetic modelling software (MCPA Software

Ltd.). Kinetic data for Ox , HOx , and NOx reactions are taken

from IUPAC Evaluated Kinetic Data (Atkinson et al., 2004).

www.atmos-meas-tech.net/9/2483/2016/ Atmos. Meas. Tech., 9, 2483–2495, 2016
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The box model was initiated with the NO, NO2 HONO, and

HNO3 concentrations shown in Table 1. NO, NO2, O3, and

OH concentrations at the outlet of the photolysis cell after

1 s illumination at each wavelength were calculated. The res-

idence time between an air sample exiting the photolysis cell

and entering the high vacuum of the NO analyser through the

∼ 25 cm of 1/4 in. PFA tubing is 0.11 s. The air sample is a

mixture of mostly NO, O3, OH, and unconverted NO2. The

absence of UV irradiation results in chemistry analogous to

night-time NOx chemistry with the addition of a significant

OH source. The interference from the OH + NO reaction was

determined as the decrease in [NO] during the 0.11 s resi-

dence time as a percentage of measured [HONO]. The dis-

crepancy was calculated to vary linearly with [HONO] from

−0.97 to −2.10 % over the range of calibrations, with differ-

ences between lamps well within the accuracy of the calibra-

tion. The degree of interference from OH in NO2 and HONO

determination was found to be a function of k([OH] + [NO])

on the timescale here (0.11 s). Reducing the residence time

after the photolysis cell would reduce the error in HONO and

NO2 (in the presence of HONO). Conversely, a system with a

suitably long residence time between the photolysis cell and

detector may experience little-to-no HONO interference as

the OH + NO back reaction begins to dominate. There is of

course a trade-off in that the data must be corrected for am-

bient ozone affecting the NO : NO2 ratio. It is important to

note that there can never be any negative interference in NO2

caused by the presence of HONO, only positive or none.

Outside of calibration the effect of the OH back reaction

with NO is likely to be less significant due to the presence

of volatile organic compounds (VOCs) which also react with

OH with comparable rates to NO. It is therefore difficult to

know the absolute HONO conversion of each UV-LED with-

out very accurate OH reactivity/VOC concentration measure-

ments. Due to these unknowns, it would not be possible to

correct the NO2 signal for HONO interference as might be

hoped.

Additional uncertainties arise in the HONO measurement

from sampling a changing NO
†
2 background. Changes in sig-

nal when illuminating a sample at 385 nm cannot be at-

tributed to NO2 or HONO without also knowing the corre-

sponding signal at 395 nm which necessarily is measured at a

different time. This uncertainty can be reduced by increasing

the differential conversion (which was 6.54 % in our system).

We make the first order assumption that the NO2 or HONO

background changes on slower timescales than the instru-

ment response, and that it does not change over the course

of two 30 s cycles.

Thus, the uncertainty in the differential conversion is a

combination of the uncertainty in the HONO calibration

source (8.7 %), the uncertainty of the sensitivities (5 %),

NO2, and HONO conversion efficiencies (5 %), and the un-

certainty in the artefact (5 %). This results in an overall root

sum of squares uncertainty of 15.8 % in [HONO].

3 Results and discussion

The pHONO instrument was evaluated in an atmospheric

simulation chamber (Sect. 3.1) and compared in the field side

by side with LOPAP (Sect. 3.2).

3.1 Chamber measurements

The Highly Instrumented Reactor for Atmospheric Chem-

istry (HIRAC) is a simulation chamber facility based at the

School of Chemistry, University of Leeds (Glowacki et al.,

2007a). HIRAC is a cylindrical stainless-steel chamber with

a total volume of ∼ 2.25 m3, containing four fans for mix-

ing throughout the chamber, and with a total mixing time

of ∼ 60 s. The stainless-steel structure of HIRAC allows for

pressure-dependent experiments to be carried out, over the

range of ∼ 10–1000 mbar. Numerous sample ports are lo-

cated around the chamber allowing the attaching of instru-

ments or introduction of gas. A multi-pass Fourier transform

infrared (FT-IR) instrument (Bruker IFS/66, 128.52 m path

length) is present to allow spectra of the gas within the cham-

ber to be taken (Glowacki et al., 2007b). HIRAC is also capa-

ble of operating over a range of temperatures (−40 to 70 ◦C).

Experiments were carried out at ambient temperature

(20 ◦C) and pressure (1000 mbar), whilst the chamber was

kept dark. HIRAC was filled with 80 % N2 (BOC, UHP,

99.998 %) and 20 % O2 (BOC) before HONO was synthe-

sized external to the chamber following a modified proce-

dure described previously by Taira and Kanda (1990). A 1 %

aqueous sodium nitrite solution was added dropwise to a

30 % aqueous solution of sulfuric acid. The resulting Reac-

tion (R6) produces HONO, which was added directly to the

chamber via a continuous flow of N2 over the reaction mix-

ture. This is analogous to the permeation source; however,

side products need not be considered due to the direct HONO

measurement afforded by FT-IR.

2NaNO2 + H2SO4 → 2HONO + Na2HSO4 (R6)

FT-IR spectra were taken at 60 s intervals with a spectral

resolution of 1 cm−1, whilst the differential photolysis

analyser sampled from the chamber. Dilution of the HONO–

NO–NO2 mixture was achieved by partial evacuation

of the chamber and subsequent refilling with synthetic

air (N2/O2). The average HONO concentration deter-

mined from the average of two distinct absorbance lines

at 1264 cm−1 (trans-HONO, Q-branch) and 853 cm−1

(cis-HONO, Q-branch) in the FT-IR using absolute line

strength data from Barney et al. (2000). The absorptivity

data were 5.22 ± 0.52 × 10−19 cm2 molecule−1 (1264 cm−1,

trans-HONO) and 9.00 ± 0.90 × 10−19 cm2 molecule−1

(853 cm−1, cis-HONO). Barney et al. (2000) showed there

to be discrepancies between various published line strengths,

as did Lee et al. (2012); thus there is some inherent uncer-

tainty in the absolute [HONO] determined by FT-IR. Some

of the spectra used in quantification are shown in Fig. 3.
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Figure 3. FT-IR spectra of dominant HONO absorbance lines at

1264 and 853 cm−1 over a range of concentrations.

Figure 4. HONO determined by FT-IR (y axis) versus HONO mea-

sured by the photolytic/chemiluminescence differential photolysis

instrument (x axis). Median values at each dilution are in red; all

values are shown in grey. The 1 : 1 line is shown for reference as

well as an exponential fit above 140 ppbV HONO. Error bars show

the 15.8 % calibration uncertainty of the pHONO instrument and the

10.0 % uncertainty in the FT-IR cross section (Barney et al., 2000).

Figure 4 shows the strong positive correlation between the

HONO measured by differential photolysis and by FT-IR

within the HIRAC chamber up to ∼ 140 ppbV, deviating at

higher mixing ratios. Systematic offset between the pHONO

and FT-IR can be attributed to uncertainties in the FT-IR line

strength data for HONO and the uncertainty in the pHONO

calibration as indicated by the x (15.8 %) and y (10.0 %) er-

ror bars. However, the data lie close to or on the 1 : 1 correla-

tion line when these uncertainties are included. Studies have

also shown there to be large discrepancies between differ-

ent published line strengths for HONO (Barney et al., 2000;

Lee et al., 2012), which constitutes a greater uncertainty in

[HONO] derived by FT-IR of up to +33 % and −25 to −30 %

(Barney et al., 2000) depending on the particular cross sec-

tion used.

Figure 4 shows that at lower HONO mixing ratios,

< 140 ppb, there is better agreement between the pHONO

and FT-IR measurements, whereas the response of the differ-

ential photolysis technique appears to be suppressed at high

Figure 5. Simulated conversion (open circles) and difference in

conversion (closed circles) for photolytic converters with different

j in the presence of OH (red) and O3 (grey) oxidants.

[HONO]. This is a result of how a photolytic converter oper-

ates as expressed by Eq. (2) in Sect. 2.4

Having two LEDs with different HONO absorption over-

lap results in two values for j (HONO). Using the j (NO2)

values already found (1.3 and 1.7 s−1) as an easily deter-

mined proxy for j (HONO), the change in conversion with

oxidant concentration can be approximated.

Figure 5 shows how the percentage conversion of any pre-

cursor that dissociates to NO, in this case HONO and NO2,

changes with increasing oxidant concentration. In the case

of O3 the total conversion decreases linearly with increas-

ing [Ox], whilst the difference between the two remains con-

stant (9 %). Conversely, with OH, conversion decays expo-

nentially in total, and as a difference between two LEDs of

different j . This effect can be seen clearly above 150 ppbV

HONO in Fig. 4. Below 140 ppbV a constant difference in

conversion of 6.54 % is a reasonable approximation.

The high HONO mixing ratios within HIRAC, necessary

to be detected by FT-IR (LOD ∼ 40 ppb), were several orders

of magnitude higher than would be expected in the atmo-

sphere where ppt (Beine et al., 2006; Ren et al., 2010; Zhang

et al., 2009, 2012) to low ppb (Acker et al., 2006; Febo et

al., 1996; Hendrick et al., 2014; Kanaya et al., 2007; Stutz,

2004) are typical. Thus, this non-linearity at high [HONO] is

unlikely to pose a serious limitation of the differential photol-

ysis method, with the possible exception of areas with very

high NOx backgrounds. This could be partially mitigated by

having greater photolysis power at 385 nm, in combination

with moving to shorter wavelengths with better overlap with

the HONO absorption cross section. It is clear in Fig. 1 that

the 385 nm UV-LED has significantly lower light output than

at 395 nm; this is reflected in their respective NO2 conversion

efficiencies (72.9 and 81.3 %). Alternatively, separate 385

and 395 nm converters can be employed working in paral-
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lel, thus doubling the number of UV-LEDs and doubling the

photolysis power at each respective wavelength. This would

also allow for fast measurement simultaneously, i.e. 1 Hz or

faster. Alternatively, the lower conversion efficiency at high

[HONO] could be calibrated for, though, as shown in the fol-

lowing section, in typical atmospheric conditions no calibra-

tion or correction was required.

3.2 Field measurements

The Weybourne Atmospheric Observatory (WAO; Pen-

kett et al., 1999) is a regional Global Atmosphere Watch

(GAW) station located on the North Norfolk coast, UK

(52◦57′01.5′′ N 1◦07′19′′ E). The WAO has a long history of

atmospheric measurements stretching back to its inception

in 1994. During summer 2015, the WAO was host to the In-

tegrated Chemistry of Ozone in the Atmosphere (ICOZA)

campaign, ostensibly measuring ozone production rates. As

part of the campaign a long path absorption photometer

(LOPAP-03, QUMA Elektronik & Analytik GmbH) (He-

land et al., 2001) was deployed in order to measure HONO.

Alongside the LOPAP, the NO, NO2, HONO (differential

photolysis) instrument described in Sect. 2.1 measured at a

1 min time resolution.

During the ICOZA campaign, a high variation of HONO

concentrations (up to ∼ 500 pptV) were observed by the

LOPAP between 29 June and 7 July, providing an ideal

opportunity for comparison between the two methods. The

pHONO was deployed with replacement UV-LEDs with

greater output. Both the 385 and 395 nm lamps had the

same photon flux, indicated by identical individual NO2 con-

version efficiencies (∼ 89 %), in the expectation that bet-

ter HONO conversion, and therefore sensitivity, would be

achieved. The estimated increase in overlap with the HONO

adsorption spectrum of the new 385 nm LED was 45 %, com-

pared to 30 % calculated for the original LED. Thus lamps

were installed as is without calibration to mitigate the fall

in output over time that affects the LEDs, particularly the

385 nm LED. The decreasing output is believed to be a result

of the power control circuitry of the LEDs which does not

limit the current draw immediately after power is supplied,

only after a few seconds. This means every time the lamp

is switched on it outputs its maximum (with corresponding

heat), which, when used in a 30 s−1 switching mode as here,

shortens the life considerably.

The pHONO instrument sampled from an inlet box (also

housing a NOy converter) located ∼ 4 m from ground level

on the sampling tower at Weybourne. The sample point was

connected to the instrument by a 12 m 1/4 in. PFA line

(Swagelok) which was shared by the CAPS NO2 instrument;

thus the flow rate was ∼ 3 standard L min−1, resulting in a

residence time of ∼ 3 s. The LOPAP instrument, which has

its own inlet, sampled from the roof of a specially converted

van located 20 m away upslope. Consequently, both instru-

ments sampled at a similar height and there was clear, unob-

Figure 6. HONO time series during July 2015 at the Weybourne

Atmospheric Observatory (WAO) measured by LOPAP (grey) and

pHONO (red).

structed line of sight between them. The pHONO inlet was

only ∼ 1 m above the Weybourne observatory roof, which

may have contributed to the turbulent dynamics observed in

the data especially during daytime. The pHONO instrument

was calibrated for NO sensitivity in ambient air twice nightly

at 00:00 and 04:00 LT; NO offset was taken between these

times by assuming it is equivalent to a stable night-time NO

value in remote regions away from any source, where NO

should be zero in the presence of ozone (Lee et al., 2009).

NO2 conversion efficiencies were determined in zero air once

per week. Limits of detection were 1.5 and 1.9 ppt averaged

over 1 min for NO and NO2, respectively. The LOPAP was

operated and calibrated according to the standard procedures

described in Kleffmann and Wiesen (2008), with a detec-

tion limit of 3 pptV and time resolution of 5 min. Zero mea-

surements using high-purity N2 (N5 grade, BOC) were per-

formed every 12 h on the LOPAP.

Figure 6 shows the HONO time series from both the

LOPAP and pHONO instruments during the 8 days of con-

current HONO measurements.

There is reasonable agreement (R2 = 0.58, y = 0.82x) be-

tween the established LOPAP method of HONO measure-

ment and that provided by the pHONO instrument without

correction or calibration (Fig. 6). During the high-ozone and

high-HONO events observed on the first and second espe-

cially there is very good agreement (R2 = 0.70, y = 0.83x)

between the two. Gaps in the data represent times where the

pHONO limit of determination was reached – where there

are too few points in the averaging window after statistical

analysis of the data to be meaningful, e.g. < 2 points in a

5 min averaging window. This is because in real atmospheric

conditions the pHONO instrument is hampered by the time

resolution at which data are collected; i.e. if there is strong

turbulence, meaning the NO2 or HONO concentration varies

rapidly on a timescale shorter than that at which data are col-

lected, then wide scatter is observed as was the case at Wey-

bourne. Strong boundary layer transport meant that the NO2

measurement varied by up to 1.5 ppb in a minute; this was

most evident during the mornings. The limitation is because
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of the way the data must be processed by interpolating be-

tween measurements and subtraction of the 395 nm signal

form the 385 nm signal. Decreasing the time between pho-

tolysis switching (from 30 s) would obviously decrease this

effect, but, ultimately, separate 385 nm (or lower) and 395 nm

analyser channels are required. Consequently the data anal-

ysis routine for the pHONO data includes tests for the vari-

ability of the data, discarding points which show > 5 % vari-

ation from the subsequent point. Data failing this test are dis-

carded and result in gaps; this is the effective limit of de-

termination. The data are then treated with a robust locally

weighted scatter plot smoothing (LOESS; Cleveland, 1979)

algorithm to remove extreme values. The gaps in the time

series of LOPAP (Fig. 5) were due to the removal of zero

measurements and false spikes due to bubbles passing the

detector.

Figure 7 demonstrates the level of agreement in the mea-

sured HONO concentration by the LOPAP and pHONO

methods from 29 June and 7 July. In Fig. 7, the data have

been fitted by orthogonal distance regression (Boggs et al.,

1987), which allows for errors in both x and y data but which

has been shown to possibly overestimate the slope (Carroll

and Ruppert, 1996), and by simple linear regression. In either

case a strong positive correlation is exhibited, suggesting the

replacement UV-LEDs had the desired effect without the ap-

plication of corrections for the HONO conversion efficiency.

The slopes of 0.82 and 1.02 suggest that the new 385 nm

lamp was able to convert the majority of HONO. The dis-

crepancy suggests that up to ∼ 18 % of HONO was converted

by the 395 nm lamp. The scatter evident in Fig. 7 is attributed

to atmospheric dynamic effects resulting in a rapidly chang-

ing NO2 background on timescales faster than the response

of the instrument (30 s−1), leading to a coefficient of determi-

nation of 0.58. Non-zero intercepts indicate a small system-

atic offset may be present in the pHONO instrument, though

more likely is an effect of scatter on the regressions. Dis-

agreement between the two methods (e.g. 29 June) is likely

due to local contamination from diesel-powered agricultural

and construction equipment operating nearby, and by the ex-

haust of the fluorescence assay by gas expansion (FAGE) in-

strument (Whalley et al., 2013). The FAGE can discriminate

HO2 and RO2 by complete reaction of HO2, with NO ne-

cessitating high NO concentrations. The exhaust is vented

through a vat of Sofnofil sorbent which removes most NOx

but may also oxidize NO to HONO, which then may be sam-

pled differently by the pHONO instrument and LOPAP due

to their relative locations to the FAGE exhaust.

Accuracy and uncertainty in unstable conditions could be

improved by measuring at the two different wavelengths con-

currently, rather than consecutively. In the same way pho-

tolytic NO2 measurement is improved by measuring concur-

rently with NO, rather than consecutively. This would re-

quire three chemiluminescent analysers in parallel, with two

photolytic converters. However, in ambient indoor air qual-

ity monitoring, where HONO is seen as increasingly im-

Figure 7. Correlation between HONO measured by LOPAP (x axis)

and pHONO (y axis). The simple linear regression is shown in blue,

and the orthogonal distance regression in green. The 1 : 1 line is

shown for reference.

portant (Gligorovski, 2016), a simple single-channel, dual-

wavelength design might be appropriate and useful.

4 Conclusions

An instrument for in situ determination of HONO photolyt-

ically has been developed, characterized, and deployed in

the field as a proof of concept. During an atmospheric sim-

ulation chamber comparison, the HONO measured corre-

sponded well with FT-IR measurement. During field tests the

photolytic HONO instrument agreed reasonably (R2 = 0.58,

y = 0.82x) well with the established LOPAP instrument,

though the limitations of having a two-channel sequential

measurement were apparent at times; this would be easily

overcome in a three-channel concurrent system. Calibration

would gain from a pure HONO source; currently the pHONO

calibration requires an independent, direct NO2 measure-

ment and NOy measurement.
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