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Summary. This article presents a new approach to modeling group animal movement in continuous time. The movement
of a group of animals is modeled as a multivariate Ornstein Uhlenbeck diffusion process in a high-dimensional space. Each
individual of the group is attracted to a leading point which is generally unobserved, and the movement of the leading
point is also an Ornstein Uhlenbeck process attracted to an unknown attractor. The Ornstein Uhlenbeck bridge is applied
to reconstruct the location of the leading point. All movement parameters are estimated using Markov chain Monte Carlo
sampling, specifically a Metropolis Hastings algorithm. We apply the method to a small group of simultaneously tracked
reindeer, Rangifer tarandus tarandus, showing that the method detects dependency in movement between individuals.
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1. Introduction
In recent years, an important aspect of statistical ecology has
been the improvement in the understanding of wildlife move-
ment, making use of increasing amounts of data from radio-
tracking and the global positioning system (GPS) (see, e.g.,
Nathan et al., 2008). The understanding of movement pat-
terns is in turn important in evaluating the environmental
effects of land use, climate change, or anthropogenic activi-
ties (Bowler and Benton, 2005).

Many statistical approaches have been extensively dis-
cussed, including state–space models (e.g., Johnson et al.,
2008; Patterson et al., 2008), stochastic differential equa-
tions (e.g., Brillinger et al., 2011), and combinations of both
(Blackwell, 2003). However, simultaneous data on multiple
individuals within a group are increasingly available, and the
standard approaches typically ignore the potential interac-
tions between individuals. Animals within a group generally
do not move independently, and therefore it is inappropri-
ate to model the simultaneous movement of group members
without considering the dynamics of the group.

Among articles that do consider group dynamics, some con-
centrate on statistical descriptions of aspects of movement,
rather than modeling the movement process; for example,
del Mar Delgado et al. (2014) apply a linear model to de-
rived measures of sociability, in a discrete time approach,
while Strandburg-Peshkin et al. (2015) derive complex social
structures from interaction events extracted from movement
data. Haydon et al. (2008) incorporate interactions through
behavioral switching rather than through the actual move-
ment process. Potts et al. (2014) give a flexible framework al-
lowing joint movement dependent on complex state variables,

in discrete time. In addition, there is a body of literature
on theoretical aspects of group movement, such as Couzin
et al. (2002) and Viscido et al. (2007), which explores how
behavioral rules maintain and reorganize group structure in
simulation experiments. In continuous time, Dunn and Gip-
son (1977) touched only briefly on the idea of interdepen-
dent movement. Brillinger et al. (2011) describe a flexible,
continuous-time formulation, but their formal inference uses
a simple discrete-time approximation, and their main example
concentrates on just two elk. Recently, Langrock et al. (2014)
proposed a discrete-time model of group movement, in which
individual animals follow a biased random walk, attracted to
a leading point which may represent either another individ-
ual with special status as a leader or simply a mathematical
abstraction of the dependence between animals’ movement.
In their implementation, the position of the leading point is
imputed as the one-step-ahead average location of the group.

The focus of the current article is to model group movement
in continuous time, inspired by Dunn and Gipson (1977) and
Langrock et al. (2014). Our work has similarities to Brillinger
et al. (2011) but for our models we carry out inference exactly,
without any time discretization or approximation. In addi-
tion, we have a much more parsimonious representation of in-
teractions; instead of modeling the interaction between neigh-
bors directly, as in the various approaches outlined above,
we follow Langrock et al. (2014) and take all individuals
in the group to be attracted to a latent moving point. Our
continuous-time formulation gives a number of advantages,
as discussed for single-animal models in Harris and Black-
well (2013) and McClintock et al. (2014). It gives a model
which can be interpreted without reference to the timescale
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of the data collection, which in general is arbitrary as far
as the behavior of the animals is concerned, and it therefore
adapts straightforwardly to irregular or missing data, and al-
lows meaningful interpolation and comparison across different
sampling regimes.

The structure of the article is as follows. In Section 2, group
movement is modeled jointly using a multivariate Ornstein
Uhlenbeck process. Section 3 describes fully Bayesian infer-
ence for this process, with the position of the unobserved
leading point sampled using data augmentation. The method
is applied and compared with the approach of Langrock et al.
(2014) using simulation data in Section 4 and data from rein-
deer migration in Section 5.

2. Joint Movement Model

2.1. Multivariate Ornstein Uhlenbeck Process

We start by considering the movement of the leading point—
or “leader,” for brevity, although we retain the idea that it
may be an abstraction rather than an actual animal. Its move-
ment is modeled as a stationary, isotropic Ornstein Uhlenbeck
(OU) process; stationarity allows us to model stable long-term
behavior (though with Brownian motion possible as a limit-
ing case). Rotational symmetry could be relaxed, but is rather
natural in practice (Blackwell, 1997) and also implies that its
x and y coordinates are two independent univariate OU pro-
cesses. If the random variable L

y
t represent the y coordinate

of the location of the leading point at time t, then a stochas-
tic process {Ly

t : t ≥ 0} in which L
y
t is attracted to θy is given

by the stochastic differential equation (SDE; Schach, 1971;
McNeil and Schach, 1973):

dLy
t = −β(Ly

t − θy)dt + ρdVy
t (1)

where L
y
t is the location of the leader on the y axis; β is

the attraction rate to θy; ρ is the coefficient for the noise;
V

y
t is standard Brownian motion. Here, we present only the

movement model for the y coordinate; the model is identical
for the x coordinate Lx

t , with parameters β and ρ in common,
and independent Brownian motions {Vx

t } and {Vy
t } used for Lx

t

and L
y
t . Conditioning on the previous location of the leader

L
y

0, the solution of this SDE can be written as

Ly
t = (L

y

0 − θy) e−βt + θy + ρ

∫ t

0

e−β(t−s) dVy
s . (2)

Using Itō calculus (e.g., Lamberton and Lapeyre, 2007),
given L

y

0 the expectation and variance of the current location
L

y
t are

E{Ly
t |Ly

0} = e−βt (L
y

0 − θy) + θy, (3)

Var
{
Ly

t |Ly

0

}=ρ2E

{(∫ t

0

e−β(t−s) dVs

)2
}

= ρ2

2β

(
1 − e−2βt

)
.

(4)

A similar SDE can model the movement of a “follower” at-
tracted at any instant to the current location of the leader.

Let random variables Fx
t and F

y
t represent the follower’s loca-

tion at time t. Under the same assumptions as before, Fx
t and

F
y
t are independent, conditional on the movement process of

the leader. {Fy
t : t ≥ 0} is defined by the following SDE with

parameters α, σ, L
y
t , and Brownian motion {Wy

t }, where F
y
t is

attracted to L
y
t :

dFy
t = −α (Fy

t − Ly
t ) dt + σdWy

t (5)

with F
y
t the location of the follower and L

y
t the location of the

leader, on the y axis; α the attraction rate to L
y
t ; σ the coef-

ficient for the noise. A corresponding equation is used for the
x coordinate Fx

t , with common parameters and independent
Brownian motion {Wx

t }.
Combining these equations with the model of the leading

point gives an SDE for the y coordinates of both leader and
follower which defines a particular bivariate OU process:

dYt = A (Yt − �y) dt + �dB
y
t (6)

where Yt =
(

L
y
t

F
y
t

)
, A =

(
−β 0

α −α

)
, �y =

(
θy

θy

)
, � =

(
ρ 0

0 σ

)
,

B
y
t =

(
V

y
t

W
y
t

)
. Yt is a vector representing the y coordinates

of both leader and follower. The matrix A is the attraction
rate matrix. �y is a vector with both entries θy; that the
second element is θy follows from combining the equations,
and indicates that their combined effect is that F

y
t is indi-

rectly attracted to θy. We take the Brownian motions for the
leader and the follower to be uncorrelated, therefore � is a
diagonal matrix; each diagonal element of the � represents
the coefficient of the individual variance. The solution of this
multivariate SDE is given by

Yt = eAt (Y0 − �y) + �y +
∫ t

0

�eA(t−s) dBy
s (7)

and can be shown to have an exact closed form as a multivari-
ate normal distribution (Schach, 1971; McNeil and Schach,
1973):

Yt |Y0 ∼ MVN(μ(L
y

0, F
y

0 , t), �(t)) . (8)

The expectation of Yt given Y0, denoted μ(L
y

0, F
y

0 , t), is

E {Yt |Y0} = μ(L
y

0, F
y

0 , t) = eAt (Y0 − �y) + �y; (9)

μ(L
y

0, F
y

0 , t) has elements μl(L
y

0, t) and μf(L
y

0, F
y

0 , t) given by

μl(L
y

0, t) = (L
y

0 − θy) e−βt + θy (10)

μf(L
y

0, F
y

0 , t) = (L
y

0 − θy)
α

α − β

(
e−βt − e−αt

)
+ (F

y

0 − θy) e−αt + θy. (11)
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The variance of Yt , denoted �(t), could be obtained as

Var{Yt |Y0} = E

{(∫ t

0

�eA(t−s) dBy
s

)2
}

= eAt

(∫ t

0

e−As��T e−ATsds

)
eAT t (12)

where AT denotes the transpose of A, etc. However, Schach
(1971) indicated an alternative way to derive the variance
Var{Yt |Y0} instead of solving the integral in equation (12) di-
rectly. The variance is determined by the Kolmogorov forward
equations, and can be written as

Var {Yt |Y0} = �(t) = 	 − eAt	eAT t (13)

where 	 is the stationary variance. It can be calculated from
the local variance covariance

�T � = − (
A	 + 	AT

)
(14)

where the matrix � is diagonal as above. This gives

	 =

⎛
⎜⎜⎝

ρ2

2β

ρ2α

2β(α + β)

ρ2α

2β(α + β)

σ2

2α
+ ρ2α

2β(α + β)

⎞
⎟⎟⎠ (15)

and hence from substitution into equation (13)

�(t) =
(

ξl(t) ξlf(t)

ξlf(t) ξf(t)

)
(16)

with

� ξl(t) = ρ2

2β

(
1 − e−2βt

)
� ξlf(t) = ρ2α

2β (α + β)
− ρ2α

2β (α − β)
e−2βt + ρ2α

α2 − β2
e−(β+α)t

� ξf(t) =
{

σ2

2α
+ ρ2α

2β (α + β)

}(
1 − e−2αt

) − ρ2α2

2β (α − β)2
×

(
e−βt − e−αt

)2 − ρ2α2

β (α2 − β2)

{
e−(α+β)t − e−2αt

}
.

2.2. Extension to More Followers

The model in the previous section involves a single follow-
ing animal, for illustration, but in reality our interest is al-
most always in cases with multiple followers. In the inter-
ests of parsimony, in contrast with the model proposed by
Dunn and Gipson (1977) we assume that followers are condi-
tionally independent of each other, given the location of the
leader, though structured departures from that assumption
could certainly be accommodated. For simplicity, we also as-
sume that the followers have identical parameters; again, this
assumption could be relaxed in principle, perhaps through a
hierarchical model on individual parameters, provided there
were sufficient data in a given case to make it feasible.

Modeling the interactions of animals through the leading
point, rather than directly with each other, also has the ad-
vantage that the model is applicable in cases where some in-
dividuals are unobserved, as is unavoidable for many large
herds; this applies to our main example in Section 5. In such
a situation, observing only some of the animals obviously gives
less information, but does not systematically change the re-
sults.

The formulation shown in equation (6), the form of its so-
lution in equation (8), and the method of calculating the co-
variance still apply. To illustrate the general case, the key
parameters are shown here for the case of two followers and
one leading point; further extension is trivial. As before, α is
the attraction rate of a follower to the leading point and σ

is the variance coefficient of followers; different followers are
assumed to share the same α and σ. We have

μ(L
y

0, F
y

0 , t) =

⎛
⎝ μl(L

y

0, t)

μf(L
y

0, F
y

0 , t)

μf(L
y

0, F
y

0 , t)

⎞
⎠ , (17)

A =

⎛
⎜⎝

−β 0 0

α −α 0

α 0 −α

⎞
⎟⎠ , (18)

� =

⎛
⎜⎝

ρ 0 0

0 σ 0

0 0 σ

⎞
⎟⎠ (19)

and the solution for 	 is

	 =

⎛
⎜⎜⎜⎜⎜⎜⎝

ρ2

2β

ρ2α

2β(α + β)

ρ2α

2β(α + β)

ρ2α

2β(α + β)

σ2

2α
+ ρ2α

2β(α + β)

ρ2α

2β(α + β)

ρ2α

2β(α + β)

ρ2α

2β(α + β)

σ2

2α
+ ρ2α

2β(α + β)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(20)

Note that all off-diagonal elements of 	 are identical and the
diagonal elements are a function of individual variance terms
plus the off-diagonal element. Finally, we have

�(t) =

⎛
⎜⎝

ξl(t) ξlf(t) ξlf(t)

ξlf(t) ξf(t) ξff(t)

ξlf(t) ξff(t) ξf(t)

⎞
⎟⎠ (21)

where ξl(t), ξlf(t), ξf(t) are as before, and

ξff(t) = ρ2α

2β (α + β)

(
1 − e−2αt

) − ρ2α2

2β (α − β)2
(
e−βt − e−αt

)2

− ρ2α2

β (α2 − β2)

{
e−(α+β)t − e−2αt

}
. (22)
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For the purposes of Section 3, we will usually be dealing with
updates over a fixed unit interval, in which case we simplify
notation by suppressing the dependence on the interval t; it
is also useful to write μ(L

y

0, F
y

0) and � in block form as

μ(L
y

0, F
y

0) =
(

μl(L
y

0)

μf(L
y

0, F
y

0)

)
, (23)

� =
(

ξl ξlf

T

ξlf �f

)
, (24)

where in the general case μ(·, ·) and ξlf are vectors and �f a
square matrix, of size equal to the number of followers.

3. Inference

Here, we describe a Markov Chain Monte Carlo approach to
carrying out inference for this model, based on location data
for the followers only, as is realistic for most of the applica-
tions we have in mind. For simplicity, we focus on data that
are equally spaced in time, and define our time unit so that
observations occur at times 0, 1, 2, . . ., though extension to
irregular spacing, for example to accommodate missing data,
is straightforward in principle.

Given the model in Section 2, the likelihood calculation
in Section 3.1 can be carried out separately and identically
for each coordinate; here we drop the superscript x or y to
simplify notation.

3.1. Inference for the Location of the Leading Point

Since the leading point is assumed unobserved, we augment
the data (Tanner and Wong, 1987) with its locations at the
times of the observations; this augmentation gives us the com-
plete state of the system at these instants, which combined
with the Markov property gives a more tractable method for
inference, since the likelihood for the parameters can then be
written as a product over time. We sample a single value Lt

at a time, using a Metropolis–Hastings (MH) step. To do this,
we need its conditional density

p(Lt |L(t), F) ∝ p(Lt |L(t))p(F |Lt, L(t)) (25)

where F = (F1|F2| · · · ) represents the followers’ locations at
all time points, with each Ft a vector of length equal to the
number of followers, Lt is the leading point’s location at time
t and L(t) represents the leading point’s locations at all other
time points. The terms on the RHS of equation (25) are cal-
culated in Sections 3.1.1 and 3.1.2; Section 3.1.3 gives details
of the actual algorithm.

3.1.1. Conditioning on the leader’s movement process.
From the Markov property of our model for Lt in each di-
mension, conditioning on L(t) is equivalent to conditioning on
Lt−1 and Lt+1 (the leading point locations at one time step
before and after). Using standard results for the OU process,
Lt then has a normal distribution with mean μLt

and variance
νLt

,

Lt |L(t) ≡ Lt |Lt−1, Lt+1 ∼ N (μLt
, νLt

) , (26)

where μLt
and νLt

can be calculated from the OU bridge (Levy,
2008):

μLt
= {

(Lt−1 + Lt+1 − 2θ) e−β + θ
(
1 + e−2β

)} (
1 − e−2β

)
(1 − e−4β)

,

(27)

νLt
= ρ2

(
1 − e−2β

)2

2β (1 − e−4β)
. (28)

3.1.2. Conditioning on the data. As a function of Lt , the
second term on the RHS of equation (25) is

p
(
F |Lt, L(t)

) ∝ p (Ft |Ft−1, Lt−1, Lt)p (Ft+1|Ft, Lt, Lt+1) ,

(29)

again by the Markov property. For the first term on the RHS
of equation (29), we have

Ft |Ft−1, Lt−1, Lt ∼ MVN (μFt , �Ft
) . (30)

To get the parameters of this normal distribution, we take
equation (8) describing the forward evolution of the whole
system and condition on Lt . From the standard result for con-
ditioning a multivariate normal on some of its components,
and the partitioned form of the forward mean and covariance
in equations (23) and (24), the conditioned mean of the fol-
lowers μFt is

μFt = μf(Lt−1, Ft−1) + ξlfξ
−1
l

(Lt − μl(Lt−1)) (31)

where μl(Lt−1) is the mean of the leading point at time t,
given Lt−1, and similarly μf(Lt−1, Ft−1) is the mean of the
followers at time t. ξlf and ξl are as defined by equation (24).
Similarly, �Ft

is the followers’ conditional variance

�Ft
= �f + ξlfξ

−1
l

ξlf. (32)

The second term on the RHS of equation (29) can be derived
in a similar way, with

Ft+1|Ft, Lt+1, Lt ∼ MVN
(
μFt+1 , �Ft+1

)
(33)

μFt+1 = μf(Lt, Ft) + ξlfξ
−1
l

(Lt+1 − μl(Lt)) (34)

�Ft+1 = �Ft
. (35)

Note that it is necessary to consider the followers jointly in
evaluating these likelihood terms; see Section 3.1.4 for a brief
explanation.

3.1.3. Sampling Lt. From Sections 3.1.1 and 3.1.2, the
conditional distribution in equation (25) is the product of
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the densities of the normal distributions in equations (26),
(30), and (33). For the sampling of Lt , we use a Metropolis–
Hastings (MH) step. Given Lt−1 and Lt+1, we propose a new
location L′

t for the leader at time t from the OU bridge defined
in equation (26). The proposal density cancels with the OU
bridge term in the likelihood; the Hastings ratio is therefore
the product of the densities in equations (30) and (33) eval-
uated at L′

t divided by the corresponding product evaluated
at Lt .

3.1.4. Conditional independence. Because the augmen-
tation with locations of the leader takes place only at the
times of the observations, the followers’ movements are not
conditionally independent even given this augmentation; the
“instantaneous” conditional independence involved in defin-
ing the model would carry over to finite intervals only given
augmentation with the location of the leader at every instant,
which is not feasible in practice. Equation (32) captures the
dependence between followers, conditional on the location of
the leader at the start and end of an interval, in terms of the
variance and covariance terms in equation (21) et seq. We
can gain some insight by considering the effect of varying the
time interval (written here as τ, to avoid confusion with the t

indexing the observations). As might be expected given that
followers are conditionally independent given complete infor-
mation about the position of the leader, ξff(τ) is small com-
pared with ξl(τ), ξf(τ) and ξlf(τ); for small τ, ξff(τ) is of lower
order in τ than the other terms. From a Taylor expansion
around τ = 0, purely for illustration (not used in the analysis,
which is exact), ξl(τ) = ρ2τ + O(τ2), ξf(τ) = σ2τ + O(τ2),
ξlf(τ) = 1

2
ρ2ατ2 + O(τ3), while ξff(τ) = 1

3
ρ2α2τ3 + O(τ4).

This confirms that, for short intervals, the followers are
very close to being conditionally independent given the
initial location of the leader. Nevertheless, our exact analysis
requires use of the full joint likelihood terms in equations
(30) and (33).

3.2. Inference for Parameters

Given the augmentation of the data with the leader’s loca-
tions, the parameters of the movement process can be sampled
straightforwardly. From the Markov property, the likelihood
is a product over time of terms of the form given in equation
(30) or (33). Again, the followers need to be considered jointly,
as explained in Section 3.1.4. We use a conjugate normal prior
for the point of attraction (θx, θy), and so a standard “normal–
normal” Gibbs step can be used. For the other movement pa-
rameters, we use uniform priors on [0, ∞) and standard ran-
dom walk MH updates. In either case, the only non-standard
aspect is the calculation of the likelihood, and so other details
are omitted. Similar, lower-dimensional updates for a model
of a single animal are described in detail by Blackwell (2003).

4. Implementation with Simulated Data

Here, we look at inference for simulated data, where the po-
sition of the leader is known, but treated as unobserved.
Langrock et al. (2014), in a similar model in discrete time,
also used an unobserved leading point, but imputed its loca-
tion approximately as the average of followers’ locations from
one step ahead. Here, our estimation of the leading point is
compared visually against both the true location and the ap-

proximation of Langrock et al. (2014); a more formal statis-
tical comparison, based on real data, is given in Section 5.

We simulated the location of six followers and one leading
point from our model for 50 steps, using equation (8) itera-
tively and taking each generated location as the origin for the
next. We then applied our MCMC algorithm to reconstruct
the location of the leader and the model parameters, running
it for 10,000 iterations after burn-in, from a starting point
based on the same kind of one-step-ahead calculation that
Langrock et al. (2014) used for their inference. Figure 1 shows
selected data, point estimates, and posterior credible regions,
with the four subfigures representing consecutive time steps as
the leading point moves from top left to bottom right, taking
it through the group of followers.

In Figure 1(a), the true leading point is outside the group.
The OU estimate follows its movement and is located away
from the group. In Figure 1(b), the leading point changes its
direction and moves into the group. In this case, the one-
step-ahead average is closer to the true point. In Figure 1(c),
the OU estimate follows the movement of the true leading
point and moves into the group. In Figure 1(d), the leading
point moves away from the group and the OU estimate follows
it well while the one-step-ahead average (red square) is still
sitting within the group.

The posterior mean and standard deviation of model pa-
rameters are shown in Table 1, along with the actual values
used in simulation. Posterior density plots for the parame-
ters are given in Figure 2. All the posterior distributions are
consistent with the true values; the key parameter α, repre-
senting attraction of the followers to the leader, is estimated
quite well, from this relatively small dataset, whereas the pa-
rameter β, representing the attraction of the (imputed) leader
to its (estimated) center of attraction is estimated much less
precisely. The MCMC trace plot is also provided in Web Ap-
pendix A.

These results show that our fully Bayesian approach can
reconstruct the location of the unobserved leader in a case
where the attraction mechanism is appropriate, and also ap-
pears from the plots to outperform the simpler intuitive one-
step-ahead approach used by Langrock et al. (2014), giving
some justification for our more elaborate modeling.

5. Implementation with Real Data

In this section, our group dynamic model is fitted to loca-
tion data of reindeer from Skarin et al. (2008). The annual
migration of reindeer follows a seasonal progression of snow-
melt and fresh vegetative growth that broadly describes the
general movement pattern of the population (Skarin et al.,
2008, 2010). Although an individual reindeer may reduce its
grazing competition by moving away from the herd, it then
also stands a greater chance of being killed by predators or in
summer being harassed by insects, and therefore the choice
an individual reindeer makes about how and where to move is
balanced between finding enough food for itself but also stay-
ing within the safety of the group (Mooring and Hart, 1992).

The data here are hourly GPS fixes on reindeer within a
single herd, arising from a study of habitat use in the rein-
deer herding area in Sweden (Skarin et al., 2008). We consider
a subset of the available reindeer data, with 58 observations
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(a) Step one: moving away from the group
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(b) Step two: moving into the group
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(c) Step three: moving into the group
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(d) Step four: moving away from the group
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Figure 1. True leading point and estimates from simulated data, as the true leader moves from top left to bottom right.
Each plot shows the true leading point L (diamond), its posterior mean location L̃ (triangle), the individual followers F
(circles), and their one-step-ahead mean F̄ (square). Thus, the point F̄ in (a) is the average of the followers’ positions in (b),
etc. Contours show credible regions, with posterior probabilities as indicated, for the estimated position of the leader. This
figure appears in color in the electronic version of this article.

on each of 5 individual “followers.” This subset is selected
to give what appears to be reasonably homogeneous behav-
ior, since incorporating switching between behaviors is beyond
the scope of the current article—see Section 6—and to avoid
missing data; while it is straightforward in principle to allow
for incomplete observations, it entails quite a lot of additional
coding.

The computational time for this example is a few hours on
a standard PC, using code written wholly in R (R Core Team,
2014). The computational effort should scale reasonably well

Table 1
Parameter estimates for the movement model with

simulation data

Parameter Point estimate Standard deviation True value

θx 4.574 1.181 4.0
θy 4.569 1.183 4.0
β 0.129 0.061 0.1
σ 0.204 0.007 0.2
α 0.214 0.020 0.2
ρ 0.710 0.102 0.86

with the number of followers; the most expensive element in
the computation is the matrix exponential in equation (13)
(using expm; Goulet et al., 2014) which needs to be carried
out only when the parameters are updated, and not when the
leader’s location changes. Thus, we expect that this approach
would be computationally feasible for most practical field ex-
periments involving simultaneous tracking of tagged wildlife
(perhaps less so for laboratory experiments involving obser-
vations of many individuals). Our code would undoubtedly
benefit from recoding in a compiled language; we are also
working on improvements to computational aspects of the
algorithm. The current code is included as Web Appendix C.

All parameters of the model are unknown, but for simplicity
we assume the parameters are the same for all followers. The
initial location of the leader is the average of all followers’ lo-
cations. The results here are based on 30,000 iterations of two
MCMC runs with over-dispersed initial values, every second
iteration being recorded after 5000 iterations of burn-in. The
Gelman–Rubin diagnostic is used to check convergence. The
potential scale reduction factors are close to 1 for all model
parameters; see Web Appendix B.

Table 2 shows posterior means and standard deviations for
the parameters of the model, indicating a number of useful
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Figure 2. Posterior densities for model parameters with simulation data, based on the Markov Monte Carlo runs of 10,000
iterations. The solid line represents the true parameter; dotted lines represent the posterior mean ±1 and ±2 posterior
standard deviations. (a) Posterior density for θx, the fixed attractor on horizontal direction. (b) Posterior density for θy, the
fixed attractor on vertical direction. (c) Posterior density for α, the attraction rate of the follower to the leading point. (d)
Posterior density for σ, the individual variance coefficient of the follower. (e) Posterior density for β, the attraction rate of the
leading point to the fixed attractor. (f) Posterior density for ρ, the individual variance coefficient of the leading point. This
figure appears in color in the electronic version of this article.

conclusions. Most importantly, there is clear evidence from
the posterior distribution for α that there is attraction of the
individual animals to a leading point, i.e., clear dependence
between their movements. This is pursued in Section 5.1. On
the other hand, from the posterior distribution for β, there
is no clear indication of attraction of this leading point to a
fixed attractor; it is possible that, on the time-scale of the

Table 2
Parameter estimates for the reindeer movement model

Parameter Point estimate Standard deviation

θx −3.508 1.712
θy −3.543 1.699
α 0.107 0.016
β 0.307 0.156
σ 5.067 0.176
ρ 27.05 8.78

data analyzed at least, a simpler model for the movement of
the leading point may be adequate, e.g., Brownian motion. Fi-
nally, comparing the values of ρ and σ in Table 2 and Figure 3,
we can see that the former is likely to be much larger than
the latter, meaning that the movement of the leading point is
much “noisier” than that of individual animals; much of the
individual movement can be explained by the common move-
ment toward the leading point. Locations of the leader and
followers at selected times are plotted in Figure 4 to match the
scenario of Figure 1. The plots correspond to t = 29, 31, 32, 37
within the dataset; thus Fig. 4(b) and (c) represent consec-
utive observations, with Fig. 4(a) and (d) further separated
before and after them, to make the dynamics clearer.

5.1. Comparison with Other Models

We compare our model more formally with two alternatives.
Firstly, we look at the case where α = 0, so that the follow-
ers are not attracted to any common leader. The followers
then undergo independent Brownian motions, and the result-
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Figure 3. Posterior densities for model parameters, based on the Markov Monte Carlo runs of 30,000 iterations. (a) Posterior
density for θx, the fixed attractor on horizontal direction. (b) Posterior density for θy, the fixed attractor on vertical direction.
(c) Posterior density for α, the attraction rate of the follower to the leading point. (d) Posterior density for σ, the individual
variance coefficient of the follower. (e) Posterior density for β, the attraction rate of the leading point to the fixed attractor.
(f) Posterior density for ρ, the individual variance coefficient of the leading point. This figure appears in color in the electronic
version of this article.

ing model has just one parameter, their shared diffusion pa-
rameter. Secondly, motivated by Langrock et al. (2014), we
take the location of the leading point to be known and given
by the one-step-ahead average of the locations of the followers.
This simplifies the computation substantially. In practice, we
can calculate these “known” locations in advance, and then
use our algorithm omitting the updating of the leader. To
compare the models, we use the Deviance Information Crite-
rion (DIC; Spiegelhalter et al., 2002). The values obtained
are as follows: full model, 3426.5; model with known leader,
3526.7; independent Brownian motions, 3600.3. Thus, the full
model, in which the trajectory of the leading point is recon-
structed based on the model, with uncertainty, is substantially
better than the simpler models in terms of DIC, despite its
much larger effective number of parameters, around 40 for
this example.

6. Conclusion

We have described the formulation of a group movement
model in continuous time, building on some of the strengths

of previous approaches, and an algorithm for fully Bayesian
inference, which outperforms the simpler approach previously
used in a related discrete-time analysis. We have shown that
even with relatively small amounts of data, we can extract an
estimated location for a notional leading point which gives a
good representation of the common component of the move-
ment of a group of real animals.

We have concentrated on the case where the position of the
leader is unknown, either because the leader is an individual
who is not tracked or because it is a modeling construct en-
abling a parsimonious representation of dependence between
actual animals’ movements. We could take a similar approach
when the leader is a tracked animal; inference would be sim-
pler and faster, since the leader’s location would be known
rather than sampled. If the leader was one of the tracked
animals, but its identity was unknown, it would be straight-
forward to repeat this faster analysis with each animal in turn
taken as leader, to determine the most likely candidate(s).

Our motivation and data, and most of our discussion here
and in the Introduction, relate to dependent movement of
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(b) Step two: moving into the group
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(c) Step three: moving into the group
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(d) Step four: moving away from the group
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Figure 4. Estimation of the leading point from reindeer data. Co-ordinates are in hundreds of meters (with arbitrary origin).
Each plot shows the posterior mean location of the leading point L̃ (triangle), the individual followers F (circles), and their
lagged mean F̄ (square). Contours show credible regions, with posterior probabilities as indicated, for the estimated position
of the leader. The four cases are selected to illustrate different configurations that arise, similar to those in the simulations
in Figure 1; they correspond to t = 29, 31, 32, 37 within the data-set. This figure appears in color in the electronic version of
this article.

individual animals, particularly wildlife; but potentially the
models and methods apply in other settings too. For exam-
ple, there is considerable interest in modeling the collective
movement of biological cells—see, for example, Binny et al.
(2015)—but apparently much less work on inferential aspects.
We hope that there may be scope for applying the current
ideas in that context.

We have not considered here the possibility of animals
switching between behavioral states, likely to be important
in applying this work to a wider range of real situations c.f.
Blackwell (1997, 2003); Gurarie et al. (2009); Haydon et al.
(2008); Morales and Ellner (2002); Langrock et al. (2014).
Work in progress allows followers to have multiple states, with
switching between them modeled as a continuous time Markov
chain, as in Blackwell (1997, 2003). Different states represent
attraction to different leaders or independent movement such
as Brownian motion. Conditional on the behavior, the overall
system remains an Ornstein Uhlenbeck process and a similar
approach to that developed here applies.

7. Supplementary Materials

Web Appendices A (MCMC trace plots), B (MCMC conver-
gence diagnostics), and C (data and code) referenced in Sec-

tions 4 and 5 are available with the online version of this
article at the Biometrics website on Wiley Online Library.
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Skarin, A., Danell, Ö., Bergström, R., and Moen, J. (2010). Rein-
deer movement patterns in alpine summer ranges. Polar Bi-
ology 33, 1263–1275.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde,
A. (2002). Bayesian measures of model complexity and fit.
Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 64, 583–639.

Strandburg-Peshkin, A., Farine, D. R., Couzin, I. D., and Crofoot,
M. C. (2015). Shared decision-making drives collective move-
ment in wild baboons. Science 348, 1358–1361.

Tanner, M. A. and Wong, W. H. (1987). The calculation of pos-
terior distributions by data augmentation. Journal of the
American Statistical Association 82, 528–540.

Viscido, S. V., Parrish, J. K., and Grunbaum, D. (2007). Factors
influencing the structure and maintenance of fish schools.
Ecological Modelling 206, 153–165.

Received October 2014. Revised October 2015.
Accepted October 2015.


