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Abstract 17 

This paper describes the development of a Global 3 arc-second Water Body Map (G3WBM), 18 

using an automated algorithm to process multi-temporal Landsat images from the Global Land 19 

Survey (GLS) database. We used 33,890 scenes from 4 GLS epochs in order to delineate a 20 

seamless water body map, without cloud and ice/snow gaps. Permanent water bodies were 21 

distinguished from temporal water-covered areas by calculating the frequency of water body 22 

existence from overlapping, multi-temporal, Landsat scenes. By analyzing the frequency of 23 

water body existence at 3 arc-second resolution, the G3WBM separates river channels and 24 

floodplains more clearly than previous studies. This suggests that the use of multi-temporal 25 

images is as important as analysis at a higher resolution for global water body mapping. The 26 

global totals of delineated permanent water body area and temporal water-covered area are 3.25 27 

and 0.49 million km2 respectively, which highlights the importance of river-floodplain 28 

separation using multi-temporal images. The accuracy of the water body classification was 29 
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validated in Hokkaido (Japan) and in the contiguous United States using an existing water body 30 

databases. There was almost no commission error, and about 70% of lakes >1 km2 shows 31 

relative water area error <25%. Though smaller water bodies (<1 km2) were underestimated 32 

mainly due to omission of shoreline pixels, the overall accuracy of the G3WBM should be 33 

adequate for larger scale research in hydrology, biogeochemistry, and climate systems and 34 

importantly includes a quantification of the temporal nature of global water bodies. 35 

Keywords 36 

Landsat GLS, water body mapping, global analysis, river, floodplain 37 

1. Introduction 38 

1.1 Background 39 

Terrestrial water in rivers and lakes is essential for both human beings and ecosystems (Oki 40 

and Kanae, 2006). River and lakes affect the climate system via land-atmosphere interaction 41 

processes such as carbon burial and CO2 exchange as well as other biogeochemical processes 42 

(Cole et al., 2007; Sjögersten et al., 2014). Delineating the spatial and temporal distribution of 43 

rivers and lakes is important for understanding the water, energy and carbon cycles, both at 44 

local and global scales (Downing et al., 2012, 2014; Allen et al., 2015). Mapping water bodies 45 

at a global scale is therefore a fundamental step to understand the role of inland water bodies in 46 

climate systems (Palmer et al., 2015). 47 

Until very recently, globally available water body maps have been limited in resolution, but 48 

in parallel with recent computational advances in various research fields, a high-resolution, 49 

high-accuracy global water body database is required. For example, global-scale water body 50 

maps have been used in river width calculation for hydrodynamic modeling (O'Loughlin et al., 51 

2013; Yamazaki et al., 2014a and 2014b; Sampson et al., 2015). In addition, given that 52 
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biogeochemical processes in small lakes may be more active than large lakes (Downing, 2010), 53 

a higher-resolution database is needed to accurately quantify the global carbon cycle. 54 

Many global-scale water body databases have been developed in recent years (see Table 1). 55 

The SRTM Water Body Data (SWBD) (NASA/NGA, 2003) accurately captures water bodies at 56 

1 arc-second resolution (about ~30 m at the Equator), but it does not cover the entire globe. 57 

Some large rivers in SWBD are disconnected by observational gaps which significantly reduce 58 

channel connectivity and therefore the utility of the database for hydrology studies. The Global 59 

Land Cover Facility (GLCF) MODerate resolution Imaging Spectroradiometer (MODIS) 250 m 60 

water mask (Carroll et al., 2009) has a global coverage, but the 250 m resolution is not adequate 61 

to resolve small channels or lakes. The GLCF MODIS water mask is considered to be a 62 

“snapshot” of circa-2000, so the temporal change in water bodies (such as potential inundation 63 

of floodplains) is not represented. Recently, using Landsat images globally, Feng et al. (2015) 64 

developed the GLCF Inland surface Water data (GIW) at 30 m resolution and Verpooter et al. 65 

(2014) developed Global Water Body data (GLOWABO) at 0.5 arc-second resolution. However, 66 

the temporal change of water bodies was not considered in previous high-resolution water body 67 

databases. 68 

Some water body databases do consider temporal change in water extent. The Global Lake 69 

and Wetland Database (GLWD) (Lehner and Döll, 2004) used a classification of surface water 70 

types (e.g. river, lake, floodplain, wetland) and depicts the global distribution of each surface 71 

water type at ~1 km resolution. Prigent et al. (2007) and Papa et al. (2010) developed a 25 km 72 

resolution inundated area map (Global Inundation Extent from Multi-Satellite: GIEMS) with 73 

monthly temporal variations, though the 25-km resolution is not sufficient to depict individual 74 

rivers or lakes. Fluet-Chouinard et al. (2015) downscaled GIEMS to a 15 arc-second resolution. 75 

The downscaled product (GIEMS-D15) quantifies global water extent at mean annual minimum, 76 

mean annual maximum and long term maximum. 77 
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Table 1. Comparison of global surface water database 78 

Product Resolution Coverage Frequency of Water Reference 

SWBD 1 sec (~30 m) N60-S54 No NASA/NGA, 2003 

GLCF MODIS 7.5 sec (~250 m) N90-S90 No Carroll et al., 2009 

GLCF GIW 30 m N81-S81 No Feng et al., 2015 

GLOWABO 0.5 sec (~15m) N81-S56 No Verpooter et al., 2014 

GLWD 30 sec (~1 km) N90-S60 Water type classification Lehner and Doll, 2004 

GIEMS 25 km (equal area) N90-S90 Monthly flood extent Papa et al., 2010 

GIEMS-D15 15 sec (~500 m) N90-S60 a Mean annual max/min Fluet-Couinard et al., 2015 

G3WBM 3 sec (~90 m) N81-S60 Multi-scene analysis This Study 

a Greenland is not included 79 

A major problem in delineating a high-accuracy, high-resolution, water body map comes 80 

from the fact that water extent can change in time and space. Given that rivers, lakes, 81 

floodplains and wetlands show different characteristics in hydrodynamics, ecosystems and 82 

biogeochemistry, it is obviously better to separate permanent water bodies (e.g. low water river 83 

channels, lakes with permanent water coverage) and temporal water-covered areas (e.g. 84 

floodplains, wetlands, paddy fields) in water body mapping. For example, accurate delineation 85 

of low-water river channels (excluding floodplains) is important for improving flood forecasting 86 

by global-scale river models (e.g. Pappenburger et al.., 2012), and information on temporal 87 

dynamics of surface waters is valuable to estimate global wetland carbon inventory (e.g. 88 

Bridgham et al., 2013). Multi-temporal images are needed to carry out frequency analysis, but 89 

this significantly increases the quantity of data to be handled, especially when analysis is done 90 

at a high resolution. Due to this difficulty in data handling and processing, previous 91 

high-resolution water maps do not consider temporal change of water extent, and frequency of 92 

water body existence is only represented in low resolution databases. 93 

1.2 Objective 94 

The objective of this study is to develop a new high-resolution global water body map with 95 

information on the frequency of water body existence. An automated algorithm was developed 96 
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to handle multi-temporal Landsat images at a global scale and to analyze the frequency of water 97 

body existence at 3 arc-second resolution (about 90 m at the equator). The algorithm was also 98 

designed to exclude observational gaps caused by cloud or ice/snow covers by compositing 99 

multiple satellite images. The Global 3 arc-second Water Body Map (G3WBM) was generated 100 

by applying the developed algorithm to Landsat images in the GLCF Global Land Survey 101 

(GLS) database (Gutman et al., 2013). The main aim is to generate a global permanent water 102 

body map (e.g. low water river channels, lakes with permanent water coverage) at 3 arc-second 103 

resolution, but as a consequence of defining the permanent water areas, additional information 104 

on temporal water-covered areas (e.g. floodplains, paddy fields) is included in the G3WBM. 105 

2. Data 106 

2.1 Landsat GLS database 107 

As a starting point for the water body map delineation, we used the GLCF Landsat Global 108 

Land Survey (GLS) database (Gutman et al., 2013). The GLS database attempts to provide one 109 

cloudless image acquired at each location in World Reference System (WRS). One set of 110 

global-coverage images is prepared for 5 different epochs (i.e. GLS1975, GLS1990, GLS2000, 111 

GLS2005 and GLS2010). The GLS1975 consists of Landsat Multi-Spectral Scanner (MSS) 112 

images, while the other epoch collections are based on Landsat TM (Thematic Mapper) and 113 

ETM+ (Enhanced Thematic Mapper Plus) images. Landsat images with lesser cloud cover were 114 

selected for the GLS database, but they are not always perfectly cloud-free. Landsat GLS 115 

images can be downloaded freely from the GLCF website (http://glcf.umd.edu/data/gls/). 116 

We used all TM and ETM+ images from the Landsat GLS database. A total of 33,890 scenes 117 

were used; 7,375 from GLS1990, 8,756 from GLS2000, 9,365 from GLS2005, and 8,484 from 118 

GLS2010. The water body map was calculated by combining information from 4 spectral bands 119 

and one thermal band; Band 2 (green: G), Band 3 (red: R), Band 4 (near infra-red: NIR), Band 5 120 

(short wave infra-red: SWIR), and Band 6 (thermal infra-red). Band 1 (blue: B) was also used to 121 

http://glcf.umd.edu/data/gls/
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generate RGB composites for the post-classification analysis and validation steps (see Sections 122 

4 and 5). Please note that there are overlapping areas between adjacent Landsat paths, so that the 123 

number of available observations can be larger than 4. The overlapping areas become wider at 124 

higher latitude, so that the number of observations is larger in higher latitude (even though 125 

eastern Siberia is missing by GLS1990). 126 

2.2 Digital Elevation Model 127 

A Digital Elevation Model (DEM) was used to generate an ocean mask and also for 128 

distinguishing shadows from water bodies. We used the global 3 arc-second DEM downloaded 129 

from the Viewfinder Panoramas webpage (http://www.viewfinderpanoramas.org/dem3.html). 130 

The Viewfinder Panoramas DEM (hereafter VFP-DEM) was generated mainly using the Shuttle 131 

Radar Topography Mission 3 arc-second DEM (SRTM3 DEM) (Farr et al., 2007) for regions 132 

below 60N, but for above 60N uses the GeoBase DEM for Canada, and Russian topography 133 

maps for the Eurasian continent. Large voids (i.e. blank areas due to no data, usually found over 134 

water bodies and in mountain areas) in the original SRTM3 DEM were carefully filled in by the 135 

developer of the VFP-DEM using auxiliary topography information such as printed topography 136 

maps. However, some small voids remain in the distributed DEM and we fill these remaining 137 

voids by interpolation using the inverse square distance weighted method. 138 

An ocean mask was generated by marking 0 m elevation pixels which are connected to outer 139 

oceans (i.e. 0 m pixels in inland areas are excluded from the ocean mask). In order to include 140 

river pixels with 0 m elevation in the analysis, coastline data from OpenStreetMap (available 141 

online from http://openstreetmapdata.com/data/coastlines) was also used to generate the ocean 142 

mask. Pixels in the ocean mask were excluded from water body classification because Landsat 143 

GLS images often have large amount of clouds over oceans and we are only interested in 144 

terrestrial water bodies. 145 

http://www.viewfinderpanoramas.org/dem3.html
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Elevation gradient was calculated from the VFP-DEM in order to distinguish shadows from 146 

water bodies. Elevation gradient (in meter per pixel) was calculated as the maximum elevation 147 

difference between each pixel and its 8 neighboring pixels. If a pixel is lower than any of its 148 

neighbors, the elevation gradient was set to 0 m. 149 

2.3 SWBD water mask 150 

The Shuttle Radar Topography Mission Water Body Data (SWBD) (NASA/NGA, 2003) was 151 

additionally used in order to ensure channel connectivity in the delineated water body map (See 152 

Section 3.5). The SWBD was a byproduct of the SRTM3 DEM which was generated by C-band 153 

radar interferometer. Because the coverage of SWBD is between 60N and 56S, connectivity 154 

correction was not performed above 60N. 155 

3. Method 156 

3.1 Landsat image processing 157 

Each Landsat image was converted to 3 arc-sec resolution (about ~90 m at the Equator) in 158 

the WGS84 grid coordination system by nearest point resampling. Given that the georeferenced 159 

error of GLS images was approximately 25 m (Gutman et al., 2013), the georeferenced error 160 

should not be a problem at the 3 arc-second resolution. Then, top of the atmosphere reflectance 161 

and brightness temperature were calculated from the digital number (DN) using the conversion 162 

method described by Chander and Markham (2003) and Chander et al. (2009). Reflectance of 163 

blue band B , green band G , red band R , near infra-red band NIR , and short wave 164 

infra-red band SWIR  were calculated from the DN of bands 1, 2, 3, 4, and 5, respectively. 165 

Brightness temperature Tb  (in centigrade) was calculated from the DN of band 6. Then, the 166 

Normalized Difference Water Index (NDWI) and the Normalized Difference Vegetation Index 167 

(NDVI) were calculated as follows: 168 
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       (1), 169 
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       (2). 170 

We selected the Modified Normalized Difference Water Index (MNDWI) proposed by Xu 171 

(2006) from the many variations of NDWI methods (e.g. McFeeters, 1996; Ji et al., 2009). 172 

Landsat-7 images after 31st May 2003 have striping gaps due to the failure of the Scan Line 173 

Corrector (SLC) (Maxwell et al. 2007). The SLC gaps were filled by the interpolation method 174 

described in Appendix A1. Note that the resolution conversion and grid coordination change 175 

were done with the “gdalwarp” function of Geospatial Data Abstraction Library (GDAL) 176 

(Warmerdam, 2008), while other steps were calculated using Fortran90 codes originally 177 

developed by the authors. A schematic diagram of the developed algorithm is shown in Figure 178 

1. 179 
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 180 

Figure 1: Schematic diagram of the developed algorithm. Note that more than 4 images 181 

are used where Landsat scenes are overlapped with adjacent scenes. 182 

3.2 Frequency of Water Body Existence 183 

The index “water frequency” was introduced to separate permanent water bodies, temporal 184 

water-covered areas, and land pixels. Water frequency iFw  of pixel i  was defined by the 185 

equation (3): 186 
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where jiO ,  is observation confidence at pixel i  in Landsat scene j , jiW ,  is water 188 

probability at pixel i  in Landsat scene j , N  is the total number of Landsat scenes available 189 
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at pixel i . Equation (3) means that water frequency is calculated by the observation-confidence 190 

weighted average of water probability. Note that parameters in the following steps (e.g. 191 

thresholds and constants in classification conditions) were mainly taken from previous studies 192 

(e.g. Irish, 2000; Ji et al., 2009) but are adjusted by trial and error, based on validation. 193 

<Observation Confidence> 194 

Observation confidence jiO ,  represents the certainty of judging land surface type at pixel 195 

i  in Landsat scene j . Observation confidence is 1 when land is judged to be perfectly observed 196 

without cloud or ice/snow cover, while it becomes smaller when land is not clearly observable 197 

(a minimum value was set to 0.001). Observation confidence is defined by Equation (4): 198 

]001.0,1max[, PciO ji        (4), 199 

where Pci  is a probability index of cloud/ice existence at pixel i  in Landsat scene j . The 200 

probability index Pci  ranges from 0 (low cloud/ice probability) to 1 (high cloud/ice 201 

probability), and is given by the equation (5): 202 

TbNDLI
GRN ffPci
25.0

]25.0,min[
       (5), 203 

where GRN  is minimum reflectance of green, red and near infra-red bands, NDLIf  is a 204 

correction factor using Normalized Difference Land Index (NDLI, see Appendix A2) and Tbf  205 

is a correction factor using brightness temperature. Given that cloud and ice/snow are highly 206 

refractive in visible and near infra-red bands, the probability of cloud/ice existence can be 207 

mainly judged by the minimum reflectance of the red, green and near infra-red bands 208 

( ],,min[ NIRRGGRN   ). The correction factors NDLIf  and Tbf  were introduced to 209 

separate cloud/ice and highly-reflective rock/vegetation. Detailed explanations on these 210 

correction factors are outlined in Appendix A2. 211 

<Water probability> 212 
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Water probability in Equation (3) was calculated using Equation (6): 213 

NDVINDWIji fPW ,        (6), 214 

where NDWIP  is a probability index using NDWI and NDVIf  is a correction factor using NDVI. 215 

The probability index NDWIP  was given by the equation (7): 216 
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    (7). 217 

When NDWI is larger than 0.3, the pixel is considered to be water and when smaller than 0, the 218 

pixel is considered to be land. For an NDWI between 0 and 0.3, the water body existence is 219 

represented by probability. Because shadows sometimes show high NDWI as water, the 220 

correlation function using NDVI NDVIf  was introduced to distinguish shadow and water. The 221 

detailed description of NDVIf  is summarized in Appendix A3. 222 

3.3 Multi-scene mean indexes 223 

In addition to water frequency iFw , multi-scene mean indexes (i.e. reflectance, NDWI, 224 

NDVI, and brightness temperature) are calculated. These multi-scene mean indexes were used 225 

for water mask classification in the water body classification step (see Section 3.4). For each 226 

index V  (e.g. reflectance, NDWI, NDVI), the multi-scene mean was defined by Equation (8): 227 
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where iV  is the multi-scene-mean of index V  at pixel i . jiO ,  is the observation 229 

confidence, jiW ,  is the water probability, jiV ,  is the target index, all at pixel i  in Landsat 230 

scene j . N  is the number of observation scenes available at pixel i . Multi-scene-mean 231 

indexes at pixel i  are calculated for reflectance of each bands (
iB , 

iG , 
iR , 

iNIR , 232 

iSWIR ), minimum reflectance of green, red and near-infra-red bands (
iGRN ), NDWI, NDVI 233 

and brightness temperature ( iWI , iVI , iTb ). 234 

3.4 Water Body Classification 235 

The main aim of this study is to delineate a permanent water body map. For that purpose, 236 

water frequency was used to distinguish permanent water bodies from temporal water-covered 237 

areas. However, some land covers (e.g. ice, snow, salt marsh, wet soil, wet vegetation and 238 

shadow) show a high NDWI, thus they might mistakenly be classified as water (i.e. commission 239 

error). Therefore, other land cover types which showed similar characteristics to water, were 240 

excluded before classifying permanent water bodies and temporal water-covered areas. The 241 

flowchart of classification steps is shown in Figure 2. 242 
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 243 

Figure 2. Flowchart of classification steps 244 

<Exclusion of high-NDWI non-water surface> 245 

Ice/snow, salt marsh, and wet soil/vegetation are excluded as high-NDWI non-water surface 246 

using the criteria listed in Table 2. In order to avoid generation of a patchy land type 247 

classification, adjacent pixels with similar characteristics were grouped using the grouping 248 

criteria. Then, one classification type was assigned to pixels in each group by the judging 249 

criteria. Group-mean index 
gV  was calculated from multi-scene-mean index iV  of pixels in 250 

each group as follows: 251 

M
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 1         (9), 252 
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where M  is the number of pixels in each group. Note that the thresholds in Table 2 were 253 

determined by trial and error, repeating water body classification and visual checking detailed in 254 

Section 3.6. 255 

Table 2. Criteria used for high-NDWI non-water land classification. 256 

Ice/snow Salt marsh Wet soil/vegetation 

Grouping  

Criteria 

2.0

4.0

2
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3.0
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 257 

As ice and snow show a high NDWI similar to water, pixels with ice or snow cover were 258 

excluded before water body classification. Adjacent pixels whose multi-scene-mean indexes 259 

(water frequency iFw , minimum reflectance of green, red and near infra-red bands 
iGRN , 260 

brightness temperature iTb , normalized water index iWI  and normalized vegetation index 261 

iVI ) satisfy the grouping criteria for ice/snow in Table 2 were grouped as potential ice/snow 262 

pixels. If group-mean indexes of the grouped pixels satisfy the judging criteria in Table 2, 263 

potential ice/snow pixels within each group were judged to be true ice/snow class. Pixels which 264 

were not classified as ice/snow were passed to salt marsh classification. 265 

Salt marsh has a high reflectance in visible bands and has relatively low reflectance in the 266 

short wave infra-red band. Therefore, salt marsh shows a high NDWI even when it is not 267 

inundated. In order to distinguish dry salt marsh from true water bodies, pixels considered to 268 

represent salt marsh were excluded before water mask classification using the grouping and 269 
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judging criteria in Table 2. Pixels which were not classified as salt marsh were passed to wet 270 

soil/vegetation classification. 271 

Wet soil/vegetation sometimes shows a relatively high NDWI, even when the land surface is 272 

not inundated. In order to accurately delineate true water bodies, pixels which showed moderate 273 

NDWI and moderate NDVI were classified as wet soil/vegetation using the criteria in Table 2. 274 

Pixels which were not classified as wet soil/vegetation were passed to the following water body 275 

classification. 276 

<Water Body Classification> 277 

After excluding ice/snow, salt marsh, and wet soil/vegetation, the remaining pixels were 278 

classified as permanent water bodies, temporal water-covered areas and land, based on water 279 

frequency. However, pixels affected by shadows should be distinguished from water bodies 280 

because they sometimes show a high NDWI. Here, elevation gradient (calculated from the DEM, 281 

defined in Section 2.2) was used to distinguish water bodies from shadows. For permanent 282 

water body delineation, adjacent pixels which had 7.0iFw  were grouped. In order to 283 

exclude mountain shadows, the grouped pixels were classified as permanent water body when 284 

more than half the group’s pixels had an elevation gradient smaller than 5 m per pixel (i.e. 285 

relatively flat areas). Otherwise they were classed as shadow. Remaining pixels were passed to 286 

temporal water-covered area classification. 287 

Adjacent pixels with 7.01.0  iFw  were grouped. The grouped pixels were classified as 288 

temporal water-covered areas when the group-mean NDWI was larger than 0.5 and when more 289 

than half of the pixels had an elevation gradient smaller than 5 m per pixel. All remaining pixels 290 

were classified as land. 291 

3.5 Ensuring Channel Connectivity 292 

The proposed frequency analysis is based on the assumption that the river channel location is 293 

stable for long periods. Therefore, the developed algorithm is not applicable to river segments 294 



16 

 

where channel position frequently changes with time. In these cases, river channels may be 295 

classified as temporal water-covered areas when channel positions are different in different 296 

Landsat scenes. In order to ensure flow connectivity of river channels, we overlaid the SWBD 297 

water mask onto the delineated water body map. For minimizing the correction amount, we only 298 

used SWBD water bodies which were larger than 100 km. Excessive modification of small 299 

lakes could be avoided by using this size threshold, and the connectivity correction could be 300 

restricted to large rivers. Pixels which were not classified as permanent water but are treated as 301 

water bodies in the SWBD, were changed to permanent water body pixels. It is reported that the 302 

SWBD also has gaps within water bodies (Carroll et al., 2009), but this did not cause a 303 

connectivity problem in this study because we confirmed that locations of water body gaps were 304 

not overlapping between the SWBD and the GLS images. 305 

3.6 Visual Checking 306 

We generated a JPEG image of the developed water body map at each 5 degree tile, and 307 

visually examined every image to check whether the classifications were appropriate or not. 308 

Images were visually checked for consistency and continuity, as well as against other spatial 309 

data and images available, such as Google and Bing satellite images. If critical errors were 310 

found, we revised the coefficients and thresholds used in the classification step (e.g. numbers in 311 

Table 2) and recalculated the entire water body map globally. This visual checking iteration 312 

method was repeated more than 10 times until all major misclassifications were eliminated. 313 

While much of the processing and analytical testing described in the results section are 314 

automated, this human visual step was important for identifying some of the subtle anomalies 315 

that can occur when trying to apply an automated method globally using multi-temporal images. 316 

4. Results 317 

Firstly, we demonstrated how the proposed algorithm removes clouds and calculates water 318 

frequency. A part of the Congo River (Landsat World Reference System 2 path 182 row 086; 319 
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E13.7-E15.9, S5.3-S3.4) was selected as an example because cloudy images were included. The 320 

algorithm was applied to four images available at path 182 row 086 (the acquisition dates of the 321 

four images are shown in Figure 3). The band 5-4-2 composite image of each GLS scene are 322 

shown in Figure 3a. In the band 5-4-2 composite image, vegetation, rock, water, cloud water 323 

(warm cloud) and cloud ice (cold cloud) are colored with green, red, dark blue, white and pale 324 

blue, respectively. All images contain cloud water and/or cloud ice which disrupt the earth 325 

observation. The observation confidence calculated by Equation (4) is shown in Figure 3b. 326 

Locations of pixels with low observation confidence (grey) agree well with observable cloud 327 

locations. Water probability (Figure 3c) was high for pixels representing open waters. Some 328 

pixels under cloud showed a high probability, but their impact in water frequency calculation is 329 

low because their observation confidence is low. In the GLS1990 image, some pixels along the 330 

Congo mainstem showed a low water probability because of cloud cover. However, water 331 

frequency at these pixels was not reduced by the cloud cover because observation confidence 332 

was also low when pixels were covered by clouds. Figure 3d illustrates water frequency 333 

calculated from the four images. While river and land were clearly distinguished, water 334 

frequency was slightly high in some pixels with cloud cover. These pixels were successfully 335 

judged to be land after applying the classification algorithm (see Figure 3e). 336 
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 337 

Figure 3: Example of classification procedure, shown for the Congo River basin. (a) Band 338 

5-4-2 composite images, (b) Observation confidence, (c) Water probability, (d) Water 339 

frequency calculated from the four images, (e) Water mask classification. In Figure 3e, 340 

blue and green represent permanent water bodies and temporal water-covered areas, 341 

while background colors represent elevation gradient of land pixels. 342 
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From here on, we show the results of applying the developed algorithm to all GLS images at 343 

the global scale. Results of selected regions are shown in this paper, but images of other regions 344 

can be accessed online (http://hydro.iis.u-tokyo.ac.jp/~yamadai/G3WBM/). 345 

In order to show the differences between the new and previous water body maps and the 346 

importance of using multi-temporal images, classification results in floodplains along the 347 

Amazon and Ob Rivers are shown in Figure 4. Figure 4a illustrates water bodies of the GLCF 348 

GIW in the Amazon floodplain (around W54.6, S2.3). Generally, the GLCF GIW accurately 349 

captures water bodies, but some observation gaps due to cloud covers were found. Conversely, 350 

no observation gaps were found in the new water body map (Figure 4b) because clouds were 351 

removed by overlaying multi-temporal images. Figures 4c and 4d illustrate water bodies in a 352 

downstream reach of the Ob River. Because water frequency was not considered, river channels 353 

and floodplains were lumped together in the GLCF GIW. Conversely, river channels and 354 

floodplains were represented separately in the new water body map. Given that river channels 355 

and floodplains show different bathymetry, flow dynamics and ecosystems characteristics, we 356 

believe river-floodplain separation in the new database will be useful in various research fields. 357 
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 358 

Figure 4: Water bodies represented in GLCF GIW (a, c) and in G3WBM (b, d). In (a, c) 359 

observation gaps due to cloud and cloud shadow are shown by black. In (b, d), permanent 360 

water bodies are represented by blue, while temporal water-covered areas are shown by 361 

green. 362 

Then, we validated the accuracy of the land type classification (described in Section 3.4) by 363 

checking the results in regions where water, wet soil and snow cover are coexistent. A region of 364 

southern Iceland was selected for this purpose. The RGB composite image and land type 365 

classification results are shown in Figure 5. The RGB composite was created by taking the 366 

minimum reflectance from multiple scenes in order to remove temporal cloud or ice/snow 367 

covers. In general, the G3WBM accurately captured water bodies, including those most 368 

commonly challenging e.g. lakes on glacier edges (e.g. W19.85, N64.60 and W17.35, N64.15), 369 

lakes above wet lava rocks (e.g. areas around W18.8, N64.1) and lakes in the valleys between 370 
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high mountains (e.g. W21.45, N64.5). The developed algorithm also succeeded in excluding 371 

rocks on glaciers (e.g. W17.2 N64.2) which sometimes show similar reflectance characteristics 372 

to water. However, boundaries between permanent water bodies and surrounding wet soils were 373 

not clearly represented in coastal areas, probably because of a shallow groundwater table (e.g. 374 

rivers around (W17.5, N63.8). The classification in wet coastal regions is difficult because both 375 

water body and wet soil show a high NDWI and also because the topography is flat. It should be 376 

noted here that the proposed method was designed for accurate delineation of permanent water 377 

bodies, and therefore, there might be some misclassification between ice, wet soil and temporal 378 

water-covered areas (e.g. rocks on a glacier were classified as temporal water-covered areas at 379 

W17.35, N64.40). 380 

 381 

Figure 5: Southern Iceland region with the coexistence of water, wet soil and snow cover. 382 

(a) RGB composite image, (b) and land type classification. Permanent water bodies, 383 

temporal water-covered areas, wet soil, and ice/snow are represented by blue, green, 384 

brown and yellow, respectively. 385 

Figure 6 illustrates a middle reach of the Ganges River, as an example of regions where 386 

channel connectivity correction using the SWBD (Section 3.5) was required. Temporal change 387 

of channel locations from 1992 to 2009 was calculated from eight GLS images (i.e. GLS1990, 388 

GLS2000, GLS2005 and GLS2010 images for path 140 rows 042-043). Because the channel 389 

location is not stable, most river segments were classified as temporal water-covered areas 390 
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(green pixels in Figure 6b). Disconnected channels are not ideal for hydrological research, 391 

therefore a flow connectivity correction was performed using the SWBD water mask. Here we 392 

can see that gaps in permanent water bodies (see discontinuous channel colored with blue in 393 

Figure 6b) were filled by the SWBD water masks (red in Figure 6b). Please note that the SWBD 394 

represents the water extent in February 2000, therefore, some water bodies of the SWBD might 395 

correspond to temporal water-covered areas. This might result in a small overestimation of 396 

permanent water bodies in the modified water body map, but we decided that the benefit of 397 

ensuring channel continuity is greater than the disadvantage of the overestimation. Channel 398 

connectivity correction was only performed below 60N coinciding with the SWBD coverage. 399 

The modification was not required above 60N as almost no connectivity problems were found 400 

in boreal regions. Of course, for geomorphological studies, the changing channel location 401 

information observed over the GLCF epochs may be of significant value in its own right. 402 

 403 

Figure 6: (a) Channel location change in the Ganges River and (b) result of water body 404 

classification. Channel locations in 1992, 1999, 2005 and 2009 are shown by red, orange, 405 

dark green and blue, respectively in (a). Permanent water bodies and temporal 406 

water-covered areas are shown by blue and green in (b), while overlapping SWBD water 407 

mask is shown in red. 408 

A global distribution of permanent water bodies is illustrated in Figure 7. The percentage of 409 

permanent water bodies within 0.01 degree grid boxes is shown in Figure 7a, whilst the 410 
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zonal/meridional total water body areas per 1 degree latitude/longitude bin are shown in Figures 411 

6b and 6c. In total, 3.25 million km2 were classified as permanent water bodies, which is about 412 

2.4% of the total inland area (including the Caspian Sea). The aggregation of smaller water 413 

bodies occasionally occupy more than 20% of the area of 0.01 degree grid boxes (grids colored 414 

with blue or dark blue in Figure 7a). It can be seen that relatively small water bodies, i.e. lake 415 

size <100 km2 (purple lines in Figures 6b and 6c) are concentrated mainly in boreal regions (i.e. 416 

Canada, Scandinavia, Finland, West and North Siberian plain, Kolyma and Indigirka River 417 

basins). The second peak is in the Tibetan Plateau. This distribution pattern is consistent with 418 

previous studies (e.g. Lehner and Döll, 2004; Fluet-Chouinard et al., 2015). With the exception 419 

of boreal regions and the Tibetan Plateau, the zonal total water body area is dominated by very 420 

large water bodies (black lines in Figures 6b and 6c), such as the North American Great Lakes, 421 

the Caspian Sea, lakes in the African Rift Valley, and the Amazon and Congo Rivers. 422 

 423 

Figure 7: Global distribution of permanent water bodies. (a) Fraction of permanent water 424 

body within 0.1 degree grid boxes. (b) Zonal and, (c) meridional total water body area per 425 

1 degree latitude/longitude bin. 426 
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5. Discussion 427 

5.1 Importance of multi-temporal analysis 428 

The global distribution of temporal water-covered areas is illustrated in Figure 8. Temporal 429 

water-covered areas are concentrated in large river floodplains (e.g. the Ob, Lena, Amazon and 430 

Ganges Rivers), boreal climate regions (e.g. northern Canada and northern Siberia) and arid 431 

regions (e.g. inland Australia and Central Asia). Temporal water-cover in boreal regions is 432 

likely to be dominated by snow melt because the acquisition timing of the GLS images in the 433 

boreal region were June to August (Gutman et al, 2013), which overlaps with the snow melt 434 

season in high latitude zones (Armstrong et al., 2005). The area around the Aral Sea is classified 435 

as a temporal water-covered area because it had been covered by open water in earlier GLS 436 

images but was dried up in later images. The global summation of temporal water-covered areas 437 

was 0.49 million km2, about 15% of the global permanent water body area (see Table 3). These 438 

areas could be misclassified as permanent water bodies if only flooded images were used in the 439 

water body mask development. 440 

Global total area for each land classification type was calculated for the G3WBM and the 441 

GLCF GIW (Feng et al., 2015) and summarized in Table 3. Among the 3.81 million km2 of 442 

inland water area in the GLCF GIW, 2.92 million km2 is classified as permanent water in the 443 

G3WBM but other areas are classified as temporal water-covered area (0.17 million km2) or as 444 

non-water surface (0.71 million km2). The classification discrepancy between water and land 445 

(i.e. water in one database but land in the other) is probably due to the difference in spatial 446 

resolutions. However, the 0.17 million km2 areas treated as water in the GLCF GIW but 447 

temporal water-covered area in the G3WBM was detected because multi-temporal scenes were 448 

used in the G3WBM. This indicates the importance of the water frequency analysis in creating 449 

global water body maps. Furthermore, the GLCF GIW includes the 3.61 million km2 of no-data 450 

areas which are mainly due to cloud or cloud shadow. Though most of the no-data areas are 451 

considered to be land, the GLCF GIW missed some true water bodies (as shown in Figure 4a). 452 
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This also illustrates the importance of using multi-temporal images for eliminating gaps in water 453 

body mask. 454 

Please note that the water frequency analysis in this study was mainly performed to delineate 455 

an accurate permanent water body mask by excluding temporal water-covered areas. The 456 

developed method did not intend to accurately delineate all temporal water-covered areas on the 457 

earth. Whether temporal water-covered areas could be detected or not, is decided by images 458 

used in the analysis. If flood images are not included in the GLS database, it is, of course, not 459 

represented as a temporal water-covered area in the developed database. 460 

Table 3. Confusion matrix of global inland area classification between G3WBM and GLCF 461 

GIW. 462 

Global total area [x1000 km2] 
GLCF GIW   

Water Land No Data Total 

G3WBM  

(this study) 

Permanent Water Body 2,924 245 72 3,240 

Temporal Flood Area 176 303 14 493 

Other Land Types 709 126,998 3,520 131,228 

  Total 3,809 127,545 3,606   
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 463 

Figure 8: Global distribution of temporal water-covered areas. Percentage of temporal 464 

water-covered areas in each 0.1 degree grid box is shown. 465 

5.2 Accuracy of water body detection 466 

We performed extensive validation on Hokkaido Island, northern Japan (Figure 9a) to 467 

estimate the accuracy of the water body detection. The delineated water body area in the 468 

validation domain was 472 km2, about 0.6% of the area of Hokkaido Island (77,984 km2). The 469 

accuracy of excluding non-water land types from actual water body area was first examined. We 470 

checked whether each water body in G3WBM corresponded to actual rivers/lakes or not, by 471 

plotting all permanent water bodies larger than 0.05 km2 onto topographical maps and 472 

space/airborne photos using Google Maps. There were 280 water bodies larger than 0.05 km2 in 473 

the G3WBM (circle and square plots in Figure 9). We found only one exception which did not 474 

correspond to an actual water surface (the dark green square in Figure 9a). The commission 475 

error was located at the caldera of Taisetsu-zan Mountain (E142.88, N43.68), where snow cover 476 

and wet lava soil exist together. All water bodies, except for this commission error, 477 

corresponded to rivers and lakes on the topographic map or space/airborne photos. This result 478 

suggested that the proposed method can accurately distinguish water-like land type (e.g. snow, 479 
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wet soil, shadow) from actual water bodies. Therefore, the overestimation of water bodies in the 480 

G3WBM was anticipated to be very small. 481 

 482 

Figure 9: (a) Location of water bodies on Hokkaido Island, Japan. (b) and (c) Relative 483 

error of detected natural/manmade water bodies to lake/reservoir database. Grey lines in 484 

(b) represent an expected error due to coastline misclassification for circle-shape lakes. 485 

We then compared the surface area of individual natural lakes found using our newly 486 

developed map against an existing database. We used the GIS database of natural lakes 487 

developed by Hokkaido Research Organization (available at http://envgis.ies.hro.or.jp/). All 488 

lakes registered in the GIS database (117 lakes excluding lagoons which were treated as ocean 489 

in the G3WBM) were used in the comparison. The size of referenced lakes varied from 77.76 490 

km2 to 0.01 km2. Among the 117 referenced lakes, 94 lakes were detected in the G3WBM (blue 491 

and green circles in Figure 9) but 23 lakes were missed (light blue triangles in Figure 9). The 492 

relative error of each lake area is plotted on Figure 9b. It was found that surface areas were 493 

underestimated in most lakes, except for very small ones which consisted of two or three pixels. 494 

Lakes with relatively large errors (green circles in Figure 9) were found to be shallow marsh 495 

http://envgis.ies.hro.or.jp/
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with a large surface area variation (Penketo Marsh; E141.71, N45.07, Shirarutoro Marsh; 496 

E144.50, N43.18, and Oikamanai Lake; E143.45, N42.56) and lakes covered by dense aquatic 497 

vegetation (Kimonto Marsh; E143.48, N42.61, Kanekinto Marsh; E145.21, N43.39, and Junsai 498 

Marsh; E141.60, N45.16). The discrepancy in shallow marsh with large surface area variation 499 

can be explained by the timing of observations. Underestimation in vegetated lakes was caused 500 

by the mixing of water and vegetation. As pixels covered by aquatic vegetation (such as water 501 

lily) have lower NDWI and higher NDVI than open water, most of them were judged to be wet 502 

soil/vegetation. Underestimation in other lakes can be mainly explained by the treatment of 503 

shoreline pixels. Given that water and land are mixed in shoreline pixels, they tend to be judged 504 

as wet soil because of their moderate NDWI. The ratio of shoreline pixels to all lake pixels 505 

becomes larger for smaller lakes, thus a larger underestimation was observed in smaller lakes in 506 

Figure 9b. The underestimation expected from shoreline misclassification was calculated by 507 

assuming all coastline pixels of a circle-shaped lake had been judged to be non-water. The 508 

expected error (the gray line in Figure 9b) well explain the actual underestimation ratio for each 509 

size class. Similar to small lakes, rivers narrower than one pixel size (about 90 m at the equator) 510 

were not well represented in the G3WBM. 511 

We also compared the lake surface area of manmade reservoirs from the G3WBM against an 512 

existing dam database. All manmade reservoirs constructed before 2000 as listed in the 513 

handbook of Japanese dams (Japan Dam Association, 2014) were used in the comparison. In the 514 

delineated water body map, 93 out of 152 reservoirs were represented in the G3WBM (red 515 

circles in Figure 9) but 59 reservoirs were missing (orange triangles in Figure 9). The relative 516 

error of lake surface area is plotted on Figure 9c. Similar to natural lakes, smaller reservoirs 517 

generally showed a larger underestimation of area. However, the underestimation ratio was 518 

larger in manmade reservoirs than natural lakes. This is probably because reported lake areas in 519 

the dam handbook denote surface areas at maximum storage capacity. Actual dam storage is 520 

usually smaller than the maximum capacity, therefore the reservoir surface areas are likely to be 521 
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underestimated using observations, and this makes classification accuracy of manmade reservoir 522 

areas in Hokkaido particularly challenging. Another reason for underestimation may be due to 523 

the locations of manmade reservoirs. While natural lakes tend to be located in flat regions, 524 

manmade reservoirs are generally created in mountainous areas. As we used elevation gradient 525 

of the DEM for separating shadow from water bodies, some reservoirs were mistakenly 526 

classified as shadows. In order to improve the classification accuracy, higher resolution 527 

topographic data is needed, especially in mountainous area. 528 

The accuracy of water body delineation was also validated using high quality geospatial data 529 

of the contiguous United States. The U.S. Geological Survey National Hydrography Dataset 530 

(NHD) (Simley and Carswell, Jr., 2009) (Figure 10a) was selected for this purpose. Given that 531 

the NHD is high-resolution vector data of water bodies based on the U.S. topography maps, its 532 

accuracy is considered to be adequate for validation of satellite-derived water maps. The NHD 533 

“waterbody” and “river stream area” polygons were converted to a 1 arc-second raster, and then 534 

water body areas were compared between the NHD and the G3WBM (Figure 10b). The NHD 535 

polygons were converted to a higher resolution raster (1 arc-sec) than the G3WBM because they 536 

were treated as “truth” data for validation purpose. It was found that large water bodies (red in 537 

Figure 10a) were well represented in the G3WBM (yellow color in Figure 10b), while most 538 

small water bodies (<0.1 km2, pale violet colors in Figure 10a) were not captured (white in 539 

Figure 10b). Overestimation of water body area was limited to some flood prone regions (red 540 

colored area in Figure 10b), so that commission error is expected to be very small in the 541 

G3WBM. 542 

Figure 10c shows the relative water area error of 80,312 water bodies in the NHD whose size 543 

is larger than 0.1 km2. Blue dots represent “waterbody” features in the NHD database (i.e. lakes, 544 

ponds, and reservoirs), while green dots represent “river stream area”. It was found that about 545 

70% of water bodies >1 km2 show relative water area error smaller than 25%. Similar to the 546 

case of Hokkaido Island (Figure 9b), underestimation error was larger for smaller water bodies. 547 
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In general, lakes, ponds, and reservoirs are better delineated compared to river stream areas. In 548 

order to analyze why water body area was underestimate, the ratio of shoreline pixels to water 549 

body pixels within each water body was calculated and plotted against the relative water area 550 

error (Figure 10d). A strong relationship was observed between the shoreline pixel ratio and the 551 

relative water area error (the red line in Figure 10d). This suggests that the underestimation of 552 

water body area is mainly due to the difficulty of classifying shoreline pixels on water-land 553 

boundaries. Thus, narrow river segments or lakes in mountainous valley regions are not well 554 

represented in the G3WBM because they have relatively long shorelines compared to their 555 

water body size. We visually checked the location of 1,466 water bodies >1 km2 whose relative 556 

error is more than 20% larger than the shoreline pixel ratio (i.e. below the orange line in Figure 557 

10d). It was found that these large errors mainly correspond to water bodies with large surface 558 

area fluctuation (e.g. floodplains, salt marshes, and reservoirs with frequent water level change). 559 

Given that the proposed algorithm was designed to detect only permanent water bodies, this 560 

underestimation was expected because temporal change of water body area was not included in 561 

the NHD. However, we also found that some omission errors were caused by vegetation 562 

coverage over permanent water bodies (e.g. swamps, algae blooms). In order to further improve 563 

water body detection accuracy, classification of vegetated water bodies should be considered, in 564 

addition to a better shoreline classification. 565 
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 566 

Figure 10: Distribution of water bodies in the NHD (a) and the difference between the 567 

G3WBM and the NHD (b). For visualization purpose, the resolution of water body map 568 

was converted to 0.05 degree. Scatter plots of relative water area error versus water body 569 

size (c) and versus shoreline pixel ratio (d). Blue and green dots represent “waterbody” 570 

and “stream area” features in the NHD database. 571 
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5.3 Comparison of Global Water Body Area 572 

The total inland water body area (both river and lakes) in the constructed water mask 573 

database was 3.25 million km2 (including the Caspian Sea at 0.36 million km2). The total water 574 

surface area of large water bodies (>100 km2) accounts for 63% of the total inland water body 575 

area, and the remaining water surface is accounted for by smaller water bodies. Lakes smaller 576 

than 0.1 km2, 1 km2 and 10.0 km2 account for 4%, 13 % and 26% of the total inland water body 577 

area, respectively. Given that most of the small lakes (<0.1 km2) are not well represented in the 578 

constructed database, the global total water extent is expected to be underestimated. Note that 579 

the size of a pixel is 0.0085 km2 at the Equator and 0.0043 km2 at 60 degree north/south. 580 

Global total water body areas are compared between the 6 water body datasets in Table 4. In 581 

the case of the products based on optical sensors (i.e. MODIS and Landsat), the global water 582 

body area generally increases with the resolution of the product because smaller water bodies 583 

are detected at higher resolution. However, the global total water body area is also affected by 584 

the coastline definition and treatment of temporal water-covered areas (e.g. floodplains, salt 585 

marsh). For example, the G3WBM shows a relatively smaller area compared to other products 586 

because floodplains and salt marsh are excluded from permanent water bodies. The global water 587 

body area of the GLOWABO (5.37 million km2) (Verpooter et al., 2014) is significantly larger 588 

than other products based on Landsat or MODIS (between 3.25 and 3.65 million km2). This is 589 

probably because small water bodies are represented at the 0.5 arc-second resolution, but 590 

without direct comparison of the products, the exact reason for this large difference is unclear. 591 

The global water body area of the GIEMS-D15 (Fluet-Chouinard et al. 2015) is the largest 592 

among the all databases, probably due to the downscaling procedure. The GIEMS-D15 was 593 

generated by downscaling 25-km resolution water extent data (Papa et al., 2010) onto a 15 594 

arc-second topography, which may cause over-representation of rivers and lakes smaller than 595 

the 15 arc-second pixel size (about 500 m at the equator). The statistical estimate by Downing et 596 

al. (2006) was analyzed to be an overestimation (McDonald et al., 2012), so that the global 597 
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water estimations by the three databases (GLCF MODIS, GLCF GIW, and G3WBM) are 598 

considered to be consistent. 599 

Table 4. Comparison of global total water body area between 5 databases. 600 

Water body database Source Resolution Global water area Cutoff Threshold 

GLCF MODISa MODIS 7.5 sec 3.29 million km2 N/A 

G3WBM (permanent water) Landsat 3 sec 3.25 million km2 1 pixel (~0.008 km2) 

GLCF GIW Landsat 30 m 3.65 million km2 5 pixels (~0.005 km2) 

GLOWABOb Landsat 0.5 sec 5.37 million km2 0.002 km2 

GIEMS-D15 (annual min) Multi-satellite 15 sec 6.5 million km2 N/A 

Downing et al. 2006c Statistical - 4.2 million km2 0.001 km2 

a The water body area of GLCF MODIS was calculated by the authors because it’s not available 601 

in the description paper (Carroll et al., 2009). 602 

b The water body area of the Caspian Sea was added to the GLOWABO for comparison. 603 

c Downing et al. excluded river water surface from global water body area. 604 

5.4 Possibility of further improvement 605 

We restricted the resolution of G3WBM to 3 arc-second due to limitations in human and 606 

computational resources. However, given that the original resolution of Landsat images is about 607 

1 arc-second, developing a global 1 arc-second water body map with water frequency 608 

information is certainly possible. Given that the underestimation of lake area in G3WBM is 609 

likely due to omission of shoreline water pixels, the accuracy of water classification is 610 

anticipated to increase in a higher-resolution water body map. 611 

Even with the large number of scenes used, not all seasonal or extreme flood events will be 612 

captured in the water map developed here. Part of the reason for this will be due to the fact that 613 

cloud free scenes from leaf-on growing seasons were selected in the GLS collection, meaning 614 

that all the GLS images utilized come from the same season and therefore may “miss” flooding 615 

in other seasons. Given that temporary water bodies are hotspots for biodiversity and 616 

biogeochemical processes, accurate estimate of global temporal water extent is essential in this 617 

regard. Including future images as they become available, as well as broadening the number of 618 
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images processed to include non-GLCF scenes may help reduce these issues, but will bring a 619 

higher computation cost and may increase observational uncertainty. Furthermore, while most 620 

temporal water-covered areas represent seasonal flooding, some represent long-term trends 621 

(such as shrinking of the Aral Sea, construction of dams, disappearing water bodies in Alaska 622 

and Siberia). Separation of seasonal and long-term water body change may be important for 623 

estimating global dynamics of surface waters. In addition, it’s better to use topography data 624 

consistent with the time of Landsat image acquisition, because the elevation gradient from the 625 

DEM is used for water body classification. 626 

The classification algorithm could be further improved to capture water bodies more 627 

accurately. We used the classification criteria with globally-constant thresholds (as in Table 3), 628 

but the threshold could be different in different regions. For example, sediment-rich and/or 629 

turbid water tends to show lower NDWI and higher NDVI than sediment-free water, so that 630 

some sediment-rich rivers are misclassified as wet soil in G3WBM (e.g. small tributaries of the 631 

Indus River). Vegetated water surface (e.g. lakes with algal blooms, floating plants) has similar 632 

characteristics to sediment-rich water, thus it is difficult to be detected by classification criteria. 633 

Using variable thresholds (e.g. Feng et al., 2015) based on local reference water body data may 634 

be a good solution for improving classification accuracy. Shoreline pixels with land and water 635 

mixing are likely to be omitted as wet soil because they have a lower NDWI than pure water 636 

pixels. Applying an additional classification step for shoreline pixels, after determining water 637 

body pixels, may improve the overall accuracy of water body mapping because mixed shoreline 638 

pixels are considered to be a major source of water area underestimation. 639 

We did not applied atmospheric correction in this study in order to reduce computational 640 

requirements. The previous study by Verpooter et al. (2014) argued that atmospheric correction 641 

is not necessary for global water body mapping. Given that the GLCF GLS database consists of 642 

mostly-cloudless Landsat images from leaf-on growing seasons, atmospheric conditions are 643 

expected to be similar between different images and this probably decreases the need in 644 
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atmospheric correction. However it should be better to remove the inconsistency due to 645 

atmospheric conditions, especially when multi-temporal images are used (Song et al., .2001). 646 

Application of atmospheric correction is therefore a possible strategy for improving the 647 

accuracy of water body detection in the G3WBM. 648 

6. Conclusion 649 

We developed the Global 3 arc-second Water Body Map (G3WBM) using 33,890 650 

multi-temporal Landsat GLS images. In addition to the conventional land/water classification 651 

used in a previous global water body database, we separated permanent water bodies from 652 

temporal water-covered areas by calculating the frequency of water body existence from 653 

multi-temporal images. The G3WBM identified 3.25 million km2 of permanent water bodies in 654 

the global inland areas, while the global total of temporal water-covered areas was 0.5 million 655 

km2 (~15% of the global permanent water body area). The abundance of temporal 656 

water-covered areas suggests the importance of water frequency analysis using multi-temporal 657 

images. From the Comparison to a 30-m resolution water body map (the GLCF GIW), we 658 

concluded that the use of multi-temporal images is as important as analysis at a higher 659 

resolution for depicting global-scale dynamics of surface water bodies. 660 

The accuracy of water body delineation was validated using space/airborne photos and the 661 

existing database of waterbodies in Hokkaido (Japan) and in the contiguous United States. 662 

There was almost no commission error of water bodies in the G3WBM, which suggests that the 663 

proposed classification algorithm has a very high accuracy. The areas of small lakes in the 664 

G3WBM tend to be underestimated, mainly due to the mixing of land and water in shoreline 665 

pixels, however the accuracy will be improved if a water body map is generated at higher 666 

resolution. Given that the proposed method is automated, it is not impossible to generate a 667 

global water body map at 1 arc-second (~30 m) or higher resolutions. 668 
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The G3WBM is distributed free of charge for research and educational purposes. Please visit 669 

the product webpage (http://hydro.iis.u-tokyo.ac.jp/~yamadai/G3WBM) to get access to the 670 

database. 671 

672 

http://hydro.iis.u-tokyo.ac.jp/~yamadai/G3WBM
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Appendix 780 

A.1 SLC gap filling 781 

Landsat7 images after 31st May 2003 have striped gaps due to the failure of the Scan Line 782 

Corrector (SLC). This could result in striping patterns in water body classification, thus we 783 

removed the SLC gaps by the following interpolation method. After calculating water frequency, 784 

Fw , using multiple Landsat images (Section 3.2), pixels with Fw >0.1 were marked as 785 

potential water bodies. Remaining pixels were marked as potential land areas. Then, SLC gap 786 

filling was applied for each Landsat scene, using this extra information from non-SLC-gap 787 

scenes. If a pixel within an SLC gap was a potential water body in non-SLC-gap scenes, 788 

reflectance values were copied from its nearest water body pixel (outside the gap), and for 789 

potential land areas the nearest potential land pixel reflectance was copied. This interpolation is 790 

based on the assumption that reflectance values must be similar within adjacent water body 791 

pixels or within adjacent land pixels. Then, water frequency and multi-scene mean indexes were 792 

recalculated using the gap-filled Landsat images. Water mask classification was carried out with 793 

these recalculated indexes. 794 

A.2 Correction factor for observation confidence 795 

The correction factor NDLIf  in equation (5) was introduced to distinguish highly reflective 796 

vegetation/rock from cloud or ice/snow. The Normalized Difference Land Index (NDLI) was 797 

defined as follows: 798 
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      (A1). 799 

Given that vegetation and rock have relatively low reflectance in visible bands compared to 800 

infra-red bands, land shows higher NDLI than cloud and ice/snow. The correction factor NDLIf  801 

was calculated by equation (A2): 802 
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No correction is made on the probability index Pci  if NDLIf  equals 1, while probability of 804 

cloud/ice existence becomes lower when NDLIf  is smaller. 805 

The correction factor using brightness temperature Tbf  in equation (5) was applied to 806 

improve the accuracy of cloud/ice detection. Given that cloud and ice/snow are relatively cold, 807 

brightness temperature of pixels covered by cloud or ice/snow is expected to be low. The 808 

correction function Tbf  was defined separately for ice/snow and cloud. Given that ice has very 809 

low reflectivity in the short wave infra-red band, ice shows higher NDWI than cloud. We 810 

assumed that NDWI smaller than 0.3 represents cloud. The correction function Tbf  was given 811 

as follows: 812 
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     (A3). 813 

We assumed that pixels are not likely to represent cloud and ice/snow when the brightness 814 

temperature was higher than 25 degrees centigrade and 0 degrees centigrade, respectively. No 815 

correction was made on the probability index Pci  if Tbf  equals 1, while probability of 816 

cloud/ice existence becomes lower when Tbf  is smaller. 817 
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A.3 Correction factor for water probability 818 

Because shadows sometimes show a high NDWI similar to water, the correlation function 819 

using NDVI NDVIf  was used to modify water probability in equation (6). The reflectivity of 820 

water is very low in both near infra-red and short wave infra-red bands, while the reflectivity of 821 

shadow is not as low as water in near infra-red band. Therefore, pixels with high NDWI and 822 

high NDVI are potentially affected by shadows. The correction function NDVIf  was given by 823 

Equation (A4): 824 
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    (A4). 825 

No correction is made on NDWIP  when NDVIf  is 1, NDWIP  is reduced when NDVIf  is 826 

smaller than 1. As non-vegetated areas have a low NDVI, the correction function NDVIf  is 827 

expected to identify shadow well in vegetated areas, but may be less useful in detecting shadow 828 

in non-vegetated areas. 829 
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