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Instability of sphaleron black holes in asymptotically anti-de Sitter space-time
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Abstract

We prove that sphaleron black holes insu(2) Einstein-Yang-Mills-Higgs theory with a Higgs doubletin four-dimensional, asymp-
totically anti-de Sitter space-time are unstable.
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1. Introduction

There is now a zoo of soliton and hairy black hole solu-
tions of Einstein-Yang-Mills (EYM) theory and its variantsin
both asymptotically flat and asymptotically anti-de Sitter(adS)
space-times (see [1–4] for some reviews). In pure EYM in four
space-time dimensions with gauge groupsu(2), all nontrivial,
asymptotically flat, soliton [5] and black hole solutions [6–9]
are unstable [10–14]. With an appropriate choice of gauge,
linear, spherically symmetric, perturbations of the metric and
gauge field decouple into two sectors, with different proper-
ties under a parity transformation: an even-parity (or gravita-
tional) sector and an odd-parity (or sphaleronic) sector [12]. In
the odd-parity sector, instability of the solitons [15] andblack
holes [16] can be proven by an elegant method using a vari-
ational technique; this does not require knowledge of the de-
tails of the equilibrium solutions, just their global behaviour
and the boundary conditions on the fields. The instability in
the odd-parity sector is similar to that of the flat-space elec-
troweak sphaleron insu(2) Yang-Mills-Higgs (YMH) theory
[17–22] (hence the moniker “sphaleronic sector”), leadingto
a sphaleron interpretation of the soliton solutions [15].

Given this analogy between the flat-space YMH sphaleron
and solutions of EYM theory, it is interesting to study grav-
itating solitons and black holes in Einstein-Yang-Mills-Higgs
(EYMH) theory. In four-dimensional asymptotically flat space-
time, with gauge groupsu(2), sphaleron-like solutions have a
doublet-Higgs field in the fundamental representation of the
gauge group. Static, spherically symmetric, soliton and black
hole equilibrium solutions of EYMH were studied numerically
in [23]. There are two families of solutions, both of which share
features with the pure EYM solutions (to which they reduce
when the Higgs coupling is turned off). Like the EYM solu-
tions, both the solitons [24] and black holes [25, 26] in EYMH

Email address:E.Winstanley@sheffield.ac.uk (Elizabeth
Winstanley)

have a sphaleron-like instability in the odd-parity sectorof lin-
ear, spherically symmetric perturbations.

It is well-known that the properties of EYM solitons and
black holes in asymptotically adS space-time are radicallydif-
ferent from those of the corresponding solutions in asymptoti-
cally flat space-time. In particular, forsu(2) gauge group, there
exist nontrivial EYM solitons and black holes which are stable
under linear, spherically symmetric perturbations in boththe
odd-parity and even-parity sectors [27–29].

The following question then arises: does this existence of sta-
ble pure EYM solutions in adS extend to EYMH solitons and
black holes? Numerical solutions of thesu(2) EYMH equa-
tions, with a doublet Higgs field, in four-dimensional asymp-
totically adS space-time, were found some time ago [30]1. The
solutions resemble the asymptotically flat EYMH solitons and
black holes studied in [23] rather than the asymptotically adS
pure EYM configurations. By a simple extension of the analy-
sis in [24], it can be shown that the asymptotically adS EYMH
solitons have an instability in the odd-parity sector [30] analo-
gous to the instability of the corresponding asymptotically flat
EYMH solitons. Given this result, and the similarity between
the asymptotically flat and adS EYMH black holes, the au-
thors of [30] conjecture that the black hole solutions will also
be unstable, but do not provide a proof since the techniques
used in [25, 26] to prove the instability of the asymptotically
flat EYMH black holes do not extend to the asymptotically adS
case.

In this note we close this gap by presenting a proof of the
instability of black holes insu(2) EYMH theory with a doublet
Higgs field in asymptotically adS space-time under odd-parity,
linear, spherically symmetric perturbations. In section 2we out-
line the equilibrium and perturbation equations satisfied by the
sphaleron black holes, following [24–26]. Our instabilityproof
is in section 3 followed by brief conclusions in section 4.

1Solutions of thesu(2) EYMH equations in adS with a triplet Higgs field in
the adjoint representation of the gauge group have also beenfound [31, 32].
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2. Static and perturbation equations for EYMH theory in
adS

We consider EYMH theory in four-dimensional, asymptoti-
cally adS space-time. The gauge group issu(2) and the dou-
blet Higgs field is in the fundamental representation. We focus
on spherically symmetric soliton and black hole configurations
with metric

ds2 = −N(t, r)S2(t, r)dt2+N−1dr2+ r2
(

dθ2 + sin2 θ dϕ2
)

. (1)

For thesu(2) gauge field, we employ the ansatz [23, 24, 30]

A =a0(t, r)τrdt+ a1(t, r)τrdr

+ [ω(t, r) + 1]
[

−τϕdθ + τθ sinθ dϕ
]

+ ω̃(t, r)
[

τθdθ + τϕ sinθ dϕ
]

, (2)

where theτi are generators of thesu(2) gauge group in spher-
ical coordinates (see, for example, Appendix A of [26]). The
doublet Higgs field takes the form [23, 24, 30]

Φ =
1
√

2

(

ψ2 + iψ1

φ(t, r) − iψ3

)

, (3)

where
ψ = ψ(t, r)r̂. (4)

The Higgs potential is

V(Φ) =
λ

4

(

Φ†Φ − v2
)2
, (5)

whereλ andv are constants.
Spherically symmetric EYMH solitons and black holes are

described by the real quantitiesN, S, a0, a1, ω̃, ω, φ andψ. For
static equilibrium configurations, all these quantities are func-
tions of the radial coordinater only. Furthermore, in this case
we havea0 = a1 = ω̃ = ψ = 0 [23, 30]. The remaining nonzero
matter field functionsω(r), φ(r) satisfy the following static field
equations, which arise from the Yang-Mills and Higgs equa-
tions [23, 30]:

Nω′′ +
(NS)′

S
ω′ =

1
r2

(

ω2 − 1
)

ω +
φ2

4
(1+ ω) , (6a)

Nφ′′ +
(NS)′

S
φ′ +

2N
r
φ′ =

1
2r2

φ (1+ ω)2 + λφ
(

φ2 − v2
)

,

(6b)

where a prime′ denotes differentiation with respect tor. The
derivatives of the metric functionsN andS can be written in
terms of the matter field functions using the Einstein equations;
we shall not require these equations for our analysis.

The variational method we employ in the next section does
not depend on the details of the equilibrium matter fields, but
the boundary conditions they satisfy will be crucial. We con-
sider only the space-time exterior to a regular, nonextremal
event horizon atr = rh, in a neighbourhood of which the field
variables take the form [30]

N(r) = O(r − rh), S(r) = Sh +O(r − rh),

ω(r) = ωh +O(r − rh), φ(r) = φh +O(r − rh), (7)

whereSh, ωh andφh are constants. Asr → ∞, the space-time
metric (1) tends to that of pure adS space-time, so that

N(r) =
r2

ℓ2
+ 1+O(r−1), S(r) = 1+ o(r−1), (8)

whereℓ is the adS radius of curvature. The matter fields have a
complicated power-law decay asr → ∞ [30]:

ω(r) = −1+
c1

rk1
, φ(r) = ±v+

c2

rk2
, (9)

wherec1 and c2 are constants, and the powersk1 and k2 are
given by [30]

k1 =
1
2

(

1+
√

1+ v2ℓ2
)

, k2 =
3
2















1+

√

1+
8λv2ℓ2

9















. (10)

The boundary conditions (9) at infinity constrain the YMH
matter fields to have their vacuum values (as happens in the
asymptotically flat case [23]), in contrast to the boundary con-
ditions at infinity for pure EYM in adS, which do not constrain
the value of the gauge field functionω asr → ∞. This indicates
that the asymptotically adS EYMH solitons and black holes
are more like their counterparts in asymptotically flat space-
time than the pure EYM solutions in adS. In asymptotically flat
space-time, the matter functionsω andφ have an exponential
rather than power-law fall off asr → ∞ [23], but this does not
have a major effect on the equilibrium solutions.

We now consider linear, spherically symmetric, perturbations
of the static equilibrium configurations. By a choice of gauge,
the perturbationδa0 can be set to vanish identically [24]. The
remaining perturbations decouple into two sectors: the even-
parity (gravitational) sector consists of the perturbations of the
metric functionsδN andδS, together with the matter perturba-
tions δω andδφ; the odd-parity (sphaleronic) sector contains
the perturbationsδa1, δω̃ andδψ. We consider only the latter
sector of perturbations. All perturbations depend on timet as
well as the radial coordinater.

The linear perturbation equations for the odd-parity sector
are the same in the asymptotically adS case as they are for the
asymptotically flat case [24, 30]. Defining a vector of perturba-
tionsΨ(t, r) by

Ψ(t, r) = (δa1, δω̃, δψ)T , (11)

they take the form [24, 26]

− AΨ̈ = HΨ, (12)

where a dot˙denotes differentiation with respect to timet. The
perturbation equations (12) involve two operators on the space
of perturbationsΨ, namely [24, 26]

A =





















Nr2 0 0
0 2 0
0 0 r2





















, (13)

2



while the components of the operatorH are given by [24, 26]

Ha1a1 = 2(NS)2

(

ω2 +
r2φ2

8

)

,

Hω̃ω̃ = 2p2
∗ + 2NS2

(

ω2 − 1
r2

+
φ2

4

)

,

Hψψ = 2p∗
r2

2
p∗ + 2NS2

















(1− ω)2

4
+

r2λ
(

φ2 − v2
)

2

















,

Ha1ω̃ = −2iNS
[

(p∗ω) − ωp∗
]

,

Hω̃a1 = −2i
[

p∗NSω + NS (p∗ω)
]

,

Ha1ψ =
ir 2NS

2
[

(p∗φ) − φp∗
]

,

Hψa1 = ip∗
r2

2
NSφ +

ir 2

2
NS (p∗φ) ,

Hψω̃ = Hω̃ψ = −φNS2. (14)

In (13, 14), all field variables are equilibrium quantities depend-
ing on the radial coordinater only, and we have defined the
differential operator

p∗ = −iNS
d
dr
. (15)

3. Proof of instability of sphaleron black holes in adS

We will now prove that the sphaleron black hole solutions
of su(2) EYMH theory in four-dimensional asymptotically adS
space-time possess an instability in the odd-parity sectorof per-
turbations. Our proof is a minor modification of that for the
corresponding asymptotically flat black holes [25, 26].

We begin by considering time-periodic perturbations (11)
with frequencyσ:

Ψ(t, r) = Ψ(r)eiσt, Ψ(r) = (δa1(r), δω̃(r), δψ(r))T . (16)

The perturbation equations (12) then take the form of an eigen-
value problem forσ2:

σ2AΨ(r) = HΨ(r). (17)

Rather than attempting to solve the above eigenvalue equation
directly, we follow [16, 24, 25] and use a variational method
to show that (17) possesses negative eigenvalues. Ifσ2 < 0,
the frequencyσ is purely imaginary and the perturbations (16)
grow exponentially with time, indicating an instability ofthe
corresponding equilibrium configurations.

We consider the following inner product on the space of per-
turbationsΨ(r):

〈Ψ|Υ〉 =
∫ ∞

r=rh

ΨΥ
dr
NS

, (18)

with respect to which the operatorsA (13) andH (14) are
symmetric (when acting on perturbations satisfying appropri-
ate boundary conditions) and it is straightforward to show that

A is positive definite. Our variational approach involves the
functional

σ2(Ψ) =
〈Ψ|H|Ψ〉
〈Ψ|A|Ψ〉 (19)

which is defined for anytrial perturbationΨ(r) (not necessarily
an eigenvector ofH). The lowest eigenvalue of the operatorH
gives a lower bound for the functionalσ2(Ψ). Therefore, if we
can find a trial perturbationΨ(r) for which

σ2(Ψ) < 0, 〈Ψ|A|Ψ〉 < ∞, (20)

then the operatorH has at least one negative eigenvalue, and
we have proven instability. As emphasized in [16], the second
condition in (20) is essential for ensuring that the trial perturba-
tions considered are normalizable, since the existence of non-
normalizable perturbationsΨ for which σ2(Ψ) < 0 does not
imply the instability of the equilibrium configurations.

Following [25, 26], we consider the following trial perturba-
tions:

δa1 = −ω′Z,
δω̃ =

(

ω2 − 1
)

Z,

δψ = −1
2
φ (1+ ω) Z, (21)

whereZ is a function ofr to be determined shortly. Then

〈Ψ|A|Ψ〉 =
∫ ∞

rh

Z2 dr
NS

[

Nr2ω′2 + 2
(

ω2 − 1
)2
+

r2φ2

4
(1+ ω)2

]

,

(22)
and, using (6) and performing an integration by parts,

〈Ψ|H|Ψ〉 =

−
∫ ∞

rh

S dr

[

2Nω′2 +
2
r2

(

ω2 − 1
)2
+

1
2
φ2 (1+ ω)2

]

+

∫ ∞

rh

S
(

1− Z2
)

dr

[

2Nω′2 +
2
r2

(

ω2 − 1
)2
+

1
2
φ2 (1+ ω)2

]

+

∫ ∞

rh

NS

(

dZ
dr

)2

dr

[

2
(

ω2 − 1
)2
+

r2φ2

4
(1+ ω)2

]

−
[

NS Z
dZ
dr

{

2
(

ω2 − 1
)2
+

r2φ2

4
(1+ ω)2

}]∞

rh

, (23)

where we have explicitly retained the boundary terms omitted
in [25, 26].

For equilibrium solitons, the lower limit on the integral in
(18) is set to ber = 0 rather thanr = rh. In this case it is
sufficient to simply setZ ≡ 1 [30]; the boundary conditions at
infinity (8, 9) and at the origin ensure the finiteness of〈Ψ|A|Ψ〉
(22), and in〈Ψ|H|Ψ〉 all terms except the first integral (which is
manifestly negative) vanish, so that〈Ψ|H|Ψ〉 < 0 and instability
is proven.

SettingZ ≡ 1 does not work for the black hole case because
then the integrand in (22) would diverge in a nonintegrable way
asr → rh. We therefore need to define a suitable functionZ.
First define the usual “tortoise” coordinater∗ by

dr∗
dr
=

1
NS

. (24)

3



As r → rh, the tortoise coordinater∗ → −∞. However, as
r → ∞, the boundary conditions (8) mean thatr∗ tends to a
constant, which may be taken to be zero without loss of gener-
ality. The functionsZ used in [16, 25, 26] to prove instability
for sphaleron black holes in the asymptotically flat case assume
that r∗ has values in the full range (−∞,∞) and so cannot be
used here. However, a minor modification is all that is required.

To this end, we define a sequence of functionsZk in terms of
r∗, as follows (cf. [16, 25, 26]):

Zk(r∗) = Z
( r∗

k

)

, k = 1, 2, . . . , (25)

whereZ(r∗) is defined by

Z(r∗) = 1 for r∗ ∈ [−a, 0], Z(r∗) = 0 for r∗ < −a− 1,
(26)

for some positive constanta > 0, and furthermore there is an-
other positive constantD > 0 such that

0 ≤ dZ
dr∗
≤ D for r∗ ∈ [−a− 1,−a]. (27)

As r → ∞, for eachk, we haveZk = 1 and dZk
dr = 0 so that

the contribution to the boundary term in (23) coming from in-
finity vanishes. These facts and the boundary conditions (8,9)
ensure that the integrands in (22, 23) all tend to zero asr → ∞,
and yield finite integrals. Asr → rh, for eachk it is the case
that Zk = 0 and dZk

dr = 0. These, together with the bound-
ary conditions (7), ensure that all integrals in (22, 23) arefinite
and that the contribution to the boundary term in (23) from the
horizon also vanishes. In particular, for eachZk, we have that
〈Ψ|A|Ψ〉 < ∞, as required.

The first integral in〈Ψ|H|Ψ〉 (14) is clearly negative. Write
the second and third as follows:

I2 =

∫ ∞

rh

dr
(

1− Z2
k

)

F , I3 =

∫ ∞

rh

NS dr

(

dZk

dr

)2

G, (28)

where the positive functionsF andG are given by

F = S

[

2Nω′2 +
2
r2

(

ω2 − 1
)2
+
φ2

2
(ω − 1)2

]

,

G = 2
(

ω2 − 1
)2
+

1
4

r2φ2 (ω − 1)2 . (29)

It is straightforward to show that

0 ≤ I2 ≤ (rk − rh)FM , 0 ≤ I3 ≤
D2

k
GM , (30)

wherer∗(rk) = −ka and

FM = max
r∈[rh,∞)

F , GM = max
r∈[rh,∞)

G. (31)

The boundary conditions (7, 8, 9) ensure the finiteness ofFM

andGM. The bounds on the right-hand-side of each inequality
in (30) can be made arbitrarily small by considering sufficiently
largek: for the integralI2 this is becauserk → rh ask → ∞.
Therefore, for sufficiently largek the dominant contribution to
〈Ψ|H|Ψ〉 (14) comes from the first integral and〈Ψ|H|Ψ〉 < 0.
This suffices to prove instability.

4. Conclusions

In this paper we have proven that static, spherically sym-
metric, sphaleron black holes insu(2) EYMH theory with a
doublet Higgs field in the fundamental representation, in four-
dimensional asymptotically adS space-time, are unstable.Cou-
pled with the analysis in [30], we conclude that both solitons
and black holes in this theory in adS are unstable, like their
asymptotically flat counterparts. This is in contrast to thesitu-
ation in puresu(2) EYM theory in adS, where there exist sta-
ble solitons and black holes [27–29]. It is also interestingto
note that there are stable black hole solutions of pure Einstein-
Higgs theory (with no gauge field) in four-dimensional, asymp-
totically adS space-time [33].

How can we understand this difference in behaviour? Mathe-
matically, the key difference between the pure EYM theory and
EYMH theory in adS is the boundary conditions on the gauge
field at infinity, the boundary conditions for EYMH being much
more restrictive (fixing the value ofω asr → ∞) than in the
EYM case (whereω can take any finite value asr → ∞). Phys-
ically, in EYMH theory the gauge field dynamically acquires
a mass and both it and the Higgs field must be in the vacuum
configuration at infinity. In pure EYM theory, where the gauge
field is massless, for stable solutions it generically is notin the
vacuum configuration at infinity. Interestingly, for stablesolu-
tions in Einstein-Higgs theory in adS, the boundary conditions
on the scalar field at infinity are also very restrictive: for stable
configurations the scalar field must approach the local maxi-
mum of the Higgs potential [33]. However, this means that the
scalar field is not in the vacuum configuration at infinity.

We therefore conjecture that the boundary conditions at infin-
ity are of importance in determining whether a particular mat-
ter model has stable soliton and hairy black hole solutions in
asymptotically adS space-time. Based on the above discussion,
matter fields which have to be in the vacuum configuration at
infinity seem to yield only unstable solitons and hairy black
holes, while those that can have nonvacuum values at infinity
seem to have at least some stable equilibrium solutions.

It would be interesting to test this conjecture with other mat-
ter models in adS. As a starting point, in a forthcoming work
we will examine soliton and black hole solutions of Einstein-
non-Abelian-Proca (ENAP) theory in adS [34]. In asymptoti-
cally flat space-time, solitons and black holes in ENAP theory
(in which the gauge field is given an effective mass by hand in
the action, rather than mass being dynamically generated bythe
Higgs field) share many properties with those in EYMH theory
[23]. Like the authors of [30], we conjecture that the same is
true in asymptotically adS space-time, and will investigate this
elsewhere [34].
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