
promoting access to White Rose research papers 

   

White Rose Research Online 
eprints@whiterose.ac.uk 

 

 
 

Universities of Leeds, Sheffield and York 
http://eprints.whiterose.ac.uk/ 

 
 

This is an author produced version of a paper accepted for publication in Journal 
of Sound and Vibration. 
 
White Rose Research Online URL for this paper: 
http://eprints.whiterose.ac.uk/10114/  
 

 
 
Published Paper 
Sims, N.D., Manson, G. and Mann, B.P. (2009) Fuzzy stability analysis of 
regenerative chatter in milling. Journal of Sound and Vibration, 329 (8), pp.1025-1041. 

http://dx.doi.org/10.1016/j.jsv.2009.10.024 

 

http://eprints.whiterose.ac.uk/10114/
http://dx.doi.org/10.1016/j.jsv.2009.10.024
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Abstract

During machining, unstable self-excited vibrations known as regenerative chatter can occur,

causing excessive tool wear or failure, and a poor surface finish on the machined workpiece.

Consequently it is desirable to predict, and hence avoid the onset of this instability. Regen-

erative chatter is a function of empirical cutting coefficients, and the structural dynamics of

the machine-tool system. There can be significant uncertainties in the underlying parame-

ters, so the predicted stability limits do not necessarily agree with those found in practice.

In the present study, fuzzy arithmetic techniques are applied to the chatter stability prob-

lem. It is first shown that techniques based upon interval arithmetic are not suitable for this

problem due to the issue of recursiveness. An implementation of fuzzy arithmetic is then

developed based upon the work of Hanss and Klimke. The arithmetic is then applied to two

techniques for predicting milling chatter stability: the classical approach of Altintas, and the

time-finite element method of Mann. It is shown that for some cases careful programming

can reduce the computational effort to acceptable levels. The problem of milling chatter

uncertainty is then considered within the framework of Ben-Haim’s information-gap theory.

It is shown that the presented approach can be used to solve process design problems with

robustness to the uncertain parameters. The fuzzy stability bounds are then compared to

previously published data, to investigate how uncertainty propagation techniques can offer

more insight into the accuracy of chatter predictions.

Key words: fuzzy arithmetic, milling chatter, affine arithmetic, interval arithmetic,

uncertainty
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1. Introduction

Regenerative chatter is a self-excited vibration that can arise in many machining oper-

ations. It the most common form of machining chatter [1], and leads to an unacceptable

workpiece surface finish, excessive tool wear, and potential damage to the machine itself.

Consequently a great deal of research has been performed in order to understand, pre-5

dict, and prevent regenerative chatter. Although the underlying mechanism is now well

understood, the uncertainties that arise during practical machining operations mean that

the stability of the actual process does not always match the expected behaviour. For ex-

ample, chatter stability is strongly dependent upon the structural dynamics of the system

(tool, workpiece, and machine), as well as being a function of empirically derived cutting10

coefficients. Consequently, variations in the structural dynamics (e.g. between nominally

identical tools) or variations in cutting properties (e.g. between material batches) can have

a dramatic effect on the chatter stability.

Where statistical data is available to describe the variability and uncertainty in param-

eters, probabilistic techniques (e.g. Monte Carlo simulations) can be applied to the chatter15

stability problem [2]. However, detailed statistical data are not always available for a num-

ber of reasons. For example, identifying the probability distribution of the empirical cutting

coefficients would require extensive testing with differing stages of tool wear. The distribu-

tion of the modal parameters (or complete frequency response function) for the structural

components would also require extensive testing. Even then, it may not be possible to mea-20

sure the structural behaviour under the required conditions, e.g. tool rotation and pre-load.

Consequently, economic and practical issues force the engineer to consider alternative, non-

probabilistic techniques that can estimate the chatter stability whilst still accounting for the

variability or uncertainty in the process parameters.

One such approach that has been used for various problems in structural dynamics [3, 4]25

is fuzzy arithmetic. The present article is motivated by the fact that there are have been
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very few previous contributions that have applied fuzzy arithmetic to regenerative chatter

problems. One relevant study is the work of Fansen and Junyi [5], who used fuzzy methods

to interpret the onset of stability in experimental machining tests. However, the present

contribution is primarily concerned with the prediction of chatter stability, rather than

experimental identification methods. The most relevant study is the earlier work of Fansen5

et al [6], who applied fuzzy arithmetic to the classical regenerative chatter model described

by Tlusty [1]. Fuzzy stability lobes were mainly developed for the case of single-degree-of-

freedom structural dynamics, with a fuzzy-valued damping ratio. For this case, the classical

chatter model can provide an analytical solution where there is only one fuzzy output: the

limiting depth of cut at which chatter occurs. The output is very easy to compute and is10

often monotonic with respect to the fuzzy input. Consequently, Fansen et al. [6] were able

to present an analytical expression for the fuzzy output of the system.

The present study includes two key aspects which differ from Fansen et al’s work. First,

more recent and accurate regenerative chatter models are considered which are specifically

focussed on milling. Second, there is no constraint on the fuzziness of the input parameters15

to the model (i.e. any number of inputs can be fuzzy). This results in model predictions

that are bivariate and non-monotonic. In other words, the chatter stability is fuzzy with

respect to both depth of cut and spindle speed. This means that the fuzzy equations cannot

be directly manipulated or solved, and so novel mathematical techniques or approximations

are required.20

Similar issues arise with many other engineering modelling techniques that have been

investigated using fuzzy methods (e.g. finite element methods [3]). One approach that

has been adopted is to consider each fuzzy variable at different ‘levels of membership’,

and to use interval arithmetic to calculate the corresponding model outputs. Alternatively,

the response at each membership level can be approximated by performing multiple ‘crisp’25

calculations using standard arithmetic [7]; reassembling the results of these calculations leads

to fuzzy number(s) that describe the output to the engineering model. One methodology

for implementing this approach is the so-called transformation method [4].

In the present study, fuzzy arithmetic is applied to the chatter stability problem, by
3



adapting two different stability algorithms from the recent literature. The study focuses on

milling, since this machining process is particularly susceptible to regenerative chatter, and

substantial performance gains can be made if the chatter stability is properly understood.

After introducing two chatter stability models, it is shown that interval arithmetic meth-

ods are unsuitable for this problem, due to the recursive nature of the stability models. A5

‘design of experiments’ approach is then adopted, following the work of Hanns [8] and Klimke

[9]. Two numerical examples are used to demonstrate the potential advantages of the fuzzy

analysis. In the first case, it is shown how concerns over the uncertainty/variability of two

process variables can influence the stability boundary. A robust process design is then se-

lected, using the fuzzy approach. In the second case, previously published experimental data10

is compared to stability prediction models. It is shown that accounting for uncertainty or

variability in the process parameters can serve to justify deviations between the experimental

and predicted behaviour.

2. Milling stability analysis

During milling, it is desirable to maximise the productivity, or metal removal rate, whilst15

maintaining acceptable tool wear and avoiding chatter. The metal removal rate Mrr is given

by:

Mrr = brwf (1)

where b is the axial depth of cut, r is the radial immersion of the tool into the workpiece,

and wf is the workpiece feed rate. The feed rate is commonly set to achieve a constant feed

per tooth fpt regardless of the spindle speed Ω (rev/min) and number of teeth Nt:20

wf =
ΩfptNt

60
(2)

Meanwhile, self-excited chatter vibrations can arise due to the ‘regeneration of surface wavi-

ness’ [1], which results in a stability lobe diagram such as the one shown schematically in

Fig. 1. Here, it can be seen that the chatter stability varies with milling spindle speed and

milling axial depth of cut. Contours of constant Ωb are also shown on Fig. 1, to indicate

how the metal removal rate Mrr varies.25
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Figure 1: Schematic relationship between spindle speed, depth of cut, and stability.

In the present study, two stability analysis methods will be implemented, using fuzzy

arithmetic, to determine a fuzzy stability lobe. The methods share the same basic model

for the forces and vibrations during milling. This model will now be summarised.

2.1. Forces and deflections

An orthogonal milling scenario is considered in Fig. 2. The tool has Nt teeth and5

is rotating at a constant angular speed of Ω rev/min, which means that the time delay

between one tooth pass and the next is:

τ =
60

ΩNt

(3)

Assuming a circular tooth path and a feed per tooth wf , the chip thickness for tooth j

is given by [10, 11, 12]:

wj =g (φj (t))×

[wf sin (φj (t)) + (ux (t) − ux (t − τ)) sin (φj (t)) + (uy (t) − uy (t − τ)) cos (φj (t))]
(4)

where ux(t) and uy(t) are the relative vibrations between the tool and workpiece in the x10

and y directions respectively, and φj(t) is the angle of the tooth as shown in Fig. 2. The

function g is a unit step function which has a value unity when tooth j is engaged in the

workpiece:

g(φj(t)) =







1 if φst < φj(t) < φex

0 if φst > φj(t) or φj(t) > φex

(5)
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Figure 2: Schematic representation of milling.

Here, φst and φex define the angles at which the teeth enter or exit the workpiece. For a

radial immersion r and tool diameter D they become:

φst =







0 up milling

π − cos−1
(

1 − 2 r
D

)

down milling

φex =







cos−1
(

1 − 2 r
D

)

up milling

π down milling

(6)

Returning to Eq. (4), as with previous literature [10] the static component wf sin(φj)

is neglected in the stability analysis because it does not contribute to the regenerative

effect. Clearly, the chip generation process depends upon the difference between current5

displacements ux, uy, and displacements at previous time points, due to the presence of the

delay term τ .

Meanwhile, with reference to Fig. 2 it is often assumed that the forces produced by each

tooth j in the cutting process are proportional to the chip thickness wj and axial depth of

cut b, as follows:10

ft,j = Ktbwj

fn,j = Krft,j

(7)
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which leads to corresponding forces in the x and y directions. The empirical cutting force

coefficients Kt and Kr can also be expressed as a magnitude Ks and an angle β:

Ks = Kt

√

1 + K2
r

β = tan−1

(

1

Kr

) (8)

If the tool is able to vibrate in the x and y directions (due to its structural dynamics),

then the forces in Eq. (7) induce vibrations ux and uy. This results in a mechanism of

self-excited vibration that is illustrated schematically in Fig. 3. The aim, therefore, is for a5

given spindle speed Ω to predict the depth of cut blim at which the self-excited vibrations

become unstable. This is known as the chatter stability boundary, and the relationship

between Ω and blim is referred to as the stability lobe diagram. In the next sections, two

alternative methods for determining the stability lobe diagram are summarised.

Dynamic cutting 

forces 
Structural 

Dynamics 

[G(j )] 

Dynamic  

chip thickness 

Cutting process 

Relative displacements 

Dynamic 

cutting force 

coefficients

Figure 3: Block diagram of chatter vibration in milling.

2.2. Time-averaged 2DOF chatter stability analysis10

Budak and Altintas [13] proposed an analytical method for determining chatter stability

in milling. They assumed that the structural dynamics of the tool at the cutting loca-

tion could be described by two linear frequency response functions (Gxx, Gyy). They then

showed that the relative displacements between tool and workpiece depend upon four peri-

odic milling force coefficients that map the chip thickness to the cutting force. The first term15

in the Fourier series of these periodic coefficients was then taken, effectively time-averaging
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the coefficients. The coefficients are given by:

αxx = 1

2
[cos 2φ − 2Krφ + Kr sin 2φ]φex

φst

αxy = 1
2
[− sin 2φ − 2φ + Kr cos 2φ]φex

φst

αyx = 1

2
[− sin 2φ + 2φ + Kr cos 2φ]φex

φst

αyy = 1
2
[− cos 2φ − 2Krφ − Kr sin 2φ]φex

φst

(9)

The characteristic equation of the system can then be written as:

a0Λ
2 + a1Λ + 1 = 0 (10)

Where the coefficients a0 and a1 are:

a0 = Gxx (jω) Gyy (jω) (αxxαyy − αxyαyx)

a1 = αxxGxx (jω) + αyyGyy (jω)
(11)

The complex-valued eigenvalue Λ is related to the limiting depth of cut blim (above which

chatter occurs) by:5

blim = −
2π

NtKt

Im (Λ)

(

Re (Λ)

Im (Λ)
+

Im (Λ)

Re (Λ)

)

(12)

Meanwhile, the corresponding spindle speed is given by:

Ω =
60ω

Nt (3π − 2∠Λ + 2πn)
n = 0, 1, 2, ..., N (13)

where N is the maximum ‘lobe number’ that is in practice capped at a value of 10 or 20. At

this stage it is worth pointing out that the solution of Eq. (12) and Eq. (13) involves solving

a second order complex eigenvalue problem. Although this can be performed analytically,

the outputs are not guaranteed to be monotonic with respect to the inputs. This has10

implications when a fuzzy arithmetic approach is applied.

2.3. Simplification for one-dimensional vibration

If the machine structure can be considered rigid in either the x or y directions, then Gxx

or Gyy will be zero. Referring to Eq. (11), it can be seen that a0 = 0, so Eq. (10) can be

rewritten as:15

Λ = −
1

a1

(14)
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Budak and Altintas [14] showed that the stability equations become similar to those for

turning applications [1]:

blim =
−1

2NtKsRe (GOTF (jω))
(15)

where GOTF (jω) is the orientated transfer function, i.e. the non-zero frequency response

function (Gxx or Gyy) scaled by an orientation coefficient. The spindle speed is given by:

Ω =
60ω

2πNt

(

n + φ

2π

) (16)

Here, φ is an angle based on the Nyquist diagram for the frequency response function5

GOTF (jω):

φ = 2π − 2atan2 (Re(GOTF (jω), Im(GOTF (jω)) (17)

2.4. TFEA chatter stability analysis

The preceding sections have shown that the milling chatter stability can be determined

analytically, but the approach assumes that the periodic cutting force coefficients can be

time-averaged. It transpires that this approximation becomes less accurate at lower radial10

immersions (r in Fig. 2). Although the time-averaged approach can be extended to account

for this issue [15], the present study will apply a different approach [16] that uses temporal

finite element analysis. Rather than averaging the time-periodic cutting force coefficients,

this technique starts by writing the system equations of motion in the form:

ẏ (t) = At (t)y (t) + Bt (t)y (t − τ) (18)

Where the time-periodic matrix coefficients At and Bt include the time-periodic cutting15

force coefficients and the state-space equations of motion for the structural dynamics. The

stability of Eq. (18) is analysed by investigating the eigenvalues (characteristic multipliers)

of the corresponding discrete map (mapping the state variables y from one tooth pass to

the next). The discrete map is formed from two regions of the tool rotation. In the first

region, no teeth are engaged in the workpiece, so the tool experiences free vibration, and the20

motion can be determined analytically. In the second case, when a tooth is engaged in the
9



workpiece, the time-finite element method is employed. An assumed solution for the state

and delayed state are written as a linear combination of polynomials:

y (t) =
3
∑

i=1

an
jiϕi (σ)

y (t − τ ) =
3
∑

i=1

an−1
ji ϕi (σ)

(19)

Here, σ represents the ‘local time’ within each temporal element j. Substituting these trial

solutions into Eq. (18) leads to a non-zero error. The method of weighted residuals is then

applied to each temporal element in turn. The results can then be assembled to produce5

an equation that relates the states of the system for the current tooth pass to those for the

previous tooth pass:

yn = Qyn−1 (20)

Finally, the eigenvalues of Q can be used to determine the chatter stability. Eigenvalues

with magnitude less than unity indicate stable, chatter-free cutting.

Compared to the time-averaged method, the TFEA approach can provide a more accu-10

rate stability prediction because it accounts for the periodic terms in the cutting forces. This

becomes increasingly important at low radial immersions, where each tooth is only engaged

in the workpiece for a small proportion of its full rotation. It has been shown [17, 18] that

this low radial immersion can give rise to period-doubling bifurcations in addition to the

classical secondary Hopf bifurcations that are normally associated with milling chatter.15

It is useful to point out that this stability analysis involves the numerical solution of

a relatively low order (e.g. 16th order) eigenvalue problem. Although this can be done

extremely quickly, for each spindle speed the computation must be repeated over a range

of values of the depth of cut b. The stability boundary (i.e. stability lobe diagram) can

then be determined by interpolation to estimate the combinations of b and Ω that result in20

marginal stability (i.e. an eigenvalue of unity). Again, the eigenvalue problem means that

the outputs are not guaranteed to be monotonic with respect to the inputs.
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3. Fuzzy arithmetic

Section 2 has summarised two techniques for predicting chatter stability. In this section,

fuzzy arithmetic methods will be described, so that the stability analyses can be encoded

with fuzzy input variables.

Fuzzy arithmetic has been used by various researchers as a technique for propagating5

uncertainty or variability through complex engineering models. The origins of this approach

can be found in the theory of Fuzzy Sets. In contrast to classical set theory, the elements

of a fuzzy set are assigned a degree of membership to the set, which is referred to as the

membership level µ. The core of the set is defined as the subset of elements for which µ=1,

whilst the support is the subset for which µ>0. A fuzzy number is a fuzzy set that is convex10

and normal, and whose membership function is piecewise continuous [7]. An example of a

symmetric triangular fuzzy number is given in Fig. 4.

As the name implies, fuzzy arithmetic involves performing mathematical operations on

fuzzy numbers, rather than conventional numbers. However, this can be a challenging

problem, and so many researchers have resorted to approximating the fuzzy arithmetic15

processes by performing multiple evaluations at different membership levels. The resulting

data is then used to approximate the output fuzzy number, by determining the maximum

and minimum values for each membership level. For monotonic problems this process can

become trivial, since the maxima and minima of the inputs will lead to the maxima or minima

for the output. For non-monotonic problems (such as the chatter stability models developed20

in Section 2), this is no longer the case, and so alternative methods must be employed.

This situation is further complicated when the arithmetic involves complex numbers. To

tackle this problem, two alternative techniques are now described: complex interval-based

arithmetic, and ‘transformation methods’.

3.1. Interval-based arithmetic25

Returning to Fig. 4, it can be seen that at membership level µj, the value of x can

lie anywhere between xj and xj . As previously mentioned, it is desirable to determine the

associated range of values for some function f(x). Interval analysis is one technique that can
11



Figure 4: Representing a fuzzy number as an interval using α-cuts

be employed for this problem. Perhaps the most significant early work on interval arithmetic

was its application to digital computing in the 1960’s [19]. With interval arithmetic, the

range of values of x is represented as an interval number, [xj , xj ]. Arithmetical operations

can then be defined for interval numbers. For example, interval addition and multiplication:

[xj , xj ] + [yj, yj] = [xj + yj, xj + yj]
[

xj , xj

]

× [yj, yj] = [min{xjyj, xjyj, xjyj, xjyj}, max{xjyj, xjyj, xjyj, xjyj}]
(21)

However, a major problem with interval arithmetic is the issue of dependency. A simple5

example demonstrates that interval arithmetic does not necessarily follow the law of dis-

tributivity, for three interval numbers x = [0, 1], y = [−1, 2], z = [3, 4]:

x × (y + z) = [0, 1] × ([−1, 2] + [3, 4]) = [0, 1] × [2, 6] = [0, 6] (22)

(x × y) + (x × z) = ([0, 1] × [−1, 2]) + ([0, 1] × [3, 4]) = [−1, 2] + [0, 4] = [−1, 6] (23)

It can be seen that interval arithmetic is not capable of recognising multiple occurrences of

the same variable, and evaluates each occurrence as being independent of the other. When an

interval variable occurs more than once in an expression, large overestimation of the interval10

range can occur. This is demonstrated by Eq. (23) giving a range of [-1,6], instead of [0,6].

12



One solution to this problem is to attempt to track the dependency between variables, using

the concept of affine arithmetic.

Affine arithmetic. Affine analysis attempts to allow for uncertainty in parameters

whilst accounting for dependency between operands. Affine arithmetic provides a conser-

vative solution set which is guaranteed to contain the true solution. The method is based5

upon work by Hansen [20], and was developed by Comba and Stolfi [21], whose main area

of interest was computer graphics. More recently, it has been applied to some problems

in structural dynamics by Manson [22], and this approach will be adopted for the present

study. Since the chatter stability problem can involve complex numbers (e.g. frequency

response functions), complex affine arithmetic will be used.10

In general, an uncertain, possibly complex-valued parameter can be represented in a

complex affine form as:

x̂ = x0 +
n
∑

i=1

xiεi + xrealεrealx + iximagεimagx
(24)

where x0 is the central value of the parameter, xi are partial deviations, and εi are real-

valued symbolic variables that lie in the range [-1,1]. Each εi represents one of n sources of

uncertainty, whilst the corresponding partial deviation gives the magnitude of that particular15

uncertainty. Some arithmetic operations on affine forms cannot be expressed without an

approximation error; the real and imaginary values of the approximation error are accounted

for by the (real-valued) terms xreal and ximag respectively.

Manson [22] developed various complex affine operations (addition, subtraction, multi-

plication, division) which will be used in the present study. Earlier work [23] also developed20

approximations for unary non-affine operations on real affine forms. The procedure involved

finding a 1st order polynomial approximation to the operation, and then including an addi-

tional error term such that the resulting affine form contained all possible solutions to the

true solution:

ŷ = αx̂ + β + δεerry
(25)

This approach will be used in the present study to enable reciprocal, cosine, arc tangent,25

and 4-quadrant arc tangent operations on real affine forms.
13



Quadratic arithmetic. Manson, Chetwynd, and Worden [24] used the concept of

quadratic arithmetic as a natural extension of affine arithmetic, for real-valued parameters.

This method is similar to the Taylor arithmetic methods which are reviewed by Neumaier

[25]. In the present study, the work of Manson [24] is extended by introducing the complex

quadratic form of a parameter:5

x̂ = x0 +
n
∑

i=1

xiεi +
n
∑

i=1

n
∑

j=i

xijεiεj+xrealεrealx + iximagεimagx
(26)

The advantage of using complex quadratic arithmetic, compared to complex affine arith-

metic, is that the second order interactions between the deviation terms can be accounted

for when performing multiplication. Arithmetical operations based upon quadratic forms

are derived in Appendix A, and further details on this approach are described in ref. [26].

In the present study, it is also necessary to perform continuous unary operations on real-10

valued quadratic forms. It transpires that this can be achieved using Eq. (25), in the same

way as for affine forms. However, it should be noted that this approach has not directly

made use of the 2nd order deviation terms, since only a linear approximation has been used.

A major drawback with the quadratic approach, compared to affine arithmetic, is that

the range of the uncertain parameter cannot be readily determined. The quadratic deviation15

terms (εiεj in Eq. (26)) mean that the minimum or maximum value of a parameter does

not necessarily occur at extreme values of the uncertainties ε. This has implications for

complex quadratic forms, since their set boundary is no longer a convex hull. Consequently,

the solution set can only be represented by evaluating the parameter at selected values of

the deviation coefficients, which together with an error term give rise to multiple convex20

hulls. Further details of these issues, along with some numerical examples, are given in ref.

[22].

3.2. Application to chatter stability.

To demonstrate the application of affine and quadratic arithmetic to the problem of

machining chatter, a numerical example will now be presented. The example considers a25

milling problem using the parameters given in Table 1, where two of the inputs involve
14



uncertainties that are intervals expressed in affine form. It should be pointed out that if the

input uncertainties were fuzzy numbers then such intervals could be obtained by choosing

an α-cut as illustrated in Fig. 4.

The machine tool structure consists of a single mode of vibration in the x direction, and

the stability lobes can be calculated using Eq. (15) and Eq. (16). For the chosen parameters5

these equations can be re-written as follows:

b̂lim =
−1

2NtKsRe
(

ĜOTF (jω)
) (27)

where ĜOTF (jω) is the orientated transfer function in affine or quadratic form due to the

uncertainty in the transfer function Gx and the cutting force angle β. The spindle speed is

given by:

Ω̂ =
60ω

2πNt

(

n + φ̂

2π

) (28)

where φ̂ is the quadratic or affine form that arises due to the two input uncertainties. The10

predicted relationships between frequency, stability boundary, and spindle speed are shown

in Fig. 5 for the case of quadratic arithmetic. The stability boundary now has a very large

range, but this reflects the true range of the stability boundary (computed using thousands

of samples across the interval range of the two inputs). However, the spindle speed prediction

(Fig. 5(b)) for the quadratic arithmetic method becomes so wide that it becomes impossible15

to assemble a meaningful stability lobe diagram. The reasons behind this issue are illustrated

in Fig. 6, which plots the real part of the frequency response function Gxx(jω). Even if

quadratic arithmetic is used, the prediction in the region of interest is relatively poor.

To recap, fuzzy arithmetic can in theory be performed by a series of interval arithmetic

operations, for different membership levels (α-cuts) of the input fuzzy numbers. However,20

this simple example has demonstrated that even if the more advanced forms of interval

arithmetic are used (affine and quadratic arithmetic), the predictions are over-conservative.

In fact, the predicted interval ranges are so large that the methods become impractical for the

milling chatter problem. Consequently, the remainder of this article will focus on alternative

methods for performing fuzzy arithmetic, in particular the transformation method [4].25
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Parameter Value

Number of teeth Nt 2

Radial immersion r/D (%) 50

Cutting stiffness Ks (N/m2) 794x106

Cutting force angle β̂ (deg) 71.8 + 6ε2

kx (N/m) 8x106

m̂x (kg) 0.2026 + 0.002ε1

cx (Ns/m) 25.46

Ĝx(jω) (m/N) (kx − m̂xω
2+jcxω)−1

Table 1: Parameters for affine arithmetic example. Uncertain inputs are given in affine form.
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Figure 5: Stability boundary at different chatter frequencies. (a) depth of cut at the boundary of stability

(b) spindle speed a at the boundary of stability. lower quadratic bound; upper quadratic

bound; lower true bound; upper true bound.
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3.3. Transformation methods

Recall that the interval arithmetic techniques represented fuzzy numbers as intervals for

each level of membership (or α-cut), as was shown in Fig. 4. An alternative approach is to

perform a series of ‘crisp’ calculations using a sample of the possible values of each input

fuzzy number at that level of membership. The range of the output fuzzy number can then5

be approximated by determining the maxima and minima of the solution samples. Unlike

the interval methods, this approach is not conservative, since the true maxima and minima

are not guaranteed to coincide with the sampling points.

Perhaps the simplest method of choosing the necessary sampling points is the so-called

vertex method. This is illustrated in Fig. 7(a). However, this approach is unsuitable for10

problems involving ‘extreme points’ [27] (i.e. local maxima or minima) within the fuzzy

values of the response. One solution is to perform multiple permutations for each level

of membership (Fig. 7(b)), but some researchers have suggested more elaborate sampling

techniques that can obtain similar results with fewer sampling points (and therefore reduced

computational cost).15
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Figure 7: Fuzzy arithmetic performed using sampling methods. In the vertex method (a), samples are taken

at the extreme values of each level of membership. A simple permutation method (b) includes the samples

from higher levels of membership. In the transformation method (c), an alternating sequence of samples is

obtained.

One such technique is the Transformation Method and its variants [8]. This is illustrated

in Fig. 7(c). Rather than reproduce the details of this approach, the present article will

illustrate its implementation using a simple example taken from [9]. Here, a polynomial test

function with two fuzzy input parameters (x1 and x2) and one fuzzy output is evaluated. The

inputs x1 and x2 are non-symmetric triangular fuzzy numbers, and the inputs and output5

are shown graphically in Fig. 8. In Fig. 9, the transformation method is compared to a

vertex propagation technique for approximating the fuzzy output f(x1,x2). In the vertex

propagation approach, the range of each fuzzy number is determined at different levels of

membership. The function evaluations are then performed for all of the permutations of these

values. In the transformation method, a similar procedure is employed, but the odd and10

even membership levels are treated separately. This reduces the number of permutations

required. Although the accuracy is also reduced, the alternating pattern means that the

chosen parameter values are more evenly distributed within the multi-dimensional parameter

space. This approach is described in detail by Klimke [9]. For the example problem shown in

Fig. 8 and Fig. 9, it can be seen that adequate accuracy is achieved using 7 or 9 membership15

levels with the transformation method. Consequently, this methodology was adopted for the

chatter stability problem.
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3.3.1. Implementation

In this section, implementation of the fuzzy stability lobe algorithms is described. How-

ever, it should be re-iterated that this approach involves performing multiple deterministic

calculations based upon the relevant non-fuzzy stability equations (Eq. (12) and Eq. (13)

for the time-averaged model, and determining the eigenvalues of Q in Eq. (20) for the5

TFEA model). Consequently, the approach is not concerned with the explicit fuzzy form

of the stability equations. Instead, the numerical methods for implementation of the fuzzy

stability lobe algorithms are described.

For the time-averaged stability model, it was shown in section 2.2 that the stability

boundary can be computed using scalar arithmetic. For non-fuzzy problems, this code can10

be easily ‘vectorised’ to compute the stability over the Nω values of ω found in the frequency

response functions Gxx(jω) and Gyy(jω). Such an approach is highly desirable when using

the array arithmetic capabilities of software such as Matlab. In this case, the function

arguments and internal variables are either scalar quantities or vectors of size [Nω x 1]. The

function outputs are a [Nω x 1] vector of limiting depths of cut blim, and a [Nω x N ] matrix15

of spindle speeds Ω, where N is the maximum lobe number n used in the computation of

Eq. (13) or Eq. (16). It is usually desirable to reduce these outputs to obtain a single

stability lobe that is calculated at predetermined spindle speed values Ωdesired. This can be

achieved using 2 dimensional linear interpolation between the rows of data points in Ω, and
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Column 3 compares the results with the true fuzzy output ( ). The approximated value is shown as ©

(vertex) or � (transformation) markers. In row 1, the permutations used for each level of membership are

shown by rectangular boxes.
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the corresponding vector blim. The minimum value is then selected from the columns (i.e.

the lobe numbers) in each row, to obtain the final stability lobe.

In the general case of fuzzy stability lobes, this problem must be repeated p times, where

p is the number of permutations obtained using the transformation method. However, the

computational speed can be improved significantly if all of the permutations are computed5

together using array mathematics. Of the input parameters to this problem, the vector

of desired spindle speeds Ωdesired and scalar number of lobes N will always be non-fuzzy.

However, the tool entry and exit angles φst and φex may be fuzzy scalars, depending upon

the fuzziness of the radial immersion r. The cutting coefficients Kn, Kt (or Ks, β) may be

fuzzy scalars, and the frequency response functions Gxx(jω), Gyy(jω) may be fuzzy arrays if10

the structural dynamics are fuzzy. Consequently, the transformation method codes provided

by Klimke [9] were re-written to allow for arbitrary combinations of fuzzy and non-fuzzy

scalars and vectors. A wrapper function was also used to allow the structural dynamics to

be specified as fuzzy modal parameters rather than frequency response functions.

For the TFEA stability model, in the non-fuzzy case the eigenvalues of Eq. (20) must15

be determined for each value of the depth of cut and spindle speed. When performing the

computations with Matlab, considerable speed improvements can again be achieved using

array mathematics. Although the final eigenvalue cannot be solved analytically, the prelim-

inary computations that populate the matrix Q are particularly cumbersome since they rely

on the output from symbolic computation software. This component of the algorithm was20

re-coded using 5-dimensional array mathematics: 2 dimensions for the final matrix Q, one

for the array of spindle speeds, one for the array of depths of cut, and one for the array of

temporal elements. The final eigenvalue problem was then computed within a sequence of

three nested for loops. Finally, interpolation was used to find the limiting depth of cut, i.e.

where the largest eigenvalue magnitude exceeded unity.25

In the general case of fuzzy stability lobes, this problem must also be repeated p times,

and it is again desirable to allow the input variables to be either fuzzy or non-fuzzy. How-

ever, there are already five dimensions used to populate the matrix Q, and so using array

mathematics to include the fuzzy parameters could cause significant performance problems
21



due to memory usage. Consequently, the fuzzy permutations were evaluated sequentially in

this case.

To illustrate the performance of the fuzzy stability lobe approach, two numerical exam-

ples will now be presented.

4. Case studies5

4.1. Robust design

This section uses the time-averaged stability approach to evaluate the chatter stability

of a rigid tool and flexible workpiece with one mode of vibration in the x-direction and one

in the y-direction. The stiffness of the x-direction mode is a fuzzy number – in practice this

may represent the variability from one workpiece to the next (e.g. due to design variants10

or production tolerances), or it may be due to the physical removal of material from the

workpiece during machining. The empirical cutting force magnitude Ks is assumed to be

non-fuzzy, but the angle β is a fuzzy number. In practice this may represent lack of knowledge

about this particular combination of tool and workpiece, or it may represent the variation in

tool performance due to tool wear. The input parameters are summarised in Table 2. The15

goal of the fuzzy stability analysis is to choose a combination of depth of cut and spindle

speed which gives the highest material removal rate Mrr within a predefined spindle speed

range, despite the uncertainty/variability in the input parameters.

Using the transformation method with 9 membership levels required 145 permutations of

the stability algorithm. The permutations were calculated concurrently using array mathe-20

matics to solve Eq. (12) and Eq. (13). The calculation was performed in approximately 40

seconds on a desktop pc, which suggests that the approach would be viable for industrial

practitioners. The resulting fuzzy stability lobe is shown in Fig. 10. Here, only the lowest

stability value is plotted for each level, since from a practitioner’s perspective the upper sta-

bility limit is not relevant. It should be noted that very similar predictions can be obtained25

using the TFEA stability algorithm, but at considerable computational cost.

Fig. 10 clearly demonstrates that the shape of the fuzzy stability lobe does not completely

mimic that of the non-fuzzy case (i.e. where µ=0). In particular, the regions of lowest
22



stability occurs over larger spindle speed ranges, and the regions with maximum stability also

move. This has implications for the optimal choice of the machining parameters, in particular

the depth of cut and spindle speed. If one had performed a non-fuzzy analysis (i.e. where

µ=1) alone, then a sensible choice may seem to be a spindle speed of 15200rev/min, and

12mm depth of cut. This would seem conservative since these parameters are located away5

from the stability limit, so the unidentified uncertainty or variation in the stability boundary

might not cause instability. However, the fuzzy analysis allows for the maximum material

removal rate to be determined for the stability boundary at each level of membership. These

values are shown with the circular markers on Fig. 10. It can now be seen that if one accepts

the full variation/uncertainty in the input parameters (i.e. µ=0) a more prudent parameter10

choice would be 18000rev/min, 7mm.

This result can also be presented using the robustness curve approach described by Ben

Haim [28]. In Fig. 11, the robustness curve is obtained by assuming that the membership

level µ is inversely related to robustness, i.e. µ=1 represents zero robustness, and µ=0

represents maximum robustness. Meanwhile, the ‘reward’ is the material removal rate, which15

(from Eq. (1) and Eq. (2)) is proportional to blimΩ. The highest reward is achieved with a

spindle speed of 15000 rev/min, but this has zero robustness. As the required robustness is

slowly increased, the highest reward is achieved with slightly higher spindle speeds. However,

when the required robustness is increased so that µ < 0.5, preference reversal occurs (i.e.

an abrupt change in the optimum conditions), and the best choice of spindle speed is in the20

region of 18000 rev/min.

4.2. Theory vs experiment

This section uses the TFEA stability model to determine the chatter stability of a flexible

tool. The milling parameters are given in Table 3, and (with the exception of the fuzzy

parameters) the values are taken from ref. [29]. In this earlier work, detailed experimental25

data was presented and compared to different stability models. In the present article, the

aim is to demonstrate how fuzzy stability lobe predictions could serve to justify differences

between the experimental and model data. In other words, the stability lobe prediction
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Parameter Value

x-direction stiffness (Nm−1) 11 × 106 → 14 × 106 (symmetric triangular fuzzy)

x-direction mass (kg) 0.2026

x-direction damping (Nsm−1) 25.46

y-direction stiffness (Nm−1) 4.4 × 106

y-direction mass (kg) 0.1245

y-direction damping (Nsm−1) 26.07

Cutting coefficient direction β (degrees) 68 → 76 (symmetric triangular fuzzy)

Cutting coefficient (Nm−2) 625 × 106

Radial immersion (-) 50%

Milling mode Up milling

Table 2: Parameters used for the ‘robust design’ case study.
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Figure 10: Fuzzy stability boundary for example 1. © Optimum µ = 0, µ = 0.13, µ = 0.25,

µ = 0.38, µ = 0.5, µ = 0.63, µ = 0.75, µ = 0.88, µ = 1.
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becomes a fuzzy prediction by accounting for parameter uncertainties, but no fuzzy analysis

is performed on the experimentally obtained data.

As with the previous example, the empirical coefficient β is chosen to be fuzzy-valued to

represent uncertainty or variation in the tool behaviour (due for example to tool wear). In

addition, the radial immersion of the tool (as a percentage of its diameter) into the workpiece5

was given a fuzzy value. This was chosen because most stability models assume that the

radial immersion matches the programmed value on the milling machine. In practice the

deflection of the tool and workpiece mean that the actual radial immersion can be slightly

different.

Using the fuzzy TFEA algorithm with 7 membership levels and two uncertain parameters10

resulted in 85 permutations, which were computed sequentially as previously described. In

this case, the TFEA calculations took over 3 minutes on a desktop pc. If more membership

levels were required, or more parameters were fuzzy, then substantially more computation

time would be needed, making the approach unsuitable for use by industrial practitioners

who may expect immediate analysis results.15
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In Fig. 12, the fuzzy stability boundaries for different membership levels are plotted.

Because the aim here is to demonstrate how fuzzy stability lobes can justify the differences

between theory and experiment, the upper boundary of the fuzzy stability lobe is also shown

for each membership level. The experimental data obtained by Mann et al [29] is also shown

as individual markers. For this scenario, the time-averaged stability model has not been used5

because it is unable to accurately predict the stability boundary for low-radial immersion

milling.

For the non-fuzzy (µ=1) model, there are a few experimental data points that are close

to the stability boundary but in disagreement with the model prediction. In Fig. 12(a),

the cut at 2.5 mm, 17420 rev/min (shown with a double marker) should have been unstable10

according to the crisp stability lobe prediction, but was recorded as a stable case [29]. This

data point lies within the fuzzy region of the stability lobe, indicating that the disagreement

between theory and experiment could be accounted for by the uncertainty in the input

parameters. The same issue applies for the experiment at 1.52 mm, 15050 rev/min (shown

Parameter Value

x-direction stiffness (Nm−1) 1.666777× 106

x-direction mass (kg) 0.061

x-direction damping (Nsm−1) 4.326

y-direction stiffness (Nm−1) 1.669223× 106

y-direction mass (kg) 0.061

y-direction damping (Nsm−1) 3.858

Cutting coefficient direction β (degrees) 69.6 → 77.0 (symmetric triangular fuzzy)

Cutting coefficient (Nm−2) 731 × 106

Radial immersion r/D (%) 4.5 → 5.5 (symmetric triangular fuzzy)

Milling mode Down milling

Table 3: Parameters used for the ‘theory vs. experiment’ case study.
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Figure 12: Fuzzy stability lobes for example 2. (a) Lower spindle speed range (b) higher spindle speed range.

Experimental data: � borderline, • stable, H unstable. Fuzzy stability prediction: µ = 0, µ = 0.17,

µ = 0.33, µ = 0.5, µ = 0.67, µ = 0.83, µ = 1. Double markers indicate experimental

outliers that are accounted for by the fuzzy analysis.

27



with a double marker). Here, the crisp stability prediction indicates that the experiment

should have been unstable; the cut was actually ‘borderline’ (neither clearly stable nor clearly

unstable) [29], and the discrepancy can be accounted for using the fuzzy stability lobes. Five

similar scenarios arise in Fig. 12(b), and these are again shown with double markers.

To summarise, a number of the experimental outliers can be accounted for by a ±5%5

variation in the empirical value β, and a variation in the percentage radial immersion from

4.5% to 5.5%. However, it should be noted that there are some experimental data points that

are not explained by this fuzziness (e.g. the ‘borderline’ case at 1 mm, 15780 rev/min). This

suggests there is uncertainty/variability in the other parameters, or unmodelled behaviour.

5. Discussion10

Before drawing conclusions, a number of issues are worthy of further discussion.

With regard to the interval arithmetic methods, we have shown that recursiveness makes

them unsuitable for the chatter problem. Standard interval arithmetic was ruled out from

the start: the simple numerical example of Eq. (23) demonstrated that the approach would

vastly overestimate the interval bounds for each level of membership, if it were to be used15

in the fuzzy arithmetic. Although the affine and quadratic forms were shown to be more

accurate, they still over-estimated the interval bounds when they were used for the simplest

of milling chatter predictions. Although there are some potential improvements to these

algorithms [21, 25], it seems unlikely that this would make them potential candidates for

milling stability analysis.20

Consequently, the remainder of this article focussed on ‘design of experiments’ approaches

to performing fuzzy arithmetic. In particular, an implementation of the transformation

method was developed by re-writing the code published by Klimke [9]. It has been shown

here that for a simple stability analysis using the time-averaged model, the computational

speed is sufficiently fast for quite a large number of model permutations to be performed25

interactively on a desktop pc. This suggests that more advanced methods for propagating

uncertainty/variability may not be necessary. However, if detailed data were available on

the statistical distributions of the input parameters, then a probabilistic analysis would be
28



more insightful than the fuzzy case. Although the chatter stability algorithms presented

here would be amenable to Monte Carlo analyses, the higher numbers of simulation runs

might cause problems. In this case, surrogate modelling techniques might prove useful.

The TFEA stability analysis was shown to have considerably higher computational time,

suggesting that the fuzzy analysis may not be of benefit in an industrial scenario. Although5

more complex, the method is considerably more accurate for low-radial immersion milling,

to the extent that the time-averaged method would give erroneous results if it were used for

example 2 (Figure 8). Again, the possibility of detailed statistical data would mean that

surrogate modelling approaches could be employed to provide probabilistic models of more

uncertain scenarios.10

It is worth noting that in implementing the Transformation Method, the user must decide

upon the number of membership levels to be computed. In practice this is a trade-off between

the accuracy of the result (compared to the true fuzzy number) and the computational effort

required. In the present study 9 membership levels were used unless the computational effort

was high, in which case 7 membership levels were used. This was shown (Figure 9) to be15

reasonably accurate even for very nonlinear problems.

One area in which the current results could be improved is the sensitivity analysis of

the fuzzy stability lobes. Previous workers [14] have shown that the data used in the trans-

formation method can be used to determine the sensitivity of the response to the different

fuzzy inputs. Further work could investigate the application of this approach to the chatter20

stability problem.

6. Conclusions

The regenerative chatter stability of milling processes has been investigated using a fuzzy

algorithm in order to accommodate uncertainty or variability in the model input parameters.

Implementations of complex affine and complex quadratic arithmetic were first devel-25

oped, in an effort to perform fuzzy arithmetic based upon interval calculations at pre-

determined membership levels. However, it was shown using a simple machining example
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that complex affine and complex quadratic arithmetic substantially over-estimate the chatter

stability boundary, due to the problem of recursiveness.

A design of experiments approach to implement fuzzy arithmetic was then developed, us-

ing the algorithms proposed by Klimke [9]. It was shown that this formulation is well-suited

to the chatter prediction problem, particular for the more straightforward time-averaged5

chatter model. Furthermore, it was demonstrated that this fuzzy approach can help to

choose robustly optimal process parameters, and can also serve to justify the deviations

between theoretical models and experimentally observed behaviour.
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A. Quadratic arithmetic operations

For two complex quadratic forms x̂ and ŷ, addition and subtraction are given by:

ẑ = x̂ ± ŷ = x0 ± y0 +
n
∑

i=1

(xi ± yi) εi +
n
∑

i=1

n
∑

j=i

(xij ± yij) εiεj

+ (xreal + yreal) εrealz + i (ximag + yimag) εimagz

(A.1)

Multiplication by a complex scalar α is given by:

ẑ = αŷ = αy0 +
n
∑

i=1

αyiεi +
n
∑

i=1

n
∑

j=i

αyijεiεj

+ (|Re (α)| yreal + |Im (α)| yimag) εrealy

+i (|Re (α)| yimag + |Im (α)| yreal) εimagy

(A.2)

Complex quadratic multiplication is rather more cumbersome:

ẑ = x̂ × ŷ =

(

x0y0 + 1
2

n
∑

i=1

n
∑

j=i

xijyij

)

+
n
∑

i=1

(x0yi + xiy0) εi

+
n
∑

i=1

n
∑

j=i

(x0yij + xijy0)εiεj +
n
∑

i=1

n
∑

j=1

xiyjεiεj + zrealεrealz + izimagεimagz

(A.3)
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where the real component zreal is:

zreal =

(

|Re (x0)| +
n
∑

i=1

|Re (xi)| +
n
∑

i=1

n
∑

j=i

|Re (xij)| + xreal

)

× yreal

+

(

|Im (x0)| +
n
∑

i=1

|Im (xi)| +
n
∑

i=1

n
∑

j=i

|Im (xij)| + ximag

)

× yimag

+xreal ×

(

|Re (y0)| +
n
∑

i=1

|Re (yi)| +
n
∑

i=1

n
∑

j=i

|Re (yij)|

)

+ximag ×

(

|Im (y0)| +
n
∑

i=1

|Im (yi)| +
n
∑

i=1

n
∑

j=i

|Im (yij)|

)

+
n
∑

i=1

n
∑

j=i

n
∑

k=1

|Re (xijyk + xkyij)|

+
n
∑

i=1

n
∑

j=i

|Re (xij)| ×
n
∑

k=1

n
∑

l=k

|Re (ykl)| −
1
2

n
∑

i=1

n
∑

j=i

|Re (xij)| |Re (yij)|

(A.4)

and the imaginary component zimag is

zimag =

(

|Re (x0)| +
n
∑

i=1

|Re (xi)| +
n
∑

i=1

n
∑

j=i

|Re (xij)| + xreal

)

× yimag

+

(

|Im (x0)| +
n
∑

i=1

|Im (xi)| +
n
∑

i=1

n
∑

j=i

|Im (xij)| + ximag

)

× yreal

+ximag ×

(

|Re (y0)| +
n
∑

i=1

|Re (yi)| +
n
∑

i=1

n
∑

j=i

|Re (yij)|

)

+xreal ×

(

|Im (y0)| +
n
∑

i=1

|Im (yi)| +
n
∑

i=1

n
∑

j=i

|Im (yij)|

)

+
n
∑

i=1

n
∑

j=i

n
∑

k=1

|Im (xijyk + xkyij)|

+
n
∑

i=1

n
∑

j=i

|Im (xij)| ×
n
∑

k=1

n
∑

l=k

|Im (ykl)| −
1

2

n
∑

i=1

n
∑

j=i

|Im (xij)| |Im (yij)|

(A.5)
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