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Abstract— The response of a resonant chain of spheres to
changes in holder material and precompression is studied at
ultrasonic frequencies. The system is found to be very sensitive to
these parameters, with the creation of impulsive waveforms from
a narrow bandwidth input seen only for certain chain lengths
and holder materials. In addition, careful experiments were
performed using known amounts of precompression force, using
a calibrated stylus arrangement. At negligible precompression
levels, impulses were generated within the chain, which were then
suppressed by increased precompression. This was accompanied
by large changes in the propagation velocity as the system
gradually changes from being strongly nonlinear to being more
linear. Simulations using a discrete model for the motion of each
sphere agree well with the experimental data.

Index Terms— Granular media, nonlinear, solitary waves,
spherical chains.

I. INTRODUCTION

ACOUSTIC propagation along granular chains has been
the subject of increased interest, because of their nonlin-

ear acoustic properties caused by Hertzian contact between
the spheres, and this allows such systems to support a
range of properties, depending on the amount of nonlinearity
present [1]–[6]. Such behavior has been observed in different
types of materials that can be used in granular chains [7], [8].
One of the key parameters that affect the dynamics of the
system is the magnitude of the applied static compression
force F0 relative to the applied dynamic force Fm . Solitary
wave propagation along an infinite chain of spheres has
specific properties that can be predicted theoretically using
a long-wave approximation, provided that there is negligible
static precompression (Fm � F0). Under these conditions,
propagation along the chain is in the form of a solitary wave
with characteristics that depend upon the size and material
of the spheres from which the chain is made. In fact, such
solitary waves are predicted to have a constant wavelength,
which is a certain number of particles long [2]. As the levels
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of precompression increase, the nonlinearity reduces, and in
the case of a strong static compression force (Fm � F0),
the system becomes only weakly nonlinear. The Hertzian
contact can then be simplified to a reduced linearized spring
connection, and the passage of a harmonic wave through the
chain can be investigated by a linear model in which the
system behaves as a low-pass filter.

The observations made in the above paragraph apply to an
infinite chain. The situation starts to become more complicated
once the chain is of finite length. Now, reflection within
the chain is possible, complicating the response. One way
is to study the nonlinear normal modes (NNMs) of the sys-
tem [9]–[12]. Under certain circumstances, separation between
the spheres can occur, and the separation and collision of the
spheres (in addition to their nonlinear Hertzian interaction)
provide an added effect to the strong nonlinearity of the
system. Although NNMs are usually defined as synchronous
period particular solutions of the nonlinear equations of motion
of dynamical systems, various authors [9]–[12] have identified
a time-periodic oscillation where the bead oscillations possess
identical frequencies but are not necessarily synchronous,
leading to nonlinear and nonsmooth features (such as the
separation of spheres). Under the correct conditions, an in-
phase NNM results, which can be considered as a traveling
wave propagating along the chain (as the spheres displace
from their center positions in sequence). Sphere separation
becomes less likely as precompression is applied, forcing
the spheres closer together. Note that in all these theoreti-
cal discussions, it is the motion of individual spheres rel-
ative to each other that causes the effects. In practice, this
means that the frequencies present have to remain below an
upper cutoff frequency ( fc), which depends on the properties
(size, material, etc.) of the spheres used. The value of fc

can be approximately determined by a linearized discrete
model.

Nonlinear systems have a distinct advantage of being able to
transfer energy between frequencies, where subharmonic and
superharmonic frequencies may appear via subharmonic and
superharmonic bifurcations in energy transfer in the frequency
domain, because of the presence of NNMs [11], [12]. Previous
work in [13] and [14] has demonstrated that a train of impulses
can be generated within chains of spheres at ultrasonic fre-
quencies because of this effect, provided a negligible amount
of precompression force F0 was applied. These studies used
high amplitude, narrow-bandwidth inputs at 73 kHz from
an ultrasonic horn, with a chain containing small spheres
(typically 1-mm diameter) of different types of materials held
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Fig. 1. Schematic of the apparatus.

within an acrylic holder. Once the correct conditions needed
to set up an in-phase NNM were established, the time-domain
response was in the form of a periodic set of impulses,
accompanied by frequency spectra containing regularly spaced
maxima that were separated in value as a whole fraction of the
input frequency. The subharmonic and superharmonic bifur-
cations in energy transfer in the frequency domain mentioned
above were also exhibited in the experimental results. This
response was able to be predicted by a theoretical model,
the results from which were used to interpret the solitary wave
propagation and the establishment of NNM behavior. This
discrete model used a velocity-Verlet algorithm [15] to solve
the relevant equations numerically. Note also that subharmonic
frequencies were also observed in the work of Lydon et al. [16]
in shorter chains at lower frequencies.

It is known from the previous work [17]–[19] that precom-
pression can cause changes to the response of a granular chain.
Our previous work verified that solitary wave impulses can be
generated using harmonic excitation and a negligible amount
of precompression force in a finite-length chain [13], [14].
In this paper, we will observe the effect of different holder
materials and an increase in precompression on this response.
It will be demonstrated that end-wall conditions are an impor-
tant factor in dissipation and reflection at the boundaries,
leading to changes in the characteristics of energy transfer to
subharmonics and superharmonics. The effect of precompres-
sion on the resultant waveform will also be investigated. It will
be shown that an increase in precompression changes the wave
regime from being strongly nonlinear to weakly nonlinear,
accompanied by very sensitive changes in the propagation
velocity.

II. APPARATUS AND METHODS

The apparatus used in the experiments is shown in Fig. 1.
An exponential horn was used to provide high-amplitude input
signals with a narrow bandwidth. The output displacement of
the horn tip was approximately 1 μm at a center frequency
of 73 kHz, when the horn/transducer assembly was driven with
a tone-burst voltage signal. The frequency spectrum of the out-
put had the expected main peak at 73 kHz, with only a small
signal at the second harmonic at 146 kHz. The spheres were
positioned within a cylindrical holder, and the output from
the last sphere recorded using a Polytec OFV-505 vibrometer,
whose output was a particle velocity waveform. The holders
can be of different lengths to accommodate different chain
lengths (from 3 to 10 mm) of 1-mm-diameter chrome steel

spheres. Three holder materials were investigated—an acrylic
polymer [R11, as used in microstereolithography (MSL),
a form of 3-D-printing], aluminum, and steel.

A force of known amplitude could be applied to the
last sphere in the chain, using a calibrated 1.5-mm-diameter
stylus acting upon a pivot. The stylus itself was part of a
surface profiler instrument, modified to act as a mechanism of
applying controlled precompression force. The control system
for the stylus consisted of three main parts: an electromagnetic
force actuator, a differential capacitive sensor, and a leaf spring
suspension system. Further details of this design can be found
in the paper by Chetwynd et al. [20]. To achieve the required
function as a controlled mode of applying precompression,
the current that passed through a coil/magnet assembly was
varied, and careful design ensured that the force on the stylus
along its axis was proportional to the current passing through
the coil. Using a specially designed current drive, the force
actuator was used to provide a calibrated static contact force at
a neutral position. The stylus and the associated control system
were mounted onto a Rank Taylor Hobson Talysurf 5 surface
profiling instrument to ensure stability. Note that the force
applied to the pivot was independent of small displacements,
therefore, small vibrations within the system did not couple
into the measurement loop. The Talysurf 5 instrument provided
the means to carefully and accurately position the tip of the
stylus onto a fulcrum or lever made of aluminum. The fulcrum
was used to apply precompression directly on the chain of
spheres as shown in Fig. 1, and was designed to be light and
strong enough not to deform from the force exerted on it. The
precompression system provided electrically selectable static
force with a resolution of 1 mN. Note that in the absence
of any applied precompression, a small force would still be
exerted on the chain due to the need for the horn to touch the
first sphere. This is discussed further below.

The work in this paper adds to our previous results [13], [14]
by considering both the effect of chain length for a fixed input
frequency and the use of different holder materials (and hence
end-wall materials), and investigates in detail the effect of
precompression on these resonant systems, where the response
varies from being highly nonlinear in the case of negligible
precompression (F0) to being almost linear at higher values
of F0.

III. THEORY

It is important for later discussions that the origin of the
usual formula for the cutoff frequency for granular chains is
given; in addition, it is shown why a more detailed analysis
is required for finite chain lengths and varied precompres-
sion forces. For a chain consisting of the identical spheres,
the equation of motion of the nth sphere based on Hertzian
contact has the general form [1]

mün = A(δ0 + un−1 − un)3/2 − A(δ0 + un − un+1)
3/2 (1)

where

A = E
√

2R

3(1 − ν2)
(2)
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and

m = 4

3
πρR3. (3)

The spheres are assumed to be made of the same material
with a radius R; mass m; density ρ; Young’s modulus E ; and
Poissons’s ratio ν. This system is assumed to be in an equilib-
rium state under a static compression force F0. At static equi-
librium, δ0 is the distance of approach of centers of spheres.
un is the dynamic longitudinal displacement from the equilib-
rium position of the nth sphere. When |un−1 − un |/δ0 � 1,
(1) can be changed into a lattice model with quadratic nonlin-
earity, from which the nonlinear wave equation can be derived
at the long wavelength limit. If the granular material is weakly
compressed, so that |un−1 − un|/δ0 � 1, the wave equation
for a Sonic vacuum in an infinite chain can be derived [2].
Strongly nonlinear solitary waves then appear in the analytical
solution.

It will be shown in this paper that use of single frequency
(harmonic) excitation and different levels of precompression
can result in the presence of both subharmonics and superhar-
monics, which are related to the driving frequency used. It is
thus of interest to study the effect of a cutoff frequency on this
process. Here, we first explore the dispersion relation in a sim-
plified discrete linear model, which represents an infinite chain
consisting of the identical spheres without dissipation. Under
the limits |un−1 − un | � δ0 and (δ0 + |un−1 − un|) < δmax,
the wave propagates in a continuum and smooth system
(no separation between spheres occurs). It is assumed that the
connections between the spheres are springs with an elastic
coefficient μ, where δmax represents the corresponding value
of δ0 in the situation of the maximum elastic deformation.
Accordingly, the dynamic equation of the nth sphere of the
chain is simplified as a linearized equation

mün = μ(un−1 − un) − μ(un − un+1)

= μ(un−1 − 2un + un+1). (4)

The chain then executes a motion of the form

un(t) = ei(kna−ωt). (5)

This is a harmonic wave of frequency ω and wavenumber k,
and a is the distance between the centers of neighboring
spheres under static equilibrium, so that a = 2R − δ0.
The cutoff frequency ωc occurs when the wavelength (2π /k)
equals 2a. From (4) and (5), we obtain the dispersion relation

ω = ωc sin

(
ka

2

)
= 2

√
μ

m
sin

(
ka

2

)
(6)

where μ can be determined by Hertzian law, that is

F0 =
√

2RE

3(1 − ν2)
δ

3/2
0 , μ = ∂ F0

∂δ0
=

√
R

2

E

1 − ν2 δ
1/2
0 . (7)

The cutoff frequency fc is then given by

fc = ωc

2π
= 3

4π3/2

F1/6
0

θ1/3 R4/3ρ1/2 (8)

where θ = (3(1 − ν2)/4E). This means that under strong
precompression, the chain system operates as a low-pass filter

and waves of frequency f > fc are strongly attenuated.
However, this analysis is based on the assumed linear model;
in fact, superharmonic frequencies can appear in the discrete
spherical chain due to the nonlinear Hertzian contact, which
depends on the properties of the granular chain and the
input conditions. Thus an accurate model to describe the
experimental system is important, and the use of (8) to denote
the expected upper frequency generated experimentally is not
strictly correct.

In addition, in a finite length chain, reflection at the end-
wall boundary and dissipation due to friction between the
granular material and the holder materials are both essen-
tial factors that influence wave transmission in the chain.
Hutchins et al. [13], [14] presented dynamic equations of
sphere motion that are described in (9a)–(9c), and investigated
the characteristic of the solitary wave impulses using numer-
ical calculations. These equations are still valid to model the
motions of spheres based on the new experimental conditions
in this paper. For the first sphere, positioned next to the horn,
the equation is

m
d2u1

dt2 = 2
√

R

3

×
[
2θl(δ0l + u0 − u1)

3/2 − θm√
2
(δ0+ u1 − u2)

3/2
]

+ λ

(
du0

dt
− du1

dt

)
H (δ0l + u0 − u1)

− λ

(
du1

dt
− du2

dt

)
H (δ0 + u1 − u2) (9a)

where u0 is the displacement of the input signal and λ is the
damping coefficient. For the second sphere to the penultimate
one, the equivalent equation of motion is

m
d2un

dt2 =
√

2R

3
θm

× [(δ0 + un−1 − ui )
3/2 − (δ0 + un − un+1)

3/2]
+ λ

(
dun−1

dt
− dun

dt

)
H (δ0 + un−1 − un)

− λ

(
dun

dt
− dun+1

dt

)
H (δ0 + un − un+1). (9b)

Finally, for the last (output) sphere, the relevant equation is

m
d2un

dt2 = 2
√

R

3

[
θm√

2
(δ0+ un−1− un)

3/2 − 2θr (δ0r + un)3/2
]

+ λ

(
dun−1

dt
− dun

dt

)
H (δ0 + un−1 − un)

− λ
dun

dt
H (δ0r + un). (9c)

Here

1

θl
= 1 − ν2

l

El
+ 1 − ν2

s

Es

θm = Es

1 − ν2
s

and
1

θr
= 1 − ν2

r

Er
+ 1 − ν2

s

Es
. (10)

In (10), El and νl are the Young’s modulus and Poisson ratio
of the horn, Er and νr are that of the holder, and Es and νs are
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TABLE I

PROPERTIES USED IN CALCULATIONS FOR THE EFFECT
OF THE END-WALL MATERIAL

those of the spheres themselves. Here, δ0l , δ0, and δ0r denote
the mutual approach caused by the static force between the
horn and the first sphere, between intermediate spheres, and
between the last sphere and the end wall, respectively. Note
that the equations relating to the first and last sphere of the
chain assume that these are in contact with spheres of infinite
radius, thus in effect modeling a wall.

Consider now the effect of damping. In (8), the dissipation
term is described by the damping force and a Heaviside func-
tion H is incorporated to judge if the spheres are in contact.
λ is determined in our work from the experimental results
of each chain structure. In addition, the initial positions of
spheres are determined in turn for a particular precompression
force, starting from the last sphere. Here, a boundary constraint
is assumed in that the position of the contact point between
the last sphere and the wall at the end of the chain is fixed.
The properties of this end wall can be changed in the model
via its effective Young’s modulus θr , which is associated with
contact interactions between the last sphere and the holder. The
effects of dissipation for harmonic excitation of a statically
compressed chain have also been investigated in [16], but
in their dynamic model the boundary conditions were not
explicitly stated for a finite length chain with different end-
wall conditions. They used a spring with force F0 (the initial
compression force) to describe the experimental boundary
condition. In our model, the (4

√
R/3)θr(δ0r + un)3/2 term

in (9c) allows the reflection process due to the different holder
materials to be modified via the value of the effective Young’s
modulus θr . Hence the two models differ in this respect.
Experimentally, the end-wall material has a big effect on the
response, as will be shown later in this paper.

IV. RESULTS

A. Effect of Changing the Holder Material

It was found experimentally that the resonant chains were
very sensitive to the physical conditions in which they were
held. One other factor that had a measurable effect was the
material from which the cylindrical holder of the spheres
was made. The input sphere was touching the horn tip,
whereas the output sphere protruded through the annular end
of the holder. To investigate this, a chain of six chrome-steel
spheres of 1-mm diameter were tested when contained within
holders of three different materials: R11 photoreactive acrylic
polymer (as used for additive manufacture via MSL), steel,
and aluminum. Table I gives the relevant properties of these
materials.

Fig. 2. (a) Experimental waveforms and (b) spectra obtained from a chain
containing six chrome-steel spheres of 1-mm diameter, when enclosed within
holders of various types of materials.

The results of these experiments are shown in Fig. 2.
When the metallic steel and aluminum holders were used,
the dominant feature was the creation of harmonics of the
input frequency, a feature of nonlinear behavior; however,
no subharmonics were present. It was only in the R11 acrylic
material that the system truly exhibited strongly nonlinear
behavior, with the creation of subharmonics and a series of
superharmonics of the lowest subharmonic peak (and not just
harmonics of the input frequency as in the case of steel
and aluminum holders). Note that Lydon et al. [16] also
observed the presence of frequencies that were subharmonics
of the input frequency in their experiments; however, multiple
harmonics of the lowest subharmonic peak were not present,
as is the case here. It is this difference that is particularly
striking in the present measurements, with strong solitary-
wave generation as impulses in time. This is thought to be
partly due to both the increased input energy levels that result
from the use of an ultrasonic horn at the input stage, but also
the fact that the final sphere interacted directly with the end
wall, and not via a spring. The measurements demonstrate just
how sensitive the system is to the end-wall material.

The predicted results from the theoretical model, using
the known physical properties of the three different holder
materials (Table I), are shown in Fig. 3. The predicted
waveforms and spectra correlate well with those observed in
the experiments—the R11 holder material was the only one



AKANJI et al.: EFFECT OF BOUNDARY CONDITIONS ON RESONANT ULTRASONIC SPHERICAL CHAINS 1961

Fig. 3. (a) Predicted theoretical waveforms and (b) spectra for the same
materials and excitation conditions as used in Fig. 2.

predicted to lead to a set of periodic impulses in the time
domain, with a regular set of more closely spaced frequency
peaks. It was found that the damping coefficient used in
the theoretical model needed to be adjusted between each
material for the end wall to get suitable correlation with
the experimental results in each case. This is reasonable:
each wall material will have its own damping properties,
as well as its own elastic modulus. Both effects feed into
the damping coefficient (λ) used theoretically for the best
correlation between the theoretical prediction and experiment.
The presence of subharmonics is predicted theoretically by our
models, but only once the correct end-wall conditions have
been met. The subharmonics are some of the allowed NNMs
of a system, which is highly nonlinear. It is difficult to derive a
definitive value for λ based on physical properties of the steel
spheres and the holder material—in practice, we have had to
adjust the value for λ to obtain the best fit of theory with
experiment. Note that the main features (such as subharmonics
and multiples thereof) exist for a range of values of λ for each
holder material—subharmonics are never predicted for steel
and aluminum, no matter what value of λ is chosen.

The results thus indicate that the material from which the
end wall is made has a direct influence on the output from
the spherical chain. This is likely to be due to the reflection
properties of the end wall. In particular, this creates new
frequency components as a result of bifurcations of energy
in the frequency domain. For a holder material with a high
elastic modulus, e.g., steel, the smaller damping coefficient

with a strong reflection from the boundary promotes the rapid
propagation of the reflected signal returning to the source
along the chain. This makes the period of the impulse close to
the period of the input sinusoidal wave. Correspondingly, for
the softer R11 acrylic material, the period of the impulses
is three times that of the input sinusoidal wave, and the
lowest peak in the spectrum is at one-third of the frequency
of the input. This is because of the larger damping effect
of the viscoelastic R11 acrylic material, and the fact that its
lower elastic modulus delays the transmission of the reflection
wave. Both the factors encourage the formation of a set of
impulses, whose width in time effectively sets the envelope of
the bandwidth in the frequency spectrum. The repetition rate
of these impulses then fixes the frequency separation in the
frequency domain.

As observed in a previous publication by
Hutchins et al. [13], the length of the chain (as defined
by the number of 1-mm-diameter spheres present) determines
the number and spacing of both the impulses in time, and
the frequency peaks in the corresponding spectrum. Longer
chains produce a set of impulses that are farther apart
in time, as might be expected. This is accompanied by a
greater number of equally spaced frequency peaks, starting
at a lower frequency (always a whole fraction of the input
frequency of 73 kHz), and being closer together in frequency
in longer chains. This is illustrated by the results obtained
experimentally using the R11 acrylic holder, as presented
in Fig. 4, which should be compared with those for the
six-sphere chain (Fig. 2).

Consider now the cutoff frequency ( fc) expected for this
system as a function of precompression force (F0). The
predictions of (8) are shown in Fig. 5, where the input
frequency of 73 kHz is also indicated. Assuming that the
experiments are taking place at a value of F0 ≤ 0.1 mN [13],
all three end-wall materials give outputs that exceed the
predicted value of fc from Fig. 5 of 180 kHz. This is quite
reasonable, because (8) was based on a linear assumption.
In fact, the highest frequency generated by the system depends
on the nonlinear Hertzian contact and any dissipation. The
low-pass filter analysis provided by a linear discrete lattice
model does not apply to the current spherical chain system of
finite length.

It is clear from the results in Figs. 2 and 3 that the properties
of the end-wall material have a significant effect on the
resulting response of the chain. It is thus also interesting to
examine the motion of the end wall. This has been measured
experimentally for the R11 material, and the result is shown
in Fig. 6. Note that there is some coupling of energy into the
end wall, with two main features. The first is a resonance of the
holder system at ∼1.5 kHz. The second is a higher frequency
coupling of the ultrasonic signal from the sphere motion. Note
that, compared with the motion of the steel spheres (Fig. 2),
the end wall moves with an amplitude of approximately 3% of
that of the sphere itself. This would help to explain some of
the results, in that the end wall of the holder does move, and
this will affect the form of the energy reflected back along
the chain, in terms of the amplitude and phase of the reflected
impulses, as has already been observed. It also means that
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Fig. 4. (a) Experimental waveforms and (b) spectra obtained for chains of
three and ten chrome-steel spheres of 1-mm diameter, when enclosed within
an R11 acrylic holder.

Fig. 5. Predictions of (7) for the expected cutoff frequency for solitary waves
in chains of 1-mm-diameter chrome steel spheres.

some energy is lost to the holder material, which will affect
the estimate of the damping coefficient. This will be different
for each holder/end-wall material, as already discussed.

B. Effect of Precompression

Having characterized the response of the system without
precompression, the stylus and fulcrum were now attached as
shown in Fig. 1. The response of a chain of three chrome steel
spheres of 1-mm diameter to increased levels of F0 is shown

Fig. 6. Measurement of the motion of the end wall of the R11 acrylic holder,
using the vibrometer. (a) Time waveform. (b) Corresponding spectrum.

Fig. 7. Output waveforms for a chain of three spheres excited at 73 kHz and
using the fulcrum to vary the precompression. (a) Time waveform. (b) Cor-
responding frequency spectra obtained via a fast Fourier transform (FFT).

in Fig. 7(a) and (b) for waveforms and spectra, respectively.
It will be seen from the time-domain data of Fig. 7(a) that the
periodic impulses created using the minimum F0 (estimated
at 10 mN) start to become less distinct as the precompression
force increases. By 55 mN precompression, the impulses are
barely visible, and by 80 mN the signal is dominated by
the periodicity expected from the input signal at 73 kHz.
Thus, it can be concluded that with an additional 80 mN
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Fig. 8. Theoretical predictions for a three-sphere chain using a tone-burst
input of an ultrasonic horn at 73 kHz. Waveforms (left) and spectra (right) at
various levels of precompression force F0, and assuming the maximum input
amplitude from the ultrasonic horn [Fig. 1(c)]. Results are shown in terms
of (a) time waveform and (b) corresponding frequency spectra obtained via
an FFT.

of precompression, the impulses have been damped out by
the increasing stiffness of the chain. The spectra of Fig. 7(b)
reinforce this view–increased precompression is associated
with a suppression of the subharmonics seen when a strong
NNM is present, and a corresponding reduction in the presence
of harmonics. The system has thus become weakly nonlinear,
decreasing nonlinearity, and suppressing the presence of the
solitary wave impulses.

The model described by (9) allows both the precompression
force and the amount of viscous damping present, to be varied,
and has been used to predict the expected outputs for the chain
of three spheres. The results in Fig. 8 were obtained using a
viscous damping coefficient of 0.23 Nsm−1 for the theoretical
model.

Comparison of Figs. 7 and 8 indicates that the theoret-
ical predictions have many features in common with the

Fig. 9. Changes in propagation velocity for a three-sphere chain excited by
a tone burst at 73 kHz at various levels of precompression force F0. Results
are shown for the maximum input amplitude, with the time delay along the
chain estimated using wavelet decomposition methods. Results are shown after
processing waveforms from both experimental data and theoretical predictions
for an R11 end wall of the holder.

experimental results. The waveforms obtained when the chain
was subject to a precompression force from 20 to 40 mN
contained increasing amounts of the input frequency. This was
accompanied by a reduction in the relative amplitude of the
subharmonic frequency peak at 37 kHz as the precompression
was increased further. The theory also explores the response
at relatively high precompression levels where, as expected,
the response is dominated by the input frequency. There is also
some first harmonic signal still present, due to the existence
of the limited nonlinearity in the stiffened, weakly nonlinear
chain.

Precompression is known to affect propagation delays along
granular chains [17], [18]. It was thus also interesting to
establish a method whereby the time of flight of the signals
along the chain could be measured, and hence the velocity
of the signal along the chain could be determined. Wavelet
decomposition provided the ability to decompose a waveform
into multiple levels with precise information in the time and
frequency domains [21], and allowed the time delays along the
chain to be determined. This could be carried out for both the
experimental data and theoretical predictions. Consider then
the propagation velocity of the solitary wave pulses along
the three-sphere chain, excited by a tone-burst at 73 kHz at
the maximum input amplitude available (a particle velocity
amplitude of 600 mm/s in this case). The results are shown
in Fig. 9. It is interesting to correlate Fig. 9 with the waveforms
and spectra of Figs. 7 and 8. At levels of precompression below
50 mN, the spectra that resulted were characteristic of NNMs
being present, with strong subharmonics (as in Figs. 7 and 8
at low precompression amplitudes). Thereafter, a transition
occurred, and the subharmonics started to be supressed, with
the input signal becoming more dominant, indicative of a
weakly nonlinear behavior.

It was observed that there was a general increase in velocity
along the chain with increased precompression force, with the
value increasing from 503 to 843 m/s as the precompression
force increased from 20 to 500 mN. Note that the experimental
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Fig. 10. As in Fig. 9, but for a ten-sphere chain.

and theoretical curves exhibit similar trends. In the strongly
nonlinear regime, the velocity changes greatly with small
changes in the precompression force. This is expected, in that
the system will be very sensitive to the initial conditions. With
increased precompression, the system changes to being weakly
nonlinear, and the change in velocity will be less marked.

Similar trends were seen in different lengths of chains
using the 1-mm-diameter steel ball bearings. This included
the gradual suppression of the impulses seen at minimal
precompression, and the increasing dominance of the input
frequency of 73 kHz in the signal. Fig. 10 shows an example
for a chain containing ten spheres. It can be seen that similar
trends, namely that the velocity along the chain increased
steadily with additional precompression. There was a period of
instability in the experimental velocity values at low levels of
F0 in the experimental data, not replicated theoretically. The
reasons for this are not clear. As for the case of the three-
sphere chain, this region exhibited characteristics expected
from the presence of NNMs, with strong subharmonics in
the spectrum indicating a strongly nonlinear response. At pre-
compression values above 100 mN, subharmonics were sup-
pressed, with changing amounts of harmonics of the input
frequency, indicative of a weakly nonlinear behavior.

V. DISCUSSION AND CONCLUSION

The work described in this paper demonstrates that resonant
granular chains can exhibit distinct properties. The chains
themselves are able to generate an impulse train at high
amplitude. This is achieved via the creation of a resonant
chain of spheres, within which NNMs can exist at ultrasonic
frequencies. However, this requires careful design. The spheres
have to be small enough to exhibit individual motion relative
to each other at the frequencies of interest, and this has to
be below a certain cutoff frequency. If this condition holds,
then relative motion between spheres leads to a strongly
nonlinear interaction at the interface between them due to
Hertzian mechanics. Provided the input signal (in terms of a
force Fm) is much greater than any static force holding them
together (F0), the spheres can even lose contact, a feature of a
strong NNM. However, the precompression forces needed to
achieve this are very small (10 mN in the present case). This
requires care over the design of the experimental system.

A highly nonlinear system would be expected to be very
sensitive to boundary conditions, and this is the case here.
Thus, for example, changing the end-wall material in contact
with the final sphere of the chain has a large effect on the
response. In this paper, only an acrylic polymer led to the
creation of the interesting impulse trains in the time domain.
This indicates how sensitive such systems are to boundary
conditions. The effect of precompression force was also stud-
ied, and it was demonstrated that an additional 100 mN of
precompression was enough to damp out the subharmonics
in the frequency response of the chains. This was due to
the characteristics of the system gradually changing from
being highly nonlinear to being only weakly nonlinear. This
was accompanied by a gradual increase in the propagation
velocity along the chain. In addition to the above, the effect
of the damping coefficient is of interest, and perhaps should
be examined further. It has been known to be a sensitive
parameter in theoretical modeling predictions, and it is likely
that experimentally it is a factor in determining the nature
of the response of the chain. This and other factors could
perhaps be explored further, for example, by using finite
element models of intergranular interactions and the effects of
end-wall conditions [22].

REFERENCES

[1] V. F. Nesterenko, “Propagation of nonlinear compression pulses in
granular media,” J. Appl. Mech. Tech. Phys., vol. 24, no. 5, pp. 733–743,
1983.

[2] V. Nesterenko, Dynamics of Heterogeneous Materials. New York, NY,
USA: Springer-Verlag, 2001.

[3] C. Coste, E. Falcon, and S. Fauve, “Solitary waves in a chain of
beads under Hertz contact,” Phys. Rev. E, vol. 56, pp. 6104–6117,
Nov. 1997.

[4] S. Sen, J. Hong, J. Bang, E. Avalos, and R. Doney, “Solitary waves in
the granular chain,” Phys. Rep., vol. 462, no. 2, pp. 21–66, 2008.

[5] R. S. Mackay, “Solitary waves in a chain of beads under Hertz contact,”
Phys. Lett. A, vol. 251, no. 3, pp. 191–192, 1999.

[6] A. Spadoni and C. Daraio, “Generation and control of sound bullets
with a nonlinear acoustic lens,” Proc. Nat. Acad. Sci. USA, vol. 107,
no. 16, pp. 7230–7234, 2010.

[7] E. B. Herbold and V. F. Nesterenko, “Solitary and shock waves in
discrete strongly nonlinear double power-law materials,” Appl. Phys.
Lett., vol. 90, no. 26, p. 261902, 2007.

[8] C. Daraio, V. F. Nesterenko, E. B. Herbold, and S. Jin, “Strongly
nonlinear waves in a chain of Teflon beads,” Phys. Rev. E., vol. 72,
p. 016603, Jul. 2005.

[9] K. R. Jayaprakash, Y. Starosvetsky, and A. F. Vakakis, “New family of
solitary waves in granular dimer chains with no precompression,” Phys.
Rev. E, vol. 83, p. 036606, Mar. 2011.

[10] K. R. Jayaprakash, Y. Starosvetsky, A. F. Vakakis, M. Peeters, and
G. Kerschen, “Nonlinear normal modes and band zones in granular
chains with no pre-compression,” Nonlinear Dyn., vol. 63, no. 3,
pp. 359–385, 2011.

[11] Y. Starosvetsky and A. F. Vakakis, “Traveling waves and localized modes
in one-dimensional homogeneous granular chains with no precompres-
sion,” Phys. Rev. E, vol. 82, p. 026603, Aug. 2010.

[12] J. Lydon, K. R. Jayaprakash, D. Ngo, Y. Starosvetsky, A. F. Vakakis,
and C. Daraio, “Frequency bands of strongly nonlinear homogeneous
granular systems,” Phys. Rev. E, vol. 88, p. 012206, Jul. 2013.

[13] D. A. Hutchins et al., “Evolution of ultrasonic impulses in chains of
spheres using resonant excitation,” Eur. Phys. Lett., vol. 109, no. 5,
p. 54002, 2015.

[14] D. A. Hutchins et al., “Ultrasonic propagation in finite-length
granular chains,” Ultrasonics, vol. 69, pp. 215–223, Jul. 2016,
doi: 10.1016/j.ultras.2015.10.018.

[15] N. S. Martys and R. D. Mountain, “Velocity Verlet algorithm
for dissipative-particle-dynamics-based models of suspensions,” Phys.
Rev. E, vol. 59, no. 3, pp. 3733–3736, 1999.



AKANJI et al.: EFFECT OF BOUNDARY CONDITIONS ON RESONANT ULTRASONIC SPHERICAL CHAINS 1965

[16] J. Lydon, G. Theocharis, and C. Daraio, “Nonlinear resonances and
energy transfer in finite granular chains,” Phys. Rev. E, vol. 91, no. 2,
p. 023208, 2015.

[17] C. Daraio, V. F. Nesterenko, E. B. Herbold, and S. Jin, “Tunability of
solitary wave properties in one-dimensional strongly nonlinear phononic
crystals,” Phys. Rev. E, vol. 73, no. 2, p. 026610, 2006.

[18] C. M. Donahue, P. W. J. Anzel, L. Bonanomi, T. A. Keller, and
C. Daraio, “Experimental realization of a nonlinear acoustic lens with
a tunable focus,” Appl. Phys. Lett., vol. 104, no. 1, p. 014103, 2014.

[19] V. J. Sánchez-Morcillo, I. Pérez-Arjona, V. Romero-García, V. Tournat,
and V. E. Gusev, “Second-harmonic generation for dispersive elastic
waves in a discrete granular chain,” Phys. Rev. E, vol. 88, no. 4,
p. 043203, 2013.

[20] D. G. Chetwynd, X. Liu, and S. T. Smith, “A controlled-force stylus
displacement probe,” Precis. Eng., vol. 19, nos. 2–3, pp. 105–111, 1996.

[21] S. Legendre, D. Massicotte, J. Goyette, and T. K. Bose, “Wavelet-
transform-based method of analysis for Lamb-wave ultrasonic NDE
signals,” IEEE Trans. Instrum. Meas., vol. 49, no. 3, pp. 524–530,
Jun. 2000.

[22] P. Gélat et al., “The dynamic excitation of a granular chain for
biomedical ultrasound applications: Contact mechanics finite element
analysis and validation,” J. Phys., Conf. Ser., vol. 684, no. 1, p. 012005,
2016.

O. Akanji received the B.S. degree in electronics
from the University of Durham, Durham, U.K., and
the M.S. degree in biomedical engineering and the
Ph.D. degree in electronics engineering from the
University of Warwick, Coventry, U.K., in 2011 and
2015, respectively.

He is currently a Postdoctoral Research Fellow
with the School of Engineering, University of War-
wick. His current research interests include nonlinear
solitary waves, high intensity focused ultrasound,
and nondestructive testing using ultrasound.

Jia Yang received the B.S. degree in metallurgy
material and engineering from the Wuhan Univer-
sity of Technology, Wuhan, China, in 1989, and
the M.S. and Ph.D. degrees in mechanical science
and engineering from the Huazhong University of
Science and Technology, Wuhan, China, in 1998
and 2003, respectively. She is currently pursuing the
Ph.D. degree in sustainable energy engineering and
design with the University of Warwick, Coventry,
U.K.

She taught courses as a Teaching Assistant in
mechanics and materials with Three Gorges University, Yichang, China, from
1989 to 1995. She was appointed as a Lecturer in 1995 and she continued
to teach until 1996. She was with the Huazhong University of Science and
Technology as a Postdoctoral Research Fellow until 2007. She was a Visiting
Research Fellow in materials for high performance applications with the
Interdisciplinary Research Centre, University of Birmingham, Birmingham,
U.K., from 2005 to 2006. She is currently a Research Fellow with the
School of Engineering, University of Warwick, Coventry, U.K. She has been
a Research Fellow with the University of Warwick since 2013. Her current
research interests include nonlinear dynamics and acoustics in granular media,
ultrasonic engineering, and heat transfer in micro and nanoparticle-based
systems.

David Hutchins received the B.Sc. and Ph.D.
degrees from the University of Aston, Birmingham,
U.K.

He held postdoctoral research positions in Den-
mark, the U.K., and Canada. He was with Queen’s
University, Kingston, ON, USA, as an Assis-
tant/Associate Professor, for eight years, before
moving to the University of Warwick, Coventry,
U.K., where he has been a Professor since 1995.
He has authored over 190 refereed journal papers in
these and other areas. He received an IET Achieve-

ment Medal in 2015. His current research interests include ultrasound and
acoustics, including laser-generated ultrasound, air-coupled ultrasound, and
nondestructive evaluation.

Dr. Hutchins acted as an Associate Editor of the IEEE TRANSACTIONS ON

ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL for many
years.

Peter J. Thomas received the Dipl.-Phys. and
Dr.rer.nat. degrees in physics from the Georg-
August-Universität, Göttingen, Germany, in 1988
and 1991, respectively.

He was a Research Associate and then a Senior
Research Associate with the Department of Applied
Mathematics and Theoretical Physics, University of
Cambridge, Cambridge, U.K., from 1992 to 1995.
He joined the University of Warwick, Coventry,
U.K., as a Warwick Research Fellow in 1995, where
he was promoted to Reader in 2001 and to Professor

in 2008. His current research interests include the experimental and theoretical
investigations of problems in fluid dynamics and of nonlinear mechanical
processes in general.

Dr. Thomas is a member of the European Mechanics Society. He received
the International Union of Applied and Theoretical Mechanics Bureau Prize
in 1996.

Lee A. J. Davis received the B.Sc. degree in physics
and electronics engineering from Bangor University,
Bangor, U.K., in 1989, the M.Sc. degree in indus-
trial measurement systems from Brunel University,
London, U.K., in 1992, and the Ph.D. degree in engi-
neering from The University of Warwick, Coventry,
U.K., in 2006.

He is currently a Research Fellow with the School
of Engineering, University of Warwick. Previously,
he has also worked in the area of fine surface
metrology and precision mechanical structures. His

current research interests include ultrasonic testing, near- and mid-infrared
imaging and other related NDT technologies.

Sevan Harput (S’08–M’14) received the B.Sc.
degree in microelectronics engineering and the
M.Sc. degree in electronic engineering and computer
sciences from Sabanci University, Istanbul, Turkey,
in 2005 and 2007, respectively, and the Ph.D. degree
from the University of Leeds, Leeds, U.K., in 2013.

He was a Teaching and Research Fellow with
Sabanci University from 2007 to 2008. In 2009, he
joined the Ultrasound Group, School of Electronic
and Electrical Engineering, University of Leeds. He
is currently a Research Fellow with the University

of Leeds, where is involved in biomedical ultrasound systems and ultrasound
imaging. His current research interests include high frame-rate ultrasound
imaging, Doppler and flow imaging, elastography, coded excitation tech-
niques, nonlinear acoustics, and ultrasound contrast agents.

Dr. Harput has been an Administrative Assistant of the IEEE TRANSAC-
TIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL

since 2013. He received the University of Leeds Teaching and Research Award
in 2014.

Steven Freear (S’95–M’97–SM’11) received the
Ph.D. degree in 1997.

He was with the electronics industry for seven
years as a medical ultrasonic system designer. He
was appointed to Lecturer (Assistant Professor) and
then to Senior Lecturer (Associate Professor) with
the School of Electronic and Electrical Engineering,
University of Leeds, Leeds, U.K., in 2006 and 2008,
respectively. In 2006, he formed the Ultrasound
Group, specializing in both industrial and biomedical
research. In 2014, he was appointed as a Visiting

Professor with the Georgia Institute of Technology, Atlanta, GA, USA. He
is an External Examiner to master’s programs in electronic engineering with
Queen’s University at Belfast, Belfast, U.K. He teaches digital signal process-
ing, VLSI and embedded systems design, and hardware description languages
at both undergraduate and postgraduate levels. His current research interests
include advanced analog and digital signal processing and instrumentation for
ultrasonic systems.

Dr. Freear has been Associate Editor of the IEEE TRANSACTIONS ON
ULTRASONICS, FERRORELECTRICS, AND FREQUENCY CONTROL since
2009, and was appointed as the Editor-in-Chief in 2013.



1966 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 63, NO. 11, NOVEMBER 2016

Pierre N. Gélat was born in Paris, France, in 1972.
He received the B.Eng. degree in elecroacoustics
from the University of Salford, Salford, U.K., in
1994, the M.Sc. degree (Hons.) in sound and vibra-
tion studies from the University of Southampton,
Southampton, U.K., in 1996, and the Ph.D. degree
from the Department of Mechanical Engineering,
University College London (UCL), London, U.K., in
2013, investigating the optimization of high-intensity
focused ultrasound (HIFU) fields for ablative thera-
pies of tumors in the upper abdomen using boundary

element methods.
He then completed a research assistantship in conjunction with Peugeot-

Citroën, Paris, France, and the Institute of Sound and Vibration Research,
University of Southampton, Southampton, U.K., where he was investigating
vehicle engine vibration using statistical energy analysis methods and finite
element modeling. In 1997, he joined the National Physical Laboratory,
Teddington, U.K., where he was involved in the theoretical modeling of
industrial and medical ultrasonic devices and characterization of resulting
fields. In 2014, he joined the Department of Mechanical Engineering, UCL,
where he is investigating the modeling of novel transducers for HIFU
applications. He is currently a Chartered Engineer and Chair of the Physical
Acoustics Group Committee of the Institute of Physics.

Dr. Gélat received the Bob Chivers Prize in 2011 from the Institute of
Physics for best paper by a Ph.D. student in the field of physical acoustics.

Nader Saffari received the B.Sc. degree in electrical
and electronic engineering from Leeds University,
Leeds, U.K., in 1978, and the M.Sc. degree in
microwaves and modern optics and the Ph.D. degree,
both from University College London (UCL), Lon-
don, U.K., in 1986.

He was an Engineering Consultant for industrial
clients for six years. He joined UCL in 1992, where
he set up the Ultrasonics Group and is currently
a Professor of Ultrasonics. He has authored 118
scientific articles and three book chapters. His cur-

rent research interests include high intensity focused ultrasound for the
ablation of tumours, mathematical modeling of ultrasound (US) propagation
and scattering in inhomogeneous tissues, histotripsy for intrahepatic cell
delivery, US mediated neuro-modulation, US mediated drug delivery, and
shear wave tumor detection in the prostate and sono-dynamic antibacterial
blood cleansing. He has been the Secretary and the Vice Chair of specialist
group committees within the Institute of Physics and Institution of Electrical
Engineers, U.K.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


