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This paper assesses the feasibility of determining key household characteristics based on temporal load profiles of
household electricity demand. It is known that household characteristics, behaviours and routines drive a number
of features of household electricity loads in ways which are currently not fully understood. The roll out of domestic
smart meters in the UK and elsewhere could enable better understanding through the collection of high temporal
resolution electricity monitoring data at the household level. Such data affords tremendous potential to invert the
established relationship between household characteristics and temporal load profiles. Rather than use household
characteristics as a predictor of loads, observed electricity load profiles, or indicators based on them, could instead
be used to impute household characteristics. These micro level imputed characteristics could then be aggregated
at the small area level to produce ‘census-like’ small area indicators. This work briefly reviews the nature of current
and future census taking in the UK before outlining the household characteristics that are to be found in the UK cen-
sus andwhich are also known to influence electricity loadprofiles. It thenpresents descriptive analysis of a large scale
smart meter-like dataset of half-hourly domestic electricity consumption before reviewing the correlation between
household attributes and electricity load profiles. The paper then reports the results of multilevel model-based anal-
ysis of these relationships. Thework concludes that a number of household characteristics of the kind to be found in
UK census-derived small area statistics may be predicted from particular load profile indicators. A discussion of the
steps required to test and validate this approach and the wider implications for census taking is also provided.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Energy monitoring for a ‘Smart Census’

Area based population statistics in the United Kingdom (UK) have
historically been derived from the decadal census of housing and popu-
lation. In addition to basic demographic statistics, the socio-economic
information collected is used to produce robust small area estimates
of a range of characteristics for every neighbourhood. Representing ‘a
definitive snapshot of the nation’ (Calder & Teague, 2013) this data pro-
vides a backbone for commercial, academic and social research as well
as policy analysis, a decadal ‘re-grouping’ and ‘re-basing’ of all small
area population projections statistics (Norman, 2013) and, crucially, na-
tional and local resource allocation (Eurostat, 2011; Norman, 2013).
Nonetheless, the UK census has also faced criticism as a costly and fre-
quently outdated source of population statistics, with a time lag of at
n), X.Lin@soton.ac.uk (S. Lin),
(A. Bahaj),

. This is an open access article under
least two years between data collection and reporting (Dugmore,
Furness, Leventhal, & Moy, 2011b).

Currently considered approaches for the future provision of popula-
tion statistics includedecennial census-taking,more frequent social sur-
veys or administrative (Government held) data linkage and aggregation
(ONS, 2013). In contrast, this work explores the possibility of deriving
small area estimates of traditional socio-economic indicators from ‘dig-
ital trace’ or transactional data collected by utility (or other) services as
part of normal service provision. As a number of recent authors have
noted large-scale geo-coded transactional datasets, such as those col-
lected in the retail, telecommunications, finance and utilities sectors
could offer opportunities to supplement census based small area statis-
tics by supporting the delivery of area-based population statistics, and
generating novel indicators at a neighbourhood level (Deville et al.,
2014; Dugmore et al., 2011b; Struijs, Braaksma, & Daas, 2014). For the
United Kingdom Statistics Authority, via its executive office the Office
for National Statistics (ONS) in England andWales, the use of commer-
cial data to support census taking may therefore help address census
users' requests for more frequent and timely reporting of census-type
statistics in the intercensal periods.
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Recent related work suggests that commercial ‘big data’ could both
support near real time census taking and also provide unique insights
into household or individual behaviours (Carroll, Lyons, & Denny,
2014; Claxton, Reades, & Anderson, 2012; Deville et al., 2014;
Douglass, Meyer, Ram, Rideout, & Song, 2015; Dugmore et al., 2011b;
Pucci, Manfredini, & Tagliolato, 2015). In this work we consider house-
hold level data held by a range of utility companies before focusing in
particular on smart meter derived electricity consumption data. Com-
pared to a number of other forms of potentially useful ‘big data’, a
grid-connected electricity supply is almost universally available in the
UK, almost universally connected to domestic dwellings and metering
of consumption is mandatory. Furthermore the planned universal roll-
out of electricity smart meters collecting at least half-hourly consump-
tion data (DECC, 2013) means that consideration of the value of
suitably anonymised and aggregated smart meter data in the produc-
tion of official statistics is now timely.

The use of this kind of data for market segmentation and other elec-
tricity related services has been noted in the literature (McKenna,
Richardson, & Thomson, 2012) and was noted by Dugmore et al.
(Dugmore et al., 2011b) in the context of future census data collection.
However, as far as we are aware only one published study has investi-
gated its potential in the development of official and/or small area sta-
tistics (Carroll et al., 2014). A growing literature suggests that
household level electricity load data, collected via smart metering,
could provide considerable opportunities to infer household character-
istics (Beckel, Sadamori, & Santini, 2012; Newing, et al., 2015; Struijs et
al., 2014) The link between household characteristics and household
energy consumption is long established and the literature recognises
that household characteristics will give rise to different load profiles
and subsequent demand on the electricity supply network (e.g. see
McLoughlin, Duffy, & Conlon, 2013 for a summary). Consequently, the
energy sector uses household or area based indicators of household
composition and characteristics to predict electricity ‘demand’ in order
to manage networks and target interventions designed to reduce or
time-shift peak loads (e.g. see Elexon, 2013; Hamidi, Li, & Robinson,
2009; Wright & Firth, 2007).

The purpose of this work is to explore the value of inverting this ap-
proach to assess the feasibility of using observed high temporal resolu-
tion electricity consumption data to infer household characteristics as a
first step in the aggregation of household characteristics to form ‘nor-
mal’ area level population statistics. It should be emphasised therefore
that the overall objective is not to characterise or ‘profile’ individual
households, rather we seek to aggregate inferred household character-
istics to develop area based ‘neighbourhood’ indicators similar to or in
combination with Census estimates or other appropriate datasets.

Thiswork briefly reviews the future provision of area based statistics
in the UK, recognising the opportunities to enhance or supplement the
census taking process with digital trace data. It then considers the ex-
tent to which digital trace data from the commercial sector could repre-
sent a novel tool to generate census type small-area statistics, before
focusing on the use high resolution electricity consumption monitoring
data collected via smart metering. Based on preliminary analyses of a
‘smart meter-like’ dataset the research highlights the potential value
of the approach and then discusses significant challenges and concludes
by setting out a research programme which could systematically test
the value of the approach.

2. Future provision of area based population statistics in the UK

As a consistent and robust source of small area population statistics,
the United Kingdom census is used to allocate billions of pounds of gov-
ernment and commercial investment at the local level. It represents a
fundamental tool for market research, policy making, commercial deci-
sionmaking, resource allocation and for academic research (ONS, 2013;
Watson, 2009). Estimates of population counts by age and sex are a key
census output, yet the detailed attribute information related to
households and their usual residents - determining characteristics
such as ethnic composition, education, socio-economic status, religion
and employment – offer greatest value to the academic and commercial
sector.

Census data are notmade available at the individual household level
but are published as non-disclosive aggregated counts within a hierar-
chy of ‘output zones’ or areas. These are built from unit postcodes, de-
signed for the release of aggregate population statistics and represent
small areas ranging from Output Areas (OAs – typically containing
around 125 households) through to local authority districts (LADs) or
Unitary Authorities (UAs). The former represents an important analyti-
cal unit for resource allocation and policymaking at the local level, espe-
cially within the commercial sector (Dugmore, 2013; ONS, 2014a). It is
this combination of universal geographic coverage at the small area
level coupled with detailed attribute data that represents a major
strength of the census (House of Commons Treasury Committee, 2008).

However, inevitably increasing costs, difficulties of ensuring full re-
sponse, concerns over the decadal reporting cycle and the two year
time-lag between census-taking and the delivery of initial outputs has
given rise to a search for alternatives (Dugmore et al., 2011b). This
work has been conducted by the ONS ‘Beyond 2011’ programme
(ONS, 2014a) and, together with subsequent reviews of international
census taking practice (see for example Dugmore, Furness, Leventhal,
and Moy (2011a); and Martin (2006)), has highlighted a variety of ap-
proaches to collecting area based statistics including the use of govern-
mental administrative sources (e.g. Netherlands and Denmark) or a
rolling census (France). However the work also showed that a number
of options under consideration by ‘Beyond 2011’, particularly those
driven by administrative data, were unable to provide the level of
socio-economic attribute data that many census users rely upon for
commercial analysis, policy making and resource allocation (Calder &
Teague, 2013; ONS, 2014a). Additionally, concerns have been raised
over the likely success and practicalities of a census based on an admin-
istrative or register based system given the lack of a population register
within the UK (Skinner, Hollis, & Murphy, 2013).

Based on the recommendations of the Beyond 2011 program (ONS,
2014a) on, extensive user consultation (ONS, 2014b) and an indepen-
dent review (Skinner et al., 2013), the UK Statistics Authority recom-
mended to parliament that a ‘traditional’ decadal census should be
carried out in 2021 (Dilnot, 2014). They also noted that this should be
primarily carried out online and that the considerable potential of
utilising administrative data and larger scale household surveys as a
supplement to census based statistics should be developed further
(Dilnot, 2014).

Whilst recognising that data held by commercial organisations may
offer more cost effective or timely reporting (Dugmore et al., 2011b),
this avenue has received far less attention and discussion has tended
to refer only to ‘customer information’ recorded in customer service da-
tabases and/or retail transaction data. As far as we are aware, commer-
cial data does not currently featurewithin the national statistical census
taking or population statistics of any nation. As Struijs et al. (2014) note
such data could be used to provide substantial additional data over and
above basic address listings.

3. Smart meters for a Smart Census

The nascent roll-out of domestic electricity smart meters in a num-
ber of major markets including the US, China, Brazil, India and Japan
(Deloitte, 2011) and the UK (DECC, 2012) provides an opportunity for
the exploration of precisely the scenario described above.

In the UK, smart meters incorporate communication infrastructure
allowing them to transmit near real-time energy usage data to in
homedisplay units (IHDs), to energy demand service operators selected
by the customer and to a centralised data retrieval service to extract
half-hourly data from all smart meters for use by energy suppliers (bill-
ing and fraud prevention); network operators (network management)



Table 1
Irish CER Smart Meter Trial Household samples.

Sample N

Households who completed the 2009 pre-trial survey 4232
Households with valid consumption data in October 2009 3488
Households who completed the 2010 survey 3422
Households who completed both surveys and had valid consumption
records

3144
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or other authorised third parties (e.g. switching agencies). Unlike other
household level transactional data sources, the universal coverage and
singular data access gateway suggests that electricity consumption
data could represent a valuable data source for research and policy
making.

A growing literature suggests that household level electricity load
data, collected via smart metering, could provide considerable opportu-
nities to infer household characteristics (Beckel et al., 2012; Newing et
al., 2015; Struijs et al., 2014). The link between household characteris-
tics and household energy consumption is long established and the lit-
erature recognises that household characteristics will give rise to
different load profiles and subsequent demand on the electricity supply
network (Wright & Firth, 2007; Hamidi et al., 2009; Elexon, 2013;
McLoughlin et al., 2013). In this work we assess the feasibility of
inverting this approach anduse observed high temporal resolution elec-
tricity loads in order to infer household characteristics. It should be
noted, however, that the overall intention is not to characterise or ‘pro-
file’ individual households, but to develop area based ‘neighbourhood’
indicators for policy making and the delivery of population statistics
and social indicators.

We have previously used the term ‘Smart Censuses’ (Newing et al.,
2015) in reference to the potential generation of area based population
statistics and area based indicators inferred via smart metering. First,
however, it is necessary to demonstrate that smart metered electricity
load data can be used as a tool to accurately infer household character-
istics. In this work we make use of a smart-meter like dataset, intro-
duced in the following section. We use this dataset to generate a
series of summary statistics and indices (‘profile indicators’) to describe
the shape and characteristics of household load profiles. We then use
multi-level regression modelling techniques to test the extent to
which such load profile indicators have the potential to predict key
household characteristics.
4. A smart meter-like dataset

Preliminary work conducted with a small smart-meter like dataset
from a University of Southampton energy demand reduction project
showed some evidence of differences in load profiles for different
types of households (Newing et al., 2015). However the small sample
size and relative homogeneity of the household sample led us to follow
(McLoughlin, Duffy, & Conlon, 2012) and exploit a much larger smart-
meter like dataset from the Irish Commission for Energy Regulation's
(CER) Smart Metering Electricity Customer Behaviour Trials (CBTs).1

The purpose of the trials, which took place from 2009 to 2010was to as-
sess the impact of various tariff regimes and feedback methods on con-
sumers' electricity consumption. In order to do this the trial recruited
over 3000 Irish households who were equipped with electricity con-
sumption monitors before being allocated to control and intervention
groups. All households were surveyed during the baseline (2009) and
again during the post-trial (2010) stages to gather information on
household composition, appliance ownership and usage and socio-eco-
nomic status. Overall, as Table 1 shows, some 4232 households com-
pleted the initial survey but only 3487 had fully functioning half-
hourly consumption monitors in October 2009 at the start of the base-
line period. In total 3143 completed both surveys andhad full consump-
tion records for the entire trial period.

In order to reduce the processing and analysis time, avoidmajor hol-
idays and exclude potentially confounding seasonal variation, four
weeks of data from mid-week days (Tues, Wednesday and Thursday)
in late September and early October 2009 was selected for analysis.
The selection of mid-week days was guided by previous work suggest-
ing that there is greater differentiation in loadprofiles for different kinds
1 Accessed via the Irish Social Science Data Archive - http://www.ucd.ie/issda/data/
commissionforenergyregulationcer/.
of households during the week compared to weekends (Newing et al.,
2015).

Table 2 shows summary statistics for the mid-week household con-
sumption for this period and indicates the extent towhich consumption
is positively skewed. Table 3 extends this analysis to show that variation
in half hourly consumption increases as the number of residents in-
creases, as does the mean total consumption over the period and also
the mean consumption per half hour.

Some 2% of households used electricity storage heaters as their main
means of heating while 28% used gas, 42% used oil and 26% used solid
fuels. It was therefore considered unlikely that the use of electricity for
heating would substantially affect the analysis. On the other hand, at
least 19% of the households used electric immersion heaters as their
source of hot water. We acknowledge that the use of such appliances
could introduce artefacts into the kinds of consumption patternswe dis-
cuss below. However in the future census collection context we pro-
pose, the presence of hot water immersion heaters would be
unknown and so must be accepted as a potential source of error in the
estimation of household attributes. More detailed analysis of individual
dwelling level consumption patterns could attempt to identify and con-
trol for electricity consumption of this kind but due to its computational
complexity (Zoha, Gluhak, Imran, & Rajasegarar, 2012) this was consid-
ered outside the scope of the current paper.

Other sources of variation in electricity consumption include exter-
nal temperature, the ownership of more (or less) energy efficient appli-
ances and on-site electricity generation through solar panels or
domestic wind turbines. By using a single month in the Autumn of
2009 in Ireland we attempt to control for temperature fluctuations be-
tween households and therefore assume that all dwellings were ex-
posed to the same climatic conditions. We do not take into account
ownership of different kinds of appliances as this could not be known
at the household level in the context we propose and so would contrib-
ute to ‘error’ in our estimations. Finally only 1% of trial households re-
ported using “Renewable (e.g. solar)” for heating and 2% for hot water
and we take this as an indicator that the depression of measured
power import from the grid due to within-dwelling generation is un-
likely to cause problems in the analysis.

4.1. Electricity load profiles

The half-hourly resolution electricity consumption data collected
during the four week period in October 2011 corresponds to the default
temporal reporting interval specified by the UK smart meter roll-out
programme (Energy UK, 2013) and is generally considered to be ade-
quate for load profile analysis (Beckel, Sadamori, & Santini, 2013).

As an example, Fig. 1 shows temporal load profiles for different kinds
of households using this data and exhibits a familiar shape, with pro-
nounced morning (for those in work) and evening peaks potentially
driven by active household occupancy and use of household appliances
at these times of the day. The literature suggests that a households' con-
sumption profile tends to be fairly consistent on a day-to-day basis
(Ning & Kirschen, 2010), no doubt driven by similar routines, behav-
iours and occupancy patterns.

A number of studies have confirmed the impact of household com-
position, dwelling characteristics and householder behaviours on such
load profiles (Beckel et al., 2012; Druckman & Jackson, 2008; Firth,

http://www.ucd.ie/issda/data/commissionforenergyregulationcer/
http://www.ucd.ie/issda/data/commissionforenergyregulationcer/


Table 2
Descriptive statistics for mid-week electricity consumption in kWh for the household sample (mid-week days) – October 2009.

Variable N Mean SD Median Min Max Skew Kurtosis

All half-hours 2,009,088 0.48 0.64 0.24 0 10.44 3.15 14.1
02:00–05:00 (baseload half-hours) 334,848 0.19 0.21 0.14 0 6 6.19 70.9
16:00–20:00 (evening Peak half-hours) 418,560 0.71 0.82 0.4 0 10.44 2.34 7.51
Daily sum per household 55,808 17.35 14.87 15.74 0 158.13 0.94 1.53
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Lomas,Wright, &Wall, 2008; Owen, 2012;Wright, 2008). Temporal pe-
riodswhere the greatest inter-household variability in load profilesmay
be evident, such as the evening peak period, could offer greatest value in
identifying household characteristics, on the assumption that it is differ-
ences in those characteristics which are likely to drive differences in
household behaviour and routines, and thus loads at these times of
the day. Recent findings (Newing et al., 2015) suggest that the load pro-
files for our study households exhibit a number of key features which
may assist in differentiating between households based on their
characteristics.

4.2. Linked household survey data

The CER electricity consumption dataset is linked to survey data that
incorporates a number of household characteristics of potential interest
in the production of small area population statistics. These include
householder and dwelling characteristics directly comparable with
existing area based population statistics (such as dwelling type, number
of residents and employment status) alongside indicators not currently
part of small area data collection but of considerable relevance to policy
makers (such as income), as Table 4 makes clear.

For policy applications, dwelling size (and in particular the number
of bedrooms) is an important indicator of household level overcrowd-
ing, used primarily by local authorities to tackle housing issues. Follow-
ing the 2011 census, this information has been reported as an
‘occupancy rating’ (relating the number of bedrooms to the number of
usually resident occupants) and notions of household overcrowding
and under-occupancy have also become policy relevant in the wake of
the welfare reforms in the UK, whereby available benefits are cut if
claimants have a spare bedroomwithin a council or housing association
provided home (Ramsden, 2014). The existing literature provides evi-
dence that dwelling floor area is linked to electricity consumption
(Table 4) and we assess the extent to which, based on our sample,
load profiles can be used to infer household floor area. This could in
turn be used to estimate the number of bedrooms in order to generate
a more policy-relevant indicator.

Household income does not form part of small area population sta-
tistics, yet represents an indicator of considerable value topolicymakers
and the commercial sector, with its link to electricity loads well
established (Table 4). In spite of frequent calls for its inclusion, plans
to collect this information within the 2011 UK census were dropped
amidst concerns of under-response driven by the perceived intrusion
posed by an income question. Income is an important indicator of
Table 3
Descriptive statistics for half hourly mid-week electricity consumption in kWh for the househo

N households N half-hours Mean total consumption per hou

1 person 699 402,624 161.50
2 people 134 77,184 247.81
3 people 1702 980,928 285.52
4 people 511 294,336 325.22
5+ people 441 254,016 384.35
economic well-being and the lack of information on income available
via population statistics is frequently cited as a weakness (See e.g.
Dugmore et al., 2011b). The CER survey recorded household response
person's self-reported net annual income via income bands.

Employment status is reported via population statistics in relation to
economic activity, and forms an important tool at the local, regional and
national level for policy making and intervention, enabling household
classification and acting as a predictor of behaviours and routines. The
literature clearly identifies that employment status impacts upon the
timing of electricity loads (Table 4). Household response person (HRP)
employment status formed part of the CER survey with over 59% of
studyHRPs in employment (incorporating full time, part time, freelance
and self-employment), almost 30% were retired, with the remaining
11% representing HRPs not in active employment through unemploy-
ment, study or full time care duties. The latter categories have been
combined with retired households for subsequent analysis, giving two
groups; ‘Employed’ and ‘Not in active employment’. Householder employ-
ment status should, however, be treatedwith some caution. Self-report-
ed employment status must be treated as an indicator only as response
categories provided by the survey did not account for the full range of
nuanced employment patterns that may exist, such as homeworking
and flexible working arrangements which would impact considerably
on behaviours, routines and domestic electricity loads.

It would, however, be an oversimplification to suggest that charac-
teristics such as these could be predicted solely on the basis of house-
hold electricity consumption. The literature clearly identifies that load
profiles are also a function of the number of household residents, and
the household composition, the latter referring to the age structure
and presence of children which may drive routines associated with ed-
ucation, for example (Druckman & Jackson, 2008; Firth et al., 2008;
Owen, 2012; Wright, 2008; Zimmerman et al., 2012). The survey
dataset collected information on household composition, noting the
presence of children and presence of seniors, plus a count of the number
of household residents. Information of this nature is commonly collect-
ed via the Census, household social surveys and a range of administra-
tive datasets. ONS recommendations to parliament following the
‘Beyond2011’ programme noted the important role of administrative
data as a future source of information on household composition with
potential to provide population counts and basic household composi-
tion at the small-area or address level (ONS, 2013, 2014a). Thus within
this analysis we do not attempt to predict these characteristics; rather
they represent predictors that we assume would be available at the
small area level from administrative data. In our analysis, we therefore
ld sample (mid-week days) by number of residents – October 2009.

sehold Mean (half-hours) SD Median Skew Kurtosis

0.28 0.44 0.14 4.41 29.02
0.43 0.60 0.21 3.45 17.67
0.50 0.64 0.26 3.01 12.72
0.56 0.69 0.32 2.94 12.34
0.67 0.79 0.37 2.68 10.15



Fig. 1.Mean half-hourly electricity consumption per half hour (Tuesday – Thursday) by self-reported employment status of household response person. Source: Authors' calculation using
Irish CER Smart Meter Trial data October 2009 (n = 3488).
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incorporate basic household composition alongside energy monitoring
data to infer additional household characteristics of interest (income,
floor area and employment status). The following section outlines a se-
ries of indicators that can be used to summarise electricity loads for use
in subsequent analysis.

5. Profile indicators and household characteristics

Smart-meter like datasets such as the CER study present a number of
challenges related to data storage, manipulation and analysis (Graham
& Shelton, 2013). Manipulating and processing smart-meter derived
Table 4
Selected household characteristics collected or potentially collected by the Census togeth-
er with evidence of their relationship to load profiles.

Census 2011 household
level variables*

Existing evidence for links to load
profiles

Household Number of persons (Beckel et al., 2013)
Presence of person with
limiting long term
illness
Number of children (Yohanis, Mondol, Wright, & Norton,

2008)
Age distributions of all
persons

Dwelling Household dwelling
type

(Firth et al., 2008; McLoughlin et al.,
2012)

Household tenure (Druckman & Jackson, 2008)
Number of (bed)rooms dwelling floor area as a proxy
Number of cars/vans
Presence of and fuel
used for heating

(McLoughlin et al., 2013)

Householder Ethnic group/country of
birth of HRP/main
language
Age of HRP (McLoughlin et al., 2013)
NS-SEC of household
reference person (HRP)

(Druckman & Jackson, 2008; Hughes &
Moreno, 2013; McLoughlin et al., 2013)

Economic activity of
HRP/h worked

(Yohanis et al., 2008; McLoughlin et al.,
2013)

HRP Education level
Marital Status
Other
Dwelling floor area (Beckel et al., 2013; Craig, Gary Polhill,

Dent, Galan-Diaz, & Heslop, 2014;
McLoughlin et al., 2013)

Household Income (Beckel et al., 2013; Craig et al., 2014;
McLoughlin et al., 2013)

Daily consumption
profile shape

(Haben, Ward, Greetham, Singleton, &
Grindrod, 2014)

* ONS. “Census 2001: Definitions.” London, 2004
datasets often requires specialist high performance computing equip-
ment and tools (See e.g. Thumim, Wilcox, & Roberts, 2013) or aggrega-
tion and summary of time series data prior to analysis (Carroll et al.,
2014; McLoughlin, 2013). Even for just 3488 households over a four-
week period, the thirty minute resolution measurement generated
over 4.6 million records. To simplify the analysis we used a series of pa-
rameters or ‘profile indicators’ to summarise some of the temporal and
magnitudinal features of household load profiles, facilitating compari-
son between households whilst also reducing the volume of data to be
processed.

The literature provides a number of examples of indicators de-
rived from load profiles as listed in Table 5. These indicators consider
characteristics including load magnitude (base load, peak load),
summary statistics (e.g. mean load), temporal properties such as
the timing and duration of key features (e.g. time of use [max]) and
ratios of, for example, peak to off-peak loads. Thus profile indicators
provided a series of summary measures for each household whilst
also helping preserve household privacy and removing redundant
data. The process also considerably smoothed data on a household-
by-household basis, reducing the impact of very rare or atypical
high load events (Williams, 2013). Nevertheless, the literature sug-
gests that profile indicators maintain the ability to differentiate be-
tween households based on key features of their loads, such as the
magnitude or timing of their peak load (McLoughlin, 2013). The
use of profile indicators could thus offer considerable advantages if
this form of analysis were up-scaled to incorporate far larger samples
of households and time series of the order of months rather than
weeks, with a commensurate increase in the volume of data to be
stored, manipulated and handled.

As noted above we calculated the profile indicators listed in Table 1
over the midweek day (Tuesday – Thursday) periods based on the as-
sumption that habits and routines associated with employment or
study, which could reveal important household characteristics, will be
more evident on weekdays. We have excluded Mondays and Fridays
as these represent transition points with the weekend and households
may thus exhibit atypical weekday behaviours.

Since all indicators summarise characteristics of the same load pro-
files, there may be a tendency for indicators to be strongly associated
with each other, especially where they represent similar measures of
magnitude. The ‘Morning Maximum’, ‘Total Power Consumed’ and
‘97.5th percentile load’ are likely to be strongly correlated and therefore
care is used when applying these indicators in subsequent analysis, en-
suring that highly correlated indicators are not incorporated together
within regressions or classifications. However, no indicators have been
discounted as both the literature and prior exploratory analyses sug-
gests that these indicators may reveal different household



Table 5
Parameters or ‘profile indicators’ to describe magnitude and temporal characteristics of load profiles.

Parameter Description Source(s) Possible predictor of…

Base load Mean load 2 am–5 am (Yohanis et al., 2008) Number of Residents,
size of dwelling

97.5th percentile
Load

97.5th percentile of ranked load – used rather than peak load which often represents an
extreme peak value, driven by very short-term use of high power equipment

(Price, 2010) Income, employment
status

Load factor Ratio of mean daily load to maximum daily load (Carroll et al., 2014;
McLoughlin et al., 2012)

Employment status,
presence of children

Lunchtime load Mean load between midday and 2 pm (Chicco, Napoli, Postolache,
Scutariu, & Toader, 2001)

Presence of seniors

Mean load Mean load across all timestamps (Beckel et al., 2012; Yohanis et
al., 2008)

Number of residents

Morning maximum Maximum load between 6 am and 10.30 am (Carroll et al., 2014) Presence of children
Evening
consumption
Factor (ECF)

Mean load during the evening peak (4 pm–8 pm) relative to the mean load at all other times of
the day

(Powells, Bulkeley, Bell, &
Judson, 2014)

Employment status

Total power
consumed

Total power consumption (kWh) during the study period (McLoughlin, 2013) Number of residents,
income
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characteristics. In the following section we assess the potential value of
these indicators as predictors of key household characteristics of
interest.

6. Estimating household attributes from load profiles

The literature, industry practice and our own exploratory analysis
suggests that key features of household load profiles, as summarised
via the profile indicators presented in Table 5, may be able to estimate
a number of household attributes. We argue that exploring the value
of such indicators for this purpose requires three main steps. The first
is to use a multi-level mixed effects framework to identify whether or
not known household characteristics can predict load profile indicators
where those indicators are measured multiple times for each house-
hold. The second is to use the results of this step to select themost likely
profile indicators and reverse themodelling direction to use them to es-
timate the household attributes. The final step is to assess the classifica-
tion accuracy of these estimates at the household level.

6.1. Predicting profile indicators using household characteristics

The first step in this process used a multilevel regression modelling
approach to allow for the appropriate modelling of repeated profile in-
dicator measurements over the 3 day ∗ 4 week = 12 days observed for
each household. The models were constructed using a mixed effects
framework as follows:

yit ¼ β0 þ β1x1it þ…β5x5it þ u0i þ εit

u0i � N 0;σ2
0u

� �
Table 6
Coding of explanatory variables for multilevel models.

Explanatory variable Coding scheme

Income 6 income bands:
b7,500 euro
b22,500
b40,000
b62,500
b92,500
N92,500

Self-reported employment
status of HRP

0 = in paid work, 1 = not in paid work
(unemployed, retired or caring role)

Presence of children 0 = no children, 1 = 1+ child
Number of residents 0 = 1 or 2 residents of any age, 1 = 3+ residents
εit � N 0;σ2
ε

� �

where the dependent variable yit is a profile indicator measurement for
household i at time t, x1it,…, x5it are the explanatory variables (see Table
6) for household i at time t. β1to β5 are FE coefficients, representing the
FE part of the model. u0i is the RE on the intercept, which represents
how an individual household differs from the average household. It is
normally distributed with mean 0, variance σ0u

2 . εit is the within-
group residual with normal distribution of mean 0 and variance σε

2.
Overall the results, which are summarised in Table 7, suggest that

the number of residents and the presence of children are both statisti-
cally significant predictors of several mid-week consumption profile in-
dicators, especially those reflecting the overall magnitude of
consumption. Further, more detailed analysis using nested models
(not shown) suggest that the inclusion of the Household Response
Person's employment status modifies the effect of the number of resi-
dents and the presence of children for several profile indicators.

Income and (un)employment status are clearly correlated and so as
we would expect the inclusion of one to largely mask the effects of the
other for most profile indicators although this is not the case for the
mean baseload which is significantly predicted by income even when
the number of residents is controlled.

(Un)employment status appears to predict the evening consump-
tion factor as wemight expect from Fig. 1 and Table 5. However the rel-
atively high residual value for this model (64%) suggests that it is less
robust than the load factor model (47%).

6.2. Predicting household characteristics using profile indicators

The second step was then to reverse the modelling process and test
that ability of the load profile indicators to correctly predict household
attributes. As noted above it was assumed that the number of residents
and the number of children was already known through potentially
available administrative data sources and thework reported here focus-
es only on the household response person's employment status as an
exemplar.

A logistic regression approach was therefore used to estimate the
probability that a Household Response Person (HRP) was not in paid
work on the basis of number of residents, the number of children and
the profile indicators selected as being most likely to be of value in
Table 7 based on their ability to predict the HRP work status in the ab-
sence of other factors (ECF and LF). By applying a success threshold of
50% an estimate of the percentage of correctly classified HRPs could
then be calculated as a simple within-sample validation test.

The results of this initial model (model 1) are shown in Table 8 and
they suggest that whilst the evening consumption factor and load factor



Table 7
Effectiveness of household characteristics in predicting electricity consumption ‘profile indicators’ (values in bold are significant at the 95% level).

Daily peak time Daily peak 06:00 to 10.30 Daily mean baseload (02:00–05:00) Daily mean

beta Z beta Z beta Z beta Z

Constant 39.9 7.74 −0.80 −3.10 −0.27 −2.66 −0.44 −2.02
Number of residents −0.19 −0.22 0.21 4.94 0.06 3.73 0.24 6.63
Income band −0.72 −1.45 0.10 3.88 0.04 3.75 0.07 3.10
Number of children 0.27 0.42 0.17 5.32 0.00 0.38 0.11 4.21
Employment status of HRP −1.01 −0.92 0.13 2.43 0.05 2.44 0.11 2.27
Marginal R2 0% 15% 7% 20%
Conditional R2 20% 63% 64% 81%
Residual R2 80% 37% 36% 19%

Daily sum Daily 97.5th percentile Evening consumption factor Load factor
beta Z beta Z beta Z beta Z

Constant −21.69 −2.05 −0.03 −0.05 1.72 4.24 0.08 1.10
Number of residents 11.64 6.69 0.83 6.77 0.06 0.90 0.00 −0.09
Income band 3.17 3.12 0.10 1.42 −0.02 −0.49 0.01 1.69
Number of children 5.49 4.22 0.44 4.81 0.08 1.59 0.00 0.21
Employment status of HRP 5.01 2.22 0.06 0.36 −0.18 −2.14 0.04 2.14
Marginal R2 20% 16% 1% 1%
Conditional R2 81% 66% 36% 53%
Residual R2 19% 34% 64% 47%
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both had statistically significant predictive effects, the model was only
able to correctly predict HRP unemployment status in around 65% of
cases.

In order to improve the performance and to test the relative value of
the profile indicators and the ‘known’ demographic variables (number
of residents and number of children), we estimated a series of increas-
inglymore complexmodels. Thus basemodel 2.1 (see Table 9) included
just the evening consumption factor (ECF) and the Load Factor (LF) as
was the case for model 1 but did not include the number of residents
or presence of children. Despite this the results suggest that nearly
60% of HRPs were correctly classified.

In an attempt to improve classification performance we drew on
McLoughlin et al. (McLoughlin et al., 2013) to develop clusters of house-
holds with similar consumption profiles. Cluster membership was cal-
culated via a weighted least squares and k-means clustering process
using only the half-hour consumption profiles. This produced six clus-
ters of households of which two captured themajority (33% and 28% re-
spectively) with the remainder distributed roughly evenly across the
remaining four. As Table 9 shows the inclusion of these clusters in-
creased the performance of themodel by just under 5 percentage points
(model 2.2) with only membership of cluster 3 proving not to be a sta-
tistically significant predictor.

In order to improve the model still further (model 2.3) we then in-
cluded an indicator of ‘habitual behaviour’ by calculating an autocorre-
lation coefficient for the 24 h lag of each half hourly consumption for
each household on mid-week days after the hours of sleep (00:00–
06:00) were removed to avoid artificially increasing the lag correlation.
This coefficient is therefore an indicator of the degree to which mid-
week consumption between 06:00 and 00:00 is replicated at the same
time on subsequent days for each household and, based on exploratory
analysis (not shown) we expected lower autocorrelation (less ‘regular
habits’) for those not in paid work. In general as Fig. 2 shows the coeffi-
cients followed an expected 24 h profile with the highest being the
Table 8
Logistic regression modelling results for HRP unemployment status (model 1).

Beta t p value

Number of residents b 3 0.42 2.30 0.02
Number of residents ≥ 3 −0.70 −7.90 0.00
Children present −1.87 −16.82 0.00
Evening consumption factor (ECF) −0.15 −2.59 0.01
Load factor (LF) 1.93 3.38 0.00
Correct prediction: 65.42%
immediately following half hours before a gentle decline and then rise
to a higher correlation at the 24 h lag (i.e. the same time the next day)
which in this case is represented by the 36th lag due to the removal of
sleep hours. The model included the coefficients at lags 36 (the same
time tomorrow) and 72 (the day after tomorrow) however as Table 9
shows, the inclusion of this habituality indicator produced a marginal
improvement in performance with only the lag 36 coefficient proving
to be statistically significant.

Finally (model 2.4) we re-introduced the presence of children and
household size variables to understand the additional value of this po-
tentially administratively sourced data. As Table 9 shows, the increas-
ingly complex models were significantly different from the simpler
versions (LR test results) while the adjusted pseudo r-squared scores
(McFadden) also increased as the additional variables were added
reflecting increased improvement over the intercept model in each
case. Re-adding the presence of children and dummy for larger house-
holds increased the pseudo r-squared score substantially and the classi-
fication success by 6.2 percentage points and, as might be expected,
reduced the predictive power of the ECF as well as most cluster
membership.

Overall, these results suggest that model 2.4 is most comprehensive
among the list of models tested, with significant predictors approximat-
ing household energy usages, energy usage behaviours and administra-
tive variables. Our simplest model (model 2.1) indicates that although
the absence of administrative data reduced the ability of electricity con-
sumption profile indicators to predict HRP employment status, the suc-
cess rate was still close to 60%. This, together with the relatively
unchanging regression coefficients for the profile indicators in each
model suggests that most of the differentiation captured by the profile
clusters and all of that captured by the ‘habitual behaviour’ indicator
may already be embodied in the profile indicators used in model 2.1.

7. Conclusions and next steps

This paper has started the process of assessing the feasibility of using
household electricity load profiles as a tool to infer key household char-
acteristics. Using a smart meter-like dataset, we generated a series of
load profile indicators that summarise key features of household load
profiles, enabling differentiation between households. These indicators,
coupled with household composition, offered a degree of predictive po-
tential for the characteristic tested and, when compositional data was
excluded but other consumption indicators included, this potential
was still substantial especially when membership of twenty four hour



Table 9
Logistic regression modelling results for HRP employment status.

Model 2.1: base model Model 2.2: with cluster
membership

Model 2.3: with 24 h
autocorrelation
coefficient

Model 2.4 with
presence of children
and 3+ persons

Explanatory variable Coefficient p Coefficient p Coefficient p Coefficient p

Intercept −0.312 0.074 −1.199 0.000 −1.238 0.000 −0.164 0.514
Evening consumption factor −0.260 0.000 −0.235 0.000 −0.176 0.001 −0.062 0.260
Load factor 1.947 0.000 3.038 0.000 3.477 0.000 3.324 0.000
Cluster 2 membership (compared to cluster 1) −0.354 0.047 −0.251 0.164 −0.500 0.011
Cluster 3 membership −0.346 0.173 −0.318 0.212 −0.525 0.058
Cluster 4 membership 0.702 0.000 0.728 0.000 0.040 0.823
Cluster 5 membership 0.846 0.000 0.829 0.000 0.477 0.011
Cluster 6 membership 1.039 0.000 1.045 0.000 0.019 0.916
Lag 36 coefficient −0.278 0.574 −0.641 0.218
Lag 72 coefficient −1.351 0.010 −1.010 0.069
Presence of children −1.471 0.000

3+ persons −0.860 0.000

N 3160 3160 3160 3160
McFadden Pseudo R2 0.024 0.067 0.075 0.150
LR tests:

Model 2.1 v 2.2 p b 0.0001
Model 2.2 v 2.3 p = 0.0001
Model 2.3 v 2.4 p b 0.0001

Classification rate 59.3% 63.8% 63.9% 70.1%
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demand profile clusters was included. This suggests that electricity con-
sumption data of this kind could be used to independently estimate the
employment status of HRPs as ameans of validating (or contributing to)
Census estimates and it could also be used to produce slightly less ro-
bust estimates in the absence of administrative data. This may be espe-
cially pertinent to mid-census period estimates or to situations where
only smart meter data is available whichmaywell be the case for stake-
holders who do not have access to Government held administrative
data sources.

However it must be recognised that the size of the sample used in
this work has precluded the testing of the differential performance of
the process in different sub-populations or in different regions. In both
cases we would expect reduced heterogeneity and thus increased per-
formance of the estimation process. Whilst it would in principle be pos-
sible to develop the work to test larger sub-groups of this sample, we
concluded that the consequential reduction in statistical power would
mean that such work requires a much larger representative population
Fig. 2.Mean and standard deviation of AR coefficie
sample. Further the lack of any geo-coding in the data also precludes
analysis of regional differences within the sample itself.

The use of load profile indicators may also be over-simplifying the
nuanced detail within the load profiles. Given that the range of house-
hold types available within the dataset is relatively narrow, detailed
temporal electricity consumption behaviour not captured by the profile
indictors may be useful in order to discriminate between households.
Whilst evidence from the literature suggests that profile indicators are
frequently used to extract meaningful information from load profiles,
it may be beneficial to work with more of the time-series data in
order to ensure that the profile indicators do not mask habits which
may prove useful in differentiating between households. Such an ap-
proach may provide opportunities to build regression models or gener-
ate clusters for different days of the week, recognising that load profiles
may be very different on weekdays and at weekends, and that the dif-
ference between weekday and weekend profiles may, for example,
allow inferences to be made about household characteristics whilst
nt by lag for mid-week days in October 2009.
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differences between seasons and school vs non-school holiday periods
may also be instructive.

Overall the analysis confirms existing literature suggesting that pro-
file indicators are potentially useful summaries of key features of house-
hold electricity load profiles. The findings suggest that analytic
approaches such as regression and classification could offer potential
in inferring key small area household characteristics from load profile
indicators and basic household composition. This approach could add
considerable additional ‘value’ to domestic smartmetering, enabling re-
mote and quasi real-time estimation of small area population statistics.

However this approach has the potential for impact beyond the de-
livery of enhanced population statistics. Unlike existing small area sta-
tistics or periodic household sample surveys, quasi-real time
observation of energy use and behaviours could be used to both target
and assess the impact of neighbourhood or household level (energy)
policy or market interventions. Thus these datasets offer the potential
to target area based (energy) policy and to remotely evaluate impacts
in near-real time without the need for household sample surveys.

The next steps in this work must be to explore additional statistical
methods to more robustly estimate attributes from consumption pro-
files and to test the performance of these models using not only out-
of-sample validation of household level estimates but also by aggregat-
ing and validating against real Census data.

In the case of statistical methods there may be considerable scope to
develop multi-level hierarchical models of the kind proposed for use in
the estimation of historical climate characteristics from sparse proxy
observations (Hughes & Ammann, 2009; Tingley et al., 2012). Such
work should include the development of appropriate uncertainty mea-
sures for both point (household) and aggregated area level estimates.
Future work should also consider the potential value of including area
level and temporal co-variates to enable the function linking the con-
sumption profiles to the household attributes to vary spatially and
over time.

In terms of household level validation, it is possible that the Irish CER
data set used in this paper may be sufficiently large to support out-of-
sample validation but doing so is likely to considerably increase uncer-
tainty. It is likely that such validation will only become possible when
substantially larger samples of suitably linked consumption and house-
hold attribute data become available. Such data would also support the
kind of sub-population and sub-regional analysis discussed above.

Finally, area level validation of aggregated estimates would require
access to anonymised large-scale smart meter data extracts from either
all households or a representative sample of them in known small area
geographies which could be used as the basis for model-based estima-
tion of household characteristics. These estimates could then be aggre-
gated to current Census geographies and validated against recently
observed Census-derived population statistics. Unfortunately as far as
we are aware, such large scale geo-coded datasets do not currently
exist in the UK.
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