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In this article, we develop the convergence theory of simultaneous, inhomogeneous Dio-
phantine approximation on manifolds. A consequence of our main result is that if the
manifold M C R" is of dimension strictly greater than (n + 1)/2 and satisfies a natu-
ral non-degeneracy condition, then M is of Khintchine type for convergence. The key
lies in obtaining essentially the best possible upper bound regarding the distribution of

rational points near manifolds.

1 Introduction and Statement of Results
1.1 The setup

Throughout, we suppose that m < d, n = m + d and that f = (f,...,f) is defined on

U = [0, 1]%. Suppose further that 9f/da; and 82f/8ai8aj exist and are continuous on U/,
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2 V. Beresnevich et al.

and that there is an n > 0 such that for all @ € U/

2f,
det( e (oz))1 A > . (1.1)

0o 00

1<j<m

Throughout Rt = [0, +00) is the set of non-negative real numbers. Let ¢ : Rt — R* be a
function such that ¥/ (r) — 0 asr — oo and 8 = (A, y) € R? x R™. Now for a fixed q € N,
consider the set

atk gy
R(qv.0):=1@byezixzm: ¢ (1.2)

lgf (*3*) — v = bl < ¥(@)
and let
A(q, Y, 0) :=#R(q, ¥,0).
The map f : / — R™ naturally gives rise to the d-dimensional manifold
M ={(o1,....,0q,f@),....fn@) e R" ¢ = (a1, ...,0q) € U} (1.3)

embedded in R”. Recall that by the Implicit Function Theorem, any smooth manifold M
can be locally defined in this manner; i.e., with a Monge parametrization. The upshot is

that, A(q, ¥, 0) counts the number of shifted rational points

(9, ..., ata b botim) ¢ o
that lie (up to an absolute constant) within the ¥ (q)/g-neighbourhood of Ms. Before
stating our counting results, it is worthwhile to compare condition (1.1) imposed on the
Jacobian of f with that of non-degeneracy as defined by Kleinbock and Margulis [11]
in their pioneering work. In this article, they prove the Baker-Sprindzuk "extremality"
conjecture in the theory of Diophantine approximation on manifolds.

The above map f : &/ — R" : o — f(a) = (fi(@),...,frm()) is said to be l-non—
degenerate at o € U if there exists some integer [ > 2 such that f is [ times continuously
differentiable on some sufficiently small ball centred at « and the partial derivatives of f
at o of orders 2 to [ span R™. The map f is called non-degenerate if it is -non-degenerate
at almost every (in terms of d-dimensional Lebesgue measure) point in I/; in turn the
manifold Ms is also said to be non-degenerate. Non-degenerate manifolds are smooth

sub-manifolds of R" which are sufficiently curved so as to deviate from any hyperplane

9107 ‘ST 2uny uo 3sen3 Aq /310°s[euInolpiojxo-urwiy/:dyy woly papeojumo



Diophantine Approximation on Manifolds 3

at a polynomial rate see [1, Lemma 1(c)]. As is well known [11, p. 341], any real connected
analytic manifold not contained in any hyperplane of R"” is non—-degenerate.

It follows from the definition of I-non-degeneracy that condition (1.1) imposed
on f implies that f is 2-non-degenerate at every point. Although (1.1) is fairly generic,
the converse is not always true even if we allow rotations of the coordinate system. The

submanifold (x,y,z, ..., 2z, x?, xy,y?) of R¥*® provides a counterexample.

1.2 Results on counting rational points

Throughout, the Vinogradov symbols « and > will be used to indicate an inequality
with an unspecified positive multiplicative constant. If a <« b and a > b, we writea < b
and say that the two quantities a and b are comparable. Throughout the article, the
constants will only depend on the dimensions n and d and the map f.

Observe that for g sufficiently large so that ¥(q) < 1/2, we have that

atk cyf,
A(qy,0)=#Laecz?: ‘ (1.4)

laf(*3*) =¥ < ¥ (@

where as usual ||X|| := maX;<j, [|X;]| for any x € R™. In particular, when 0 <

¥ (q) < 1/2, the obvious heuristic argument leads us to the following estimate:

n(v@\" m
A ¥,0) = q (%) = v(@"q". (1.5)
We establish the following upper bound result.

Theorem 1. Supposethatf :l/ — R™ satisfies (1.1) and # € R". Suppose that0 < ¥ (q) <
1/2. Then

AQ V.0 < v(@"q" + (qy(@) g max{1,log(q ¥ (@)}, (1.6)
where the implied constant is independent of g, #, and v but may depend on f. O

The following is a straightforward consequence of the theorem. It states that the upper

bound (1.6) coincides with the heuristic estimate if y(q) is not too small.
Corollary 1. Suppose that f : i/ — R™ satisfies (1.1) and # € R". Suppose that

q V@™ (log q)?/ ™) < yr(q) < 1/2.

9107 ‘ST 2uny uo 3sen3 Aq /310°s[euInolpiojxo-urwiy/:dyy woly papeojumo



4 V. Beresnevich et al.

Then for integers g > 2 we have that

A(q,¥,0) < ¥(@Q™q" . (1.7)

1.3 Results on metric Diophantine approximation

Given a function ¢ : R* — R* and a point 6 = (9, ...,0,) € R", let S,(v/, #) denote the set
of y = (y1,...,¥n) € R" for which there exists infinitely many g € N such that

lgy — 6l = max lgy: — 6ill < ¥ (q).

In the case that the inhomogeneous part  is the origin, the corresponding set S, (¢) :=
Sn(¥,0) is the usual homogeneous set of simultaneously y—approximable points in R".
In the case ¥ is ¥, : r — r~® with t > 0, let us write S, (t,0) for S,(¥,0) and S,(z) for
S, (1,0). Note that in view of Dirichlet’s theorem (n-dimensional simultaneous version),
Sy(t) =R"*forany 7 < 1/n.

In the general discussion above, we have not made any assumption on ¢ regard-
ing monotonicity. Thus, the integer support of ¥ need not be N. Throughout, N' ¢ N will
denote the integer support of . That is the set of g € N such that ¢ (q) > 0. Regard-
ing the set S, (¥, 0), measure theoretically, this is equivalent to saying that we are only
interested in integers g lying in some given set A/ such as the set of primes or squares
or powers of two. The theory of restricted Diophantine approximation in R" is both top-
ical and well developed for certain sets A/ of number theoretic interest—we refer the
reader to [10, Chp 6] and [3, §12.5] for further details. However, the theory of restricted
Diophantine approximation on manifolds is not so well developed.

Armed with Corollary 1, we are able to establish the following convergent
statement for the s-dimensional Hausdorff measure H* of M; N S, (¥, 0). Note that if
s > d = dim Mg, then H* (M N S, (¥, 0)) = 0 irrespective of y. This follows immediately

from the definition of Hausdorff dimension and that fact that
dim(Ms N S, (Y, 0)) < dim Ms.

Theorem 2. Let § € R” and ¢ : Rt — R* be a function such that ¢¥(r) — 0 as r — oo
and

Vv (q) = q /¥ D(log q)*/*m+D forall g e N, (1.8)
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Diophantine Approximation on Manifolds 5

where as N ={ge N: ¢¥(q > 0}. Let0 <s < dand f : &Y — R™ satisfy the following
condition

HS({a €U :thelh.s. of (1.1) = 0}) =0. (1.9)
Then
H(MeNS,(¥,0)) =0  whenever Z (@)Hm T < .
q=1
]

Remark 1. Recall, that in view of the discussion in §1.1 the condition imposed on f in
the above theorem and its corollaries below are equivalent to saying that the manifold

is 2-non-degenerate everywhere except on a set of Hausdorff s-measure zero. O

Now we consider two special cases of Theorem 2. First suppose the integer sup-
port of ¢ is along a lacunary sequence. In particular, consider the concrete situation
that AV = {2' : ¢t € N}. The following statement is valid for any n = d + m and to the
best of our knowledge is first result of its type even within the setup of planar curves
(d=m=1).

Corollary 2. Let# € R" and ¥ : R — R* be a function such that ¢»(r) - 0 as r — oo
and V' = {2 : t € N}. Let
d-—2-<s=<d

2(m+1)

and assume that f : &/ — R™ satisfies (1.9). Then

HS (MfﬂSn(lﬂ,O)) =0 lf Z 2 w(z ) s+m - 0.

Proof. Consider the auxiliary function

1/}(q) = max{y(q), qul/(2m+1)(10g q)Z/(2m+l)} ,

where C > 0 is a sufficiently large constant. Then as is easily verified using the

convergence sum condition of Corollary 2

i (2—f 1/}(2t))s+m 2" < o0

t=1
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6 V. Beresnevich et al.

and therefore, by Theorem 2, we have that +* <Mf N Sn(lﬁ, 0)) = 0. Trivially, we have that
Sp.(¥,0) C S,(¥,0) and then the required statement follows on using the monotonicity
of H°. [ |

Note that (1.9) is always satisfied if dim({« € ¢/ : the L.h.s. of (1.1) =0}) < d —
T

Let us now consider Theorem 2 under the assumption that v is monotonic. Then,
without loss of generality, we can assume that N' = N since otherwise ¥(q) = 0 for
all sufficiently large g and so S,(¥,0) is the empty set and there is nothing to prove.
Furthermore, we can assume that ¥ (q) <« g '/" for all ¢ € N since otherwise the s-
volume sum appearing in the theorem is divergent for s < d. This is in line with the fact
that if ¥ (g) > g~V/" for all sufficiently large g, then by Dirichlet’s theorem we have that
Me NS, () = Mg and so H* (Mg NS, (¥)) > 0 for s < d. The upshot is that within the
context of Theorem 2, for monotonic ¥ we can assume that

q—l/(2m+1)(10g q)z/(2m+1) L U(Q) < qfl/n'
This forces d > (n + 1)/2.

Corollary 3. Let# € R" and ¢ : Rt — R* be a monotonic function such that ¢ (r) — 0

asr — oo. Let

n+1 .__ dadm n+1
d> "= and So~——m+1+2(m+1)<55d

and assume that f : / — R™ satisfies (1.9). Then

” _ (V@
MeN S, (y,0)) =0 whenever Z T q" < oo.
q=1

The proof is similar to that of Corollary 2. Note that (1.9) is always satisfied if
dim({o € U/ : 1.h.s. of (1.1) =0}) < sy.
Also note that the condition d > (n+1)/2 guarantees that s, < d. However, it does mean

that the corollary is not applicable when n = 3 or n = 2. The fact that is not applicable

when n = 2 is not a concern—see Remark 2 below.

9107 ‘ST 2uny uo 3sen3 Aq /310°s[euInolpiojxo-urwiy/:dyy woly papeojumo



Diophantine Approximation on Manifolds 7

Remark 2. It is conjectured that the conclusion of Corollary 3 is valid for any non-

dm
(m+1)

curves (d = m = 1), this is known to be true [5, 14]. To the best of our knowledge, beyond

degenerate manifold (i.e., d > 1) and

< s < d - see for example [2, §8]. For planar

planar curves, the corollary represents the first significant contribution in favour of the

conjecture. O

Remark 3. Corollary 3 together with the definition of Hausdorff dimension implies
thatifd > (n+1)/2,thenforl/n <t <1/2m+1)

dim (Mg N Su(t,0)) < 2L —m. O

Remark 4. Corollary 3 with s = d implies that if d > (n + 1)/2 then

Mg N Sp(¥,0)|n; =0  whenever Y y(@)" < oo, (1.10)
g=1

where | . |z is the induced d-dimensional Lebesgue measure on M;s. In other words, it
proves that the 2-non-degenerate submanifold M; of R* with dimension strictly greater
than (n 4+ 1)/2 is of Khintchine-type for convergence [4]. Apart from the planar curve
results referred to in Remark 2, the current state of the convergent Khintchine theory is
somewhat ad hoc. Either a specific manifold or a special class of manifolds satisfying
various constraints is studied. For example, it has been shown that (1) manifolds which
are a topological product of at least four non-degenerate planar curves are Khintchine
type for convergence [7] as are (2) the so called 2-convex manifolds of dimension d > 2
[9], and (3) straight lines through the origin satisfying a natural Diophantine condition
[12]. 0

Remark 5. In view of the conjecture mentioned above in Remark 2, we expect (1.10) to
remain valid for any non-degenerate manifold without any restriction on its dimension.
Note that it is relatively straightforward to establish that this is indeed the case for
almost all . Moreover, we do not need to assume that i is monotonic or even that M; is
non-degenerate. In other words, for any C! submanifold (By a C! submanifold, we mean
an immersed manifold into R™ by a C' map, that is, the image of a C' map f : &/ — R".)
M of R® and ¢ : Rt — R*, we have that (1.10) is valid for almost all # € R". This is an

immediate consequence of the following even more general “doubly metric” result. [

Proposition 1. Let f:l/ — R" be any continuous map. Given ¢ : Rt — R*, let

DE,¢¥) :={(x,0) eUd xR": ||gf(x) — 0| < ¥(q) forim. q e N}

9107 ‘ST 2uny uo 3sen3 Aq /310°s[euInolpiojxo-urwiy/:dyy woly papeojumo



8 V. Beresnevich et al.

and let | . |4., denote (d + n)-dimensional Lebesgue measure. Then

D&, ¥)lan=0  whenever > ()" < oo. (1.11)
q=1

O

Proof. The proposition is pretty much a direct consequence of Fubini's theorem. With-
out loss of generality, we can assume that 6 is restricted to the unit cube [0, 1]". For
geN,let

1 if x|l < ¥(g)

0 otherwise

8q(X) :=

and
D, ¢) :={(x,0) e U x[0,1]" : 84(gf(x) — ) = 1}.
Notice that

D, ¥) = limsup Dy(f, ),

gq—0o0

and that by Fubini's theorem

Dy, ¥ aan = /

u

(/ 4(af (x) — 0)df ) dx
[0,1]"

= Ula 2Y(@)" = 2¥(@)".

Hence
[e] (o]
Y IDE W)lan < Y W(@" < oo,
q=1 q=1
and the Borel-Cantelli lemma implies the desired measure zero statement. |

1.4 Restricting to hypersurfaces

As already mentioned, the condition d > (n+1)/2 means that Corollary 3 is not applica-
ble when n = 3. We now attempt to rectify this. In the case m = 1, so that the manifold

M associated with f is a hypersurface, we can do better than Theorem 1 if we assume
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Diophantine Approximation on Manifolds 9

that My is genuinely curved. More precisely, in place of (1.1) we suppose that there is
an n > 0 such that for all « € U/

Baiaaj

2
det( el (u)> = (1.12)
1<i<
1<j<d

where for brevity we have written f for fi. It is not too difficult to see that this condition
imposed on the determinant (Hessian) is valid for spheres but not for cylinders with
a flat base. We will refer to the hypersurface M; with f satisfying (1.12) as genuinely

curved. Throughout the rest of this section we will assume that m = 1andsod =n—1.

Theorem 3. Supposethatf : i/ — R satisfies (1.12) and # € R". Suppose that0 < ¥ (q) <
1/2. Then

A ¥, 0) < ¥(@q? + (q¥ (@) *q? max(1, (log(q ¥ (@)} (1.13)
where the implied constant is independent of g, # and ¥ but may depend on f. O
A simple consequence of this theorem is the following analogue of Corollary 1.
Corollary 4. Suppose that f: 2/ — R satisfies (1.12) and 6 € R". Suppose that
g Y* M (log @)*¥* P < y(q) < 1/2.
Then for integers g > 2 we have that

A(q, v, 0) < (@) q”. (1.14)
O

It is easily seen that Theorem 1 with m = 1 and Theorem 3 coincide when n = 2 but for
n > 3 the second term on the R.H.S. in (1.13) is smaller than the corresponding term in

(1.6). In particular,
g “* P (logq)*¥** P < g7 (log )**

and so Corollary 4 is stronger than Corollary 1 for f satisfying (1.12). Corollary 4
enables us to obtain the analogue of Theorem 2 for genuinely curved hypersurfaces
in which the condition that ¥(q) > g V@™V(logq)¥@"V for q € N is replaced by
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10 V. Beresnevich et al.

V(q) > q Y% (log q)?¥?* for q € N. In turn for monotonic functions, we have the fol-
lowing statement. It represents a strengthening of Corollary 3 in the case of genuinely

curved hypersurfaces and is valid when n = 3.

Corollary 5. Suppose thatf : &/ — R and @ € R™. Let ¥ : Rt — R* be a monotonic
function such that ¥ (r) — 0 as r — co. Let

n>3 and nol gt o< p—1
and assume that
H*({e € U : the Lhus. of (1.12) = 0}) = 0.

Then

” _ (Y@
MenNS,(¥,0)) =0 whenever Z T q" < o
q=1
O

The conjectured lower bound for s above is (n—1)/2—see Remark 2 preceding the

statement of Corollary 3. The proof of the above corollary is similar to that of Corollary 2.

1.5 Further remarks and other developments

The upper bound results of §1.2 for the counting function A(g, ¥, 0) are at the heart
of establishing the convergence results of §1.3. We emphasize that A(q, ¢, ) is defined
for a fixed g and that Theorem 1 provides an upper bound for this function for any g
sufficiently large. It is this fact that enables us to obtain convergent results such as The-
orem 2 without assuming that ¥ is monotonic. While statements without monotonicity
are desirable, considering counting functions for a fixed q does prevent us from taking
advantage of any potential averaging over q. More precisely, for Q > 1 consider the
counting function

O<q§20,%eu,

lgf(*2*) —y = bl < ¥(@)

N(@Q,v,0) := #{(q,a,b) e NxZ%x 7™

= ) A@v.9). (1.15)

Q<g=<2Q
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Diophantine Approximation on Manifolds 11

If ¢ is monotonic, then ¥ (q) < ¥(Q) for Q < g < 2Q and the obvious heuristic “volume”

argument leads us to the following estimate:
N@Q,v.0) < y(@"a. (1.16)

Clearly, the upper bound (1.7) for A(q, ¥, ) as obtained in Corollary 1 implies (1.16). The
converse is unlikely to be true. However, for monotonic v establishing (1.16) suffices to
prove convergence results such as Corollary 3. Indeed, the fact that we have a complete
convergence theory for planar curves (see Remark 2 in Section 1.3) relies on the fact that
we are able to establish (1.16) with m = 1 = d. Note that the counting result obtained in
this article for A(q, ¥, #) is not strong enough to imply any sort of convergent Khintchine
type result for planar curves with ¢ monotonic. Furthermore, it is worth pointing out
that averaging over ¢ when considering N(Q, v, #) also has the potential to weaken the
lower bound condition (1.8) on ¥ appearing in Theorem 2. This in turn would increase
the range of s within Corollaries 3 and 5.

Regarding lower bounds for the counting function N(Q, ¥, 6), if ¢ is monotonic,
then ¥ (q) > ¥(Q) for 1Q < g < Q and the heuristic “volume” argument leads us to the

following estimate:
N(iQ, v, 0) > y(@™a*!. (1.17)

In the homogeneous case (i.e., when 6§ = 0), the lower bound given by (1.17) is established
in [2] for any analytic non-degenerate manifold M embedded in R" and ¢ satisfy-
ing limg_ . q¥ (@)™ = oc. When M is a curve, the condition on v can be weakened
to lim, .o q¥ (@) V/® = oco. Moreover, it is shown in [2] that the rational points a/q
associated with N (%O, ¥, 0) are “ubiquitously” distributed for analytic non-degenerate
manifolds. This together with the lower bound estimate is very much at the heart of
the divergent Khintchine type results obtained in [2] for analytic non-degenerate man-
ifolds. In a forthcoming paper [6], we establish the lower bound estimate (1.17) and
show that shifted rational points % associated with v (%O, ¥, 0) are “ubiquitously” dis-
tributed for any C"*! non-degenerate curve in R" and arbitrary . As a consequence, we
obtain a divergent Khintchine type theorem for Hausdorff measures. More specifically,
let f = (fi,....fno1) : [0,1] = R*! be a C"! function such that for almost all o € [0, 1]

det (Jj.‘”“(a)) £ 0. (1.18)

1<ij<n-1
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12 V. Beresnevich et al.

Let % <s<1,0 € R"and ¥ : Rt — R" be a monotonic function such that ¢ (r) — 0 as
r — oo. It is established in [6] that

HS B . 00 w(q) s+n—1 -
(Mg NS (¥, 0)) = H (My) whenever Z 4 q" = .
q=1

In view of the conditions imposed on f above, the associated manifold M; is by definition
a C""! non-degenerate curve in R". When s is strictly less than one, non-degeneracy can
be replaced by the condition that (1.18) is satisfied for at least one point « € [0, 1]. In
other words, all that is required is that there exists at least one point on the curve
that is non-degenerate. Using fibering techniques, it is also shown in [6] that the above
statement for non-degenerate curve in R" can be readily extended to accommodate a

large class of non-degenerate manifolds beyond the analytic ones considered in [2].

2 Preliminaries to the Proofs of Theorems 1 and 3

To establish Theorems 1 and 3, we adapt an argument of Sprindzuk [13, Chp2 §6]. In our
view, the adaptation is non-trivial.

Without loss of generality suppose 0 < ¥(q) < 1/4 and recall that 0 = (A,y) €
R? x R™. Recall also that A(q,,0) is given by (1.4). Given A = (A,...,Aq) € R?, let
X:=({A},...,{xa}) €[0,1)? denote the fractional part of A. Then, it follows that

A(q, v, 0) = #A(q, ¥, 0) (2.19)
where
Alqy.0) :={acZ(q : Igf(*2) -yl < v (@}
and
d q if Xi =0
2@ :=][(0,g1NZ) and q;=
i=1 g—1 otherwise.

Let § be a sufficiently small positive constant that will be determined later and

depends on f. Without loss of generality, we can assume that

sqy(q) > 1.
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Diophantine Approximation on Manifolds 13

Otherwise, the error term associated with (1.6) is, up to a multiplicative constant, larger
than the trivial bound

A(q,¥,0) < (@ + 1)1

and there is nothing to prove. Now define

ri=(6qy(q)"*] (2.20)
and for each a € Z(q) write

a=ru(a) +v(@)
where u(a), v(a) satisfy u;(a) = |a;/r] and 0 < v;(@) < r (1 <1i < d). In particular

O<u(@=s
where
= lg/r].
For u € 7%, define
A(g,¢,0,u) :={ac A(q, ¥,0) : u(@ =u}
and
A(q,v,0,u) :=#A(q, v, 0,u).

By the mean value theorem for second derivatives, when a € A(q, ¥, 0,u),
d

m v; Of; m 4.8 Vv
505 =) + S ) o S5
i=1 j=1

for v =v(a) € R¢ where R := [0, r) N Z. Here the error term is
< Gr'g? < Cisy(Qq
where C; depends at most on d and the size of the second derivatives. Now choose

§=1/C,.
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14 V. Beresnevich et al.

Thus, fora = ru + v with a € A(q, ¥, 0,u) we have

d
ru+i 8f ru+i
ooty + Sty
i=1

Therefore

<2y(@ (1<j<m). (2.21)

A(q,v,6,u) <B(q, ¥, u)

where B(q, ¥,u) := #B(q, ¥,u) and

B(q, ¥, u) := {veR%:(2.21) holds}.

Let

sothat H > 1 and H :=[—-H,H]NZ. Then

H

Z 0 — Il e(hx) =

heH

h=1

whenever || x| < (2H)"!. Thus

1
4Y(q)

Z e(hx)

J (2.22)

2

B sin wHx 2> 4
" \Hsinzx/) ~ m2

B(q,¥,u) < B*(q, ¥, u)

where

H—|h H — |h,,
B (g, ¥, u):= ) Hl I H'z | > eh.(Fu,v) - y)) (2.23)
her™ VE'Rd
and
= (hll“'lhm)r
F:=(F,...,Fp),
ru+l f; ru+l
Fi(u,v) = ) + Z

By the definition of H, we have that

H
0<

— | H-

A | -

=T

HZ
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for any h = (hy,..., hy) € H™. Therefore, by (2.23), we get that

Bq ¢y, W <H™ )" (2.24)

heHx™

> eh.(Fu,v) - )| .

veRrd

On using the fact that e(x; +--- +x¢) = e(x1) - - - e(x,) and |e(x)| = 1 for any real numbers

X,Xy1,...,%;, we find that

> eh.(Fu,v) —y))

verd

— Z e(h.F(u,v)) -e(~h.y)| =

veRrd

> e(h.Fu,v)

veRrd

i=1 L

~1Y e (i y(afy (2222) +Zvigﬁf(Lf)))‘

Hence

1

i=1

> e(h.(F(u,v) —y))

verd

Ze( $on )|

VER

Therefore, by (2.24), it follows that

By = Z]‘[

heHm i=1

Ze( Zh] gf ruth )‘ (2.25)

VER

Since R = [0,r) N Z, for any given p € R we have that |}, e(vo)| < r and also
that

e(rp) —1

2
< <llpll™,
e(p)—1 ‘ le(p) — 1]

> ewp)| =

VER ‘
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16 V. Beresnevich et al.

where the implied constant is absolute. Hence, on taking p = 37, ]%(%) we have
that
-1
af} ru+l : ¢ 8-]‘; ru+)~.
2 e Zh <min |r, |3 b7 (25)
veER Jj=1
This together with (2.25), implies that
-1
3f;
B* u < — min | r, h; 2L (ruth) . 2.26
@V, )_H”‘h;nn Z,aal (2.26)

For a given u € [0, s]¢ we consider the intervals I; = [u; — 1/2, u; + 1/2], unless u; = 0 or

u; = s in which case we consider [u;, u; + 1/2] or [u; — 1/2, u;], respectively. For §; € I;
we have

i (rusiy _ O (it

—J(“T“) =L q+ )+ 0(r/q)

80li 30[i

by the mean value theorem. Hence

Z h; (8—f’i(%) - %(ﬂ)) <« Hr/q

where the implicit constant depends at most on m and the size of the second derivatives.

Moreover

Hr? _qy(q) _ 8

q 4q1ﬂ(¢2) 4

’

where the left hand side inequality follows from the definitions of r and H—see (2.20)
and (2.22). Hence

= 8_]3 ru+}, - af} 8 1
g 0 Z <<

Thus

-1 -1

min | r, Zhja—f}(w) < min | r, Zhja—fj(r“i)
j=
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and furthermore, by considering their product over i, we get that

-1 -1

nmln r, Zhjgf ”‘“) < l_[mln r, Zhjgfl =

Since the measure of I; x- - - xI; is < 1, integrating the above inequality over g € I; x- - - xI4

gives that

-1 -1

d
Hmln r, Zhjaf; rutl) <</ l_[mln r, Zhjaﬁ dp.
o IIX“‘dei 1

Now recall that the rectangles I; x - - - xI; depend on the choice of u. Note that their union
taken over integer points u € S, where S := [0, 5], is exactly S¢. Furthermore, different
rectangles can only intersect on the boundary. Hence summing the above displayed

inequality over all integer points u € S¢ gives

- -1

anln r, Zh 8f] r““) <</ Hmm r, Zh ij r’g“ dg.

uesd i=1

Now combining this together with (2.26) we obtain that

-1

> By, u) <H™ Z/ l—[mln r, Zhsf )| ) dg. (2.27)

uesd herx™

Now finally observe that

Al y,0) < ) Al y,0,0) < > Bgy,w < Y B(gv,w). (2.28)

uesd uesd uesd
3 The Proof of Theorem 1

With reference to Section 2, by (2.27)

-1

ag.

ZB*(ql/fu)<<rd 1g—m Zf min | r, Zhjafj

uesd hen™

Since (1.1) holds we may make the change of variables

_ 3_13‘(@)

wj =
8a1 q
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18 V. Beresnevich et al.

Thus

-1

ZB*(qlﬂ :’-Im () / min | r, Zhwj dw (3.1)

uesd heH™

where J; := F; x -+ x Fp x [0,8]4™, F; = [f;.f1and
.. 0f;
fj := inf 87[1(05)

and

£ = sup i(a)

The contribution from h = 0is

7,.dfl

Hm

q d-m

m r
1 d L msdfm H™ d
< (r) /jd raw L —-—q < q

since rs < q. Next observe that

-1
m
M = min | 7, thwf dw; ...dwy,

F1xxFm j=1

is constant with respect to wpy1,...,ws. Hence, by Fubini’s theorem and the fact that
Ja:=F, X - x Fp x[0,5]%™, integrating M over (wm,1,...,0q) € [0,5]9™ gives that

-1

f min | r, Zhjwf do =s"M. (3.2)
Jd ‘,

If h # 0, then assuming, for example, that h; # 0 and using Fubini's theorem again we
get that

-1

m
M= min | r, | hjo; dow, ...dwy,

F1 X XFm

< sup [ min(r, |k — ol ") don
pel0,11J 7

<sup Y / min (7, |hio, — p —p|™') don
F1

pel0 1] oy
Ipl<hy
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1
&« su — 4+ —1lo r)
p XZ: <h1r g

pel0,1]

Ipl<hy

<« max{1,logr}.

Hence, by the above inequalities and (3.2), the contribution from the h # 0 terms within
(3.1) is estimated by

rd—l

m
heHx™

(g)m s9 ™ max{1,logr}

< r Y (rs)¥™g" max{1,logr}

<« r'q%max{1,logr}.
In view of (2.28), it follows that
A(q,v,0) < H Mg + r'q?max{1,logr} .

Given the definitions of H and r, this gives (1.6) and thereby completes the proof of the
theorem.

4 The Proof of Theorem 3

Recall that within Theorem 3, we have that m = 1 and d = n — 1. Hence, with reference

)dﬂ,

where f = f : i/ — R. Since (1.12) holds we may make the change of variables

to Section 2, (2.27) becomes

h_f(ﬂ)

> Bq¥,u) <H" 2/ nm1n<r

uesd heH

af rB+i

) 1=<i=<a.

Thus

d
Y B@vw< H*IZG)d/ [ min (r, kil ™) do

uesd heH Jd =1
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20 V. Beresnevich et al.

where Jy := F; x -+ x Fg, F; = [f7,f] and

4

f7 =inf of
80[i

()

and

fif ==sup E(oc).
8ozi

The contribution from h = 0 is

d
< H! (g) / ride <« H'q¢
Jd

and the contribution from the remaining terms is
a\¢ [ T
< H! (—) / min (7, |hw;| ") do
hZ . J]‘[ (r, 1hei| ")
€H\{0} d i=1
q\¢ -
a3 (;) H/Fmin(r, 1heoil| ™) dooy
heH\{0} =177

i

d
< H! Z (g)dnmax{l,logr}
heH\{0}

i=1
< r%q*max{1, logr)?}.

In view of (2.28), it follows that

A(q,v,0) < H'q® + r?g?max(1, (logr)?} .

Given the definitions of H and r this gives (1.13) and thereby completes the proof of the

theorem.

5 Proof of Theorem 2

Step 1. As mentioned in Section 1, in view of the Implicit Function Theorem, we can
assume without loss of generality that the manifold Mg is of the Monge form (1.3). Note
that, since U is compact and f is C?, this implies via the Mean Value Theorem that

f=(f1,...,fm) is bi-Lipschitz and so there exists a constant ¢; > 1 such that

max |fi(e) — fi@)| < cle —a| YV & €U=[0,1]".
1<i<m

9107 ‘ST 2uny uo 3sen3 Aq /310°s[euInolpiojxo-urwiy/:dyy woly papeojumo



Diophantine Approximation on Manifolds 21

Let Qfl(l/f, 0) denote the projection of M; N S, (¥, #) onto U; that is,
LW, 0):={acl: (a,f@)ecS, (¥, 0).

Explicitly, given § = (A, y) € R% x R™, the set Qfl(l/f,O) consists of points a € U/ such that
the system of inequalities
|oti—ﬂki|<M l1<i<d

q q - =

(5.2)

bi+y; .
fit) - LE| <22 1<j<m

is satisfied for infinitely many (g,a,b) € N x 74 x 7Z™. Furthermore, there is no loss of
generality in assuming that % € U for solutions of (5.2). In view of (5.1), the sets Qf (v, 0)
and M NS, (¥, 0) are related by a bi-Lipschitz map and therefore

HE(MeNSp(,0) =0 <= HS(Q,fq(Iﬂﬂ)) =0.
Hence, it suffices to show that
H(QE(y,0) =0. (5.3)

Step 2. Notice that the set B = {« € U/ : lh.s.of (1.1) = 0} is closed and therefore
G = U\ B can be written as a countable union of closed rectangles I/; on which f satisfies
(1.1). The constant n associated with (1.1) depends on the particular choice of I4;. For the
moment, assume that H*(Qf (v, 0)N4;) = 0 for any i € N. On using the fact that H(B) = 0,
we have that

@k w00 = 1 (BU (U 2,0 nth))

i=1

o0

<H®B) + Y H(QLW,0HNU) =0
i=1

and this establishes (5.3). Thus, without loss of generality, and for the sake of clarity,
we assume that f satisfies (1.1) on U.

Step 3. For a point # e R* with p = (a,b) € Z¢ x Z™, let a(%) denote the set of @ € U
satisfying (5.2). Trivially,

diam(o (22)) < ¥(@)/q, (5.4)

where the implied constant depends on n only.
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Assume that o (PT”)) # (). Thus, g lies in the integer support N of . Leta € o (%).
The triangle inequality together with (5.1) and (5.2), implies that
[£(25) = 2 < [Fe) — f@)] + [f@) - 27|
<o la— %| + v(q/q
=ay@/q,

where ¢, := 1 + ¢ is a constant. Thus, for g sufficiently large so that c; ¥ (q) < 1/2 we
have that

#{peZ”:o(%);ﬁ@}
5#{peZ": %eu,

£ — 22| < o,y (q)/aq)
=#laezt: ey, |qf(*2) —y| <y @] -

By definition, the right hand side is simply the counting function A(q, c2v,#). Thus, by
Corollary 1, for g € N sufficiently large we have that

#[p €7 o (M) % w} <V@mgt. (5.5)
Step 4. For q > 0, let

A, 09 = |J (R .

pezn, o (B2l )2p

Then H*(Q} (¥, 0)) = H*(limsup, ., Qf(¥,0;q) and the Hausdorff-Cantelli Lemma [8,
p. 68] implies (5.3) if

i diam(o (222)))" < oo, (5.6)

In view of (5.4) and (5.5), it follows that

L.H.S of (5.6) < ) Y W@/

9N pean,o(BE) 2y

<Y W@/ xv@" g =) W@/ < oo .
g=1

qeN

This completes the proof of Theorem 2.
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