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In this article, we develop the convergence theory of simultaneous, inhomogeneous Dio-

phantine approximation on manifolds. A consequence of our main result is that if the

manifold M ⊂ R
n is of dimension strictly greater than (n + 1)/2 and satisfies a natu-

ral non-degeneracy condition, then M is of Khintchine type for convergence. The key

lies in obtaining essentially the best possible upper bound regarding the distribution of

rational points near manifolds.

1 Introduction and Statement of Results

1.1 The setup

Throughout, we suppose that m ≤ d, n = m + d and that f = (f1, . . . , fm) is defined on

U = [0, 1]d. Suppose further that ∂f/∂αi and ∂2f/∂αi∂αj exist and are continuous on U ,

Received June 30, 2015; Revised December 15, 2015; Accepted December 23, 2015

Communicated by Umberto Zannier

© The Author(s) 2016. Published by Oxford University Press. This is an Open Access article distributed

under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),

which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work

is properly cited.

 International Mathematics Research Notices Advance Access published June 14, 2016
 b

y
 g

u
est o

n
 Ju

n
e 1

5
, 2

0
1
6

h
ttp

://im
rn

.o
x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 



2 V. Beresnevich et al.

and that there is an η > 0 such that for all α ∈ U

∣

∣

∣

∣

∣

∣

det

(

∂2fj

∂α1∂αi

(α)

)

1≤i≤m
1≤j≤m

∣

∣

∣

∣

∣

∣

≥ η. (1.1)

Throughout R
+ = [0,+∞) is the set of non-negative real numbers. Let ψ : R

+ → R
+ be a

function such that ψ(r) → 0 as r → ∞ and θ = (λ, γ ) ∈ R
d × R

m. Now for a fixed q ∈ N,

consider the set

R(q,ψ , θ) :=

⎧

⎨

⎩

(a,b) ∈ Z
d × Z

m :

a+λ

q
∈ U ,

|qf
(

a+λ

q

)

− γ − b| < ψ(q)

⎫

⎬

⎭

(1.2)

and let

A(q,ψ , θ) := #R(q,ψ , θ) .

The map f : U → R
m naturally gives rise to the d-dimensional manifold

Mf := {(α1, . . . ,αd, f1(α), . . . , fm(α)) ∈ R
n : α = (α1, . . . ,αd) ∈ U} (1.3)

embedded in R
n. Recall that by the Implicit Function Theorem, any smooth manifold M

can be locally defined in this manner; i.e., with a Monge parametrization. The upshot is

that, A(q,ψ , θ) counts the number of shifted rational points

(

a1+λ1
q

, . . . ,
ad+λd

q
,
b1+γ1

q
, . . . , bm+γm

q

)

∈ R
n

that lie (up to an absolute constant) within the ψ(q)/q-neighbourhood of Mf . Before

stating our counting results, it is worthwhile to compare condition (1.1) imposed on the

Jacobian of f with that of non-degeneracy as defined by Kleinbock and Margulis [11]

in their pioneering work. In this article, they prove the Baker–Sprindžuk "extremality"

conjecture in the theory of Diophantine approximation on manifolds.

The above map f : U → R
m : α �→ f(α) = (f1(α), . . . , fm(α)) is said to be l-non–

degenerate at α ∈ U if there exists some integer l ≥ 2 such that f is l times continuously

differentiable on some sufficiently small ball centred at α and the partial derivatives of f

at α of orders 2 to l span R
m. Themap f is called non–degenerate if it is l-non–degenerate

at almost every (in terms of d–dimensional Lebesgue measure) point in U ; in turn the

manifold Mf is also said to be non–degenerate. Non-degenerate manifolds are smooth

sub-manifolds of R
n which are sufficiently curved so as to deviate from any hyperplane
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Diophantine Approximation on Manifolds 3

at a polynomial rate see [1, Lemma 1(c)]. As is well known [11, p. 341], any real connected

analytic manifold not contained in any hyperplane of R
n is non–degenerate.

It follows from the definition of l-non-degeneracy that condition (1.1) imposed

on f implies that f is 2-non-degenerate at every point. Although (1.1) is fairly generic,

the converse is not always true even if we allow rotations of the coordinate system. The

submanifold (x,y, z1, . . . , zk,x
2,xy,y2) of R

k+5 provides a counterexample.

1.2 Results on counting rational points

Throughout, the Vinogradov symbols ≪ and ≫ will be used to indicate an inequality

with an unspecified positive multiplicative constant. If a ≪ b and a ≫ b, we write a ≍ b

and say that the two quantities a and b are comparable. Throughout the article, the

constants will only depend on the dimensions n and d and the map f.

Observe that for q sufficiently large so that ψ(q) ≤ 1/2 , we have that

A(q,ψ , θ) = #

⎧

⎨

⎩

a ∈ Z
d :

a+λ

q
∈ U ,

‖qf
(

a+λ

q

)

− γ ‖ < ψ(q)

⎫

⎬

⎭

(1.4)

where as usual ‖x‖ := max1≤i≤m ‖xi‖ for any x ∈ R
m. In particular, when 0 <

ψ(q) ≤ 1/2, the obvious heuristic argument leads us to the following estimate:

A(q,ψ , θ) ≍ qn
(

ψ(q)

q

)m

= ψ(q)m qd . (1.5)

We establish the following upper bound result.

Theorem 1. Suppose that f : U → R
m satisfies (1.1) and θ ∈ R

n. Suppose that 0 < ψ(q) ≤

1/2. Then

A(q,ψ , θ) ≪ ψ(q)m qd + (qψ(q))−1/2qd max{1, log(qψ(q))} , (1.6)

where the implied constant is independent of q, θ , and ψ but may depend on f. �

The following is a straightforward consequence of the theorem. It states that the upper

bound (1.6) coincides with the heuristic estimate if ψ(q) is not too small.

Corollary 1. Suppose that f : U → R
m satisfies (1.1) and θ ∈ R

n. Suppose that

q−1/(2m+1)(log q)2/(2m+1) ≤ ψ(q) ≤ 1/2 .
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4 V. Beresnevich et al.

Then for integers q ≥ 2 we have that

A(q,ψ , θ) ≪ ψ(q)m qd . (1.7)

�

1.3 Results on metric Diophantine approximation

Given a function ψ : R
+ → R

+ and a point θ = (θ1, . . . , θn) ∈ R
n, let Sn(ψ , θ) denote the set

of y = (y1, . . . ,yn) ∈ R
n for which there exists infinitely many q ∈ N such that

‖qy − θ‖ = max
1≤i≤n

‖qyi − θi‖ < ψ(q) .

In the case that the inhomogeneous part θ is the origin, the corresponding set Sn(ψ) :=

Sn(ψ ,0) is the usual homogeneous set of simultaneously ψ–approximable points in R
n.

In the case ψ is ψτ : r → r−τ with τ > 0, let us write Sn(τ , θ) for Sn(ψ , θ) and Sn(τ ) for

Sn(τ ,0). Note that in view of Dirichlet’s theorem (n-dimensional simultaneous version),

Sn(τ ) = R
n for any τ ≤ 1/n.

In the general discussion above, we have not made any assumption on ψ regard-

ing monotonicity. Thus, the integer support of ψ need not be N. Throughout, N ⊂ N will

denote the integer support of ψ . That is the set of q ∈ N such that ψ(q) > 0. Regard-

ing the set Sn(ψ , θ), measure theoretically, this is equivalent to saying that we are only

interested in integers q lying in some given set N such as the set of primes or squares

or powers of two. The theory of restricted Diophantine approximation in R
n is both top-

ical and well developed for certain sets N of number theoretic interest—we refer the

reader to [10, Chp 6] and [3, §12.5] for further details. However, the theory of restricted

Diophantine approximation on manifolds is not so well developed.

Armed with Corollary 1, we are able to establish the following convergent

statement for the s-dimensional Hausdorff measure Hs of Mf ∩ Sn(ψ , θ). Note that if

s > d = dimMf , then Hs (Mf ∩ Sn(ψ , θ)) = 0 irrespective of ψ . This follows immediately

from the definition of Hausdorff dimension and that fact that

dim(Mf ∩ Sn(ψ , θ)) ≤ dimMf .

Theorem 2. Let θ ∈ R
n and ψ : R

+ → R
+ be a function such that ψ(r) → 0 as r → ∞

and

ψ(q) ≥ q−1/(2m+1)(log q)2/(2m+1) for all q ∈ N , (1.8)
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Diophantine Approximation on Manifolds 5

where as N = {q ∈ N : ψ(q) > 0}. Let 0 < s ≤ d and f : U → R
m satisfy the following

condition

Hs
({

α ∈ U : the l.h.s. of (1.1) = 0
})

= 0. (1.9)

Then

Hs
(

Mf ∩ Sn(ψ , θ)
)

= 0 whenever

∞
∑

q=1

(

ψ(q)

q

)s+m

qn < ∞ .

�

Remark 1. Recall, that in view of the discussion in §1.1 the condition imposed on f in

the above theorem and its corollaries below are equivalent to saying that the manifold

is 2-non-degenerate everywhere except on a set of Hausdorff s-measure zero. �

Now we consider two special cases of Theorem 2. First suppose the integer sup-

port of ψ is along a lacunary sequence. In particular, consider the concrete situation

that N = {2t : t ∈ N}. The following statement is valid for any n = d + m and to the

best of our knowledge is first result of its type even within the setup of planar curves

(d = m = 1).

Corollary 2. Let θ ∈ R
n and ψ : R

+ → R
+ be a function such that ψ(r) → 0 as r → ∞

and N = {2t : t ∈ N}. Let

d− n
2(m+1)

< s ≤ d

and assume that f : U → R
m satisfies (1.9). Then

Hs (Mf ∩ Sn(ψ , θ)) = 0 if

∞
∑

t=1

(

2−t ψ(2t)
)s+m

2tn < ∞ .

�

Proof. Consider the auxiliary function

ψ̃(q) = max{ψ(q),Cq−1/(2m+1)(log q)2/(2m+1)} ,

where C > 0 is a sufficiently large constant. Then as is easily verified using the

convergence sum condition of Corollary 2

∞
∑

t=1

(

2−t ψ̃(2t)
)s+m

2tn < ∞
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6 V. Beresnevich et al.

and therefore, by Theorem 2,we have thatHs
(

Mf ∩ Sn(ψ̃ , θ)

)

= 0. Trivially, we have that

Sn(ψ , θ) ⊂ Sn(ψ̃ , θ) and then the required statement follows on using the monotonicity

of Hs. �

Note that (1.9) is always satisfied if dim({α ∈ U : the l.h.s. of (1.1) = 0}) ≤ d −

n
2(m+1)

.

Let us now consider Theorem 2 under the assumption that ψ is monotonic. Then,

without loss of generality, we can assume that N = N since otherwise ψ(q) = 0 for

all sufficiently large q and so Sn(ψ , θ) is the empty set and there is nothing to prove.

Furthermore, we can assume that ψ(q) ≪ q−1/n for all q ∈ N since otherwise the s-

volume sum appearing in the theorem is divergent for s ≤ d. This is in line with the fact

that if ψ(q) ≥ q−1/n for all sufficiently large q, then by Dirichlet’s theorem we have that

Mf ∩ Sn(ψ) = Mf and so Hs (Mf ∩ Sn(ψ)) > 0 for s ≤ d. The upshot is that within the

context of Theorem 2, for monotonic ψ we can assume that

q−1/(2m+1)(log q)2/(2m+1) ≪ ψ(q) < q−1/n .

This forces d > (n+ 1)/2.

Corollary 3. Let θ ∈ R
n and ψ : R

+ → R
+ be a monotonic function such that ψ(r) → 0

as r → ∞. Let

d > n+1
2

and s0 :=
dm
m+1

+ n+1
2(m+1)

< s ≤ d

and assume that f : U → R
m satisfies (1.9). Then

Hs (Mf ∩ Sn(ψ , θ)) = 0 whenever

∞
∑

q=1

(

ψ(q)

q

)s+m

qn < ∞ .

�

The proof is similar to that of Corollary 2. Note that (1.9) is always satisfied if

dim({α ∈ U : l.h.s. of (1.1) = 0}) ≤ s0.

Also note that the condition d > (n+1)/2 guarantees that s0 < d. However, it does mean

that the corollary is not applicable when n = 3 or n = 2. The fact that is not applicable

when n = 2 is not a concern—see Remark 2 below.
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Diophantine Approximation on Manifolds 7

Remark 2. It is conjectured that the conclusion of Corollary 3 is valid for any non-

degenerate manifold (i.e., d ≥ 1) and dm
(m+1)

< s ≤ d – see for example [2, §8]. For planar

curves (d = m = 1), this is known to be true [5, 14]. To the best of our knowledge, beyond

planar curves, the corollary represents the first significant contribution in favour of the

conjecture. �

Remark 3. Corollary 3 together with the definition of Hausdorff dimension implies

that if d > (n+ 1)/2, then for 1/n ≤ τ ≤ 1/(2m+ 1)

dim (Mf ∩ Sn(τ , θ)) ≤ n+1
τ+1

−m .
�

Remark 4. Corollary 3 with s = d implies that if d > (n+ 1)/2 then

|Mf ∩ Sn(ψ , θ)|Mf
= 0 whenever

∞
∑

q=1

ψ(q)n < ∞ , (1.10)

where | . |Mf
is the induced d-dimensional Lebesgue measure on Mf . In other words, it

proves that the 2-non-degenerate submanifold Mf of R
n with dimension strictly greater

than (n + 1)/2 is of Khintchine-type for convergence [4]. Apart from the planar curve

results referred to in Remark 2, the current state of the convergent Khintchine theory is

somewhat ad hoc. Either a specific manifold or a special class of manifolds satisfying

various constraints is studied. For example, it has been shown that (1) manifolds which

are a topological product of at least four non–degenerate planar curves are Khintchine

type for convergence [7] as are (2) the so called 2–convex manifolds of dimension d ≥ 2

[9], and (3) straight lines through the origin satisfying a natural Diophantine condition

[12]. �

Remark 5. In view of the conjecture mentioned above in Remark 2, we expect (1.10) to

remain valid for any non-degenerate manifold without any restriction on its dimension.

Note that it is relatively straightforward to establish that this is indeed the case for

almost all θ . Moreover, we do not need to assume that ψ is monotonic or even that Mf is

non-degenerate. In other words, for any C1 submanifold (By a C1 submanifold, we mean

an immersed manifold into R
n by a C1 map, that is, the image of a C1 map f : U → R

n.)

Mf of R
n and ψ : R

+ → R
+, we have that (1.10) is valid for almost all θ ∈ R

n. This is an

immediate consequence of the following even more general “doubly metric” result. �

Proposition 1. Let f : U → R
n be any continuous map. Given ψ : R

+ → R
+, let

D(f,ψ) := {(x, θ) ∈ U × R
n : ‖qf(x) − θ‖ < ψ(q) for i.m. q ∈ N}
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8 V. Beresnevich et al.

and let | . |d+n denote (d+ n)-dimensional Lebesgue measure. Then

|D(f,ψ)|d+n = 0 whenever

∞
∑

q=1

ψ(q)n < ∞ . (1.11)

�

Proof. The proposition is pretty much a direct consequence of Fubini’s theorem. With-

out loss of generality, we can assume that θ is restricted to the unit cube [0, 1]n. For

q ∈ N, let

δq(x) :=

⎧

⎨

⎩

1 if ‖x‖ < ψ(q)

0 otherwise

and

Dq(f,ψ) := {(x, θ) ∈ U × [0, 1]n : δq(qf(x) − θ) = 1} .

Notice that

D(f,ψ) = lim sup
q→∞

Dq(f,ψ) ,

and that by Fubini’s theorem

|Dq(f,ψ)|d+n =

∫

U

(

∫

[0,1]n
δq(qf(x) − θ)dθ

)

dx

= |U |d (2ψ(q))n = (2ψ(q))n .

Hence

∞
∑

q=1

|Dq(f,ψ)|d+n ≍

∞
∑

q=1

ψ(q)n < ∞ ,

and the Borel–Cantelli lemma implies the desired measure zero statement. �

1.4 Restricting to hypersurfaces

As already mentioned, the condition d > (n+1)/2 means that Corollary 3 is not applica-

ble when n = 3. We now attempt to rectify this. In the case m = 1, so that the manifold

Mf associated with f is a hypersurface, we can do better than Theorem 1 if we assume
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Diophantine Approximation on Manifolds 9

that Mf is genuinely curved. More precisely, in place of (1.1) we suppose that there is

an η > 0 such that for all α ∈ U

∣

∣

∣

∣

∣

∣

det

(

∂2f

∂αi∂αj

(α)

)

1≤i≤d
1≤j≤d

∣

∣

∣

∣

∣

∣

≥ η (1.12)

where for brevity we have written f for f1. It is not too difficult to see that this condition

imposed on the determinant (Hessian) is valid for spheres but not for cylinders with

a flat base. We will refer to the hypersurface Mf with f satisfying (1.12) as genuinely

curved. Throughout the rest of this section we will assume thatm = 1 and so d = n−1.

Theorem 3. Suppose that f : U → R satisfies (1.12) and θ ∈ R
n. Suppose that 0 < ψ(q) ≤

1/2. Then

A(q,ψ , θ) ≪ ψ(q)qd + (qψ(q))−d/2qd max{1, (log(qψ(q)))d} (1.13)

where the implied constant is independent of q, θ and ψ but may depend on f. �

A simple consequence of this theorem is the following analogue of Corollary 1.

Corollary 4. Suppose that f : U → R satisfies (1.12) and θ ∈ R
n. Suppose that

q−d/(2+d)(log q)2d/(2+d) ≤ ψ(q) ≤ 1/2 .

Then for integers q ≥ 2 we have that

A(q,ψ , θ) ≪ ψ(q)qd . (1.14)

�

It is easily seen that Theorem 1 withm = 1 and Theorem 3 coincide when n = 2 but for

n ≥ 3 the second term on the R.H.S. in (1.13) is smaller than the corresponding term in

(1.6). In particular,

q−d/(2+d)(log q)2d/(2+d) < q−1/3(log q)2/3

and so Corollary 4 is stronger than Corollary 1 for f satisfying (1.12). Corollary 4

enables us to obtain the analogue of Theorem 2 for genuinely curved hypersurfaces

in which the condition that ψ(q) ≫ q−1/(2m+1)(log q)2/(2m+1) for q ∈ N is replaced by
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10 V. Beresnevich et al.

ψ(q) ≫ q−d/(2+d)(log q)2d/(2+d) for q ∈ N . In turn for monotonic functions, we have the fol-

lowing statement. It represents a strengthening of Corollary 3 in the case of genuinely

curved hypersurfaces and is valid when n = 3.

Corollary 5. Suppose that f : U → R and θ ∈ R
n. Let ψ : R

+ → R
+ be a monotonic

function such that ψ(r) → 0 as r → ∞. Let

n ≥ 3 and n−1
2

+ n+1
2n

< s ≤ n− 1

and assume that

Hs
({

α ∈ U : the l.h.s. of (1.12) = 0
})

= 0.

Then

Hs (Mf ∩ Sn(ψ , θ)) = 0 whenever

∞
∑

q=1

(

ψ(q)

q

)s+1

qn < ∞ .

�

The conjectured lower bound for s above is (n−1)/2—see Remark 2 preceding the

statement of Corollary 3. The proof of the above corollary is similar to that of Corollary 2.

1.5 Further remarks and other developments

The upper bound results of §1.2 for the counting function A(q,ψ , θ) are at the heart

of establishing the convergence results of §1.3. We emphasize that A(q,ψ , θ) is defined

for a fixed q and that Theorem 1 provides an upper bound for this function for any q

sufficiently large. It is this fact that enables us to obtain convergent results such as The-

orem 2 without assuming that ψ is monotonic. While statements without monotonicity

are desirable, considering counting functions for a fixed q does prevent us from taking

advantage of any potential averaging over q. More precisely, for Q > 1 consider the

counting function

N(Q,ψ , θ) := #

⎧

⎨

⎩

(q,a,b) ∈ N × Z
d × Z

m :
Q < q ≤ 2Q, a+λ

q
∈ U ,

|qf
(

a+λ

q

)

− γ − b| < ψ(q)

⎫

⎬

⎭

=
∑

Q<q≤2Q

A(q,ψ , θ) . (1.15)
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Diophantine Approximation on Manifolds 11

If ψ is monotonic, then ψ(q) ≤ ψ(Q) for Q < q ≤ 2Q and the obvious heuristic “volume”

argument leads us to the following estimate:

N(Q,ψ , θ) ≪ ψ(Q)mQd+1 . (1.16)

Clearly, the upper bound (1.7) for A(q,ψ , θ) as obtained in Corollary 1 implies (1.16). The

converse is unlikely to be true. However, for monotonic ψ establishing (1.16) suffices to

prove convergence results such as Corollary 3. Indeed, the fact that we have a complete

convergence theory for planar curves (see Remark 2 in Section 1.3) relies on the fact that

we are able to establish (1.16) withm = 1 = d. Note that the counting result obtained in

this article for A(q,ψ , θ) is not strong enough to imply any sort of convergent Khintchine

type result for planar curves with ψ monotonic. Furthermore, it is worth pointing out

that averaging over q when considering N(Q,ψ , θ) also has the potential to weaken the

lower bound condition (1.8) on ψ appearing in Theorem 2. This in turn would increase

the range of s within Corollaries 3 and 5.

Regarding lower bounds for the counting function N(Q,ψ , θ), if ψ is monotonic,

then ψ(q) ≥ ψ(Q) for 1
2
Q < q ≤ Q and the heuristic “volume” argument leads us to the

following estimate:

N( 1
2
Q,ψ , θ) ≫ ψ(Q)mQd+1 . (1.17)

In the homogeneous case (i.e., when θ = 0), the lower bound given by (1.17) is established

in [2] for any analytic non-degenerate manifold M embedded in R
n and ψ satisfy-

ing limq→∞ qψ(q)m = ∞. When M is a curve, the condition on ψ can be weakened

to limq→∞ qψ(q)(2n−1)/3 = ∞. Moreover, it is shown in [2] that the rational points a/q

associated with N( 1
2
Q,ψ ,0) are “ubiquitously” distributed for analytic non-degenerate

manifolds. This together with the lower bound estimate is very much at the heart of

the divergent Khintchine type results obtained in [2] for analytic non-degenerate man-

ifolds. In a forthcoming paper [6], we establish the lower bound estimate (1.17) and

show that shifted rational points a+λ

q
associated with N( 1

2
Q,ψ , θ) are “ubiquitously” dis-

tributed for any Cn+1 non-degenerate curve in R
n and arbitrary θ . As a consequence, we

obtain a divergent Khintchine type theorem for Hausdorff measures. More specifically,

let f = (f1, . . . , fn−1) : [0, 1] → R
n−1 be a Cn+1 function such that for almost all α ∈ [0, 1]

det
(

f
(i+1)

j (α)

)

1≤i,j≤n−1
�= 0 . (1.18)
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12 V. Beresnevich et al.

Let 1
2

< s ≤ 1, θ ∈ R
n and ψ : R

+ → R
+ be a monotonic function such that ψ(r) → 0 as

r → ∞. It is established in [6] that

Hs
(

Mf ∩ Sn(ψ , θ)
)

= Hs(Mf) whenever

∞
∑

q=1

(

ψ(q)

q

)s+n−1

qn = ∞ .

In view of the conditions imposed on f above, the associatedmanifoldMf is by definition

a Cn+1 non-degenerate curve in R
n. When s is strictly less than one, non-degeneracy can

be replaced by the condition that (1.18) is satisfied for at least one point α ∈ [0, 1]. In

other words, all that is required is that there exists at least one point on the curve

that is non-degenerate. Using fibering techniques, it is also shown in [6] that the above

statement for non-degenerate curve in R
n can be readily extended to accommodate a

large class of non-degenerate manifolds beyond the analytic ones considered in [2].

2 Preliminaries to the Proofs of Theorems 1 and 3

To establish Theorems 1 and 3, we adapt an argument of Sprindžuk [13, Chp2 §6]. In our

view, the adaptation is non-trivial.

Without loss of generality suppose 0 < ψ(q) ≤ 1/4 and recall that θ = (λ, γ ) ∈

R
d × R

m. Recall also that A(q,ψ , θ) is given by (1.4). Given λ = (λ1, . . . , λd) ∈ R
d, let

λ̃ := ({λ1}, . . . , {λd}) ∈ [0, 1)d denote the fractional part of λ. Then, it follows that

A(q,ψ , θ) = #A(q,ψ , θ) (2.19)

where

A(q,ψ , θ) := {a ∈ Z(q) : ‖q f
(

a+λ̃

q

)

− γ ‖ < ψ(q) }

and

Z(q) :=

d
∏

i=1

(

[0,qi] ∩ Z
)

and qi =

⎧

⎨

⎩

q if λ̃i = 0

q− 1 otherwise.

Let δ be a sufficiently small positive constant that will be determined later and

depends on f. Without loss of generality, we can assume that

δqψ(q) > 1 .
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Diophantine Approximation on Manifolds 13

Otherwise, the error term associated with (1.6) is, up to a multiplicative constant, larger

than the trivial bound

A(q,ψ , θ) ≤ (q+ 1)d

and there is nothing to prove. Now define

r := ⌊(δqψ(q))1/2⌋ (2.20)

and for each a ∈ Z(q) write

a = ru(a) + v(a)

where u(a), v(a) satisfy ui(a) = ⌊ai/r⌋ and 0 ≤ vi(a) < r (1 ≤ i ≤ d). In particular

0 ≤ ui(a) ≤ s

where

s := ⌊q/r⌋.

For u ∈ Z
d, define

A(q,ψ , θ ,u) := {a ∈ A(q,ψ , θ) : u(a) = u}

and

A(q,ψ , θ ,u) := #A(q,ψ , θ ,u).

By the mean value theorem for second derivatives, when a ∈ A(q,ψ , θ ,u),

fj
(

a+λ̃

q

)

= fj
(

ru+λ̃

q

)

+

d
∑

i=1

vi

q

∂fj

∂αi

(

ru+λ̃

q

)

+ O

⎛

⎝

d
∑

i=1

d
∑

j=1

vivj

q2

⎞

⎠

for v = v(a) ∈ Rd where R := [0, r) ∩ Z. Here the error term is

< C1r
2q−2 ≤ C1δψ(q)q−1

where C1 depends at most on d and the size of the second derivatives. Now choose

δ = 1/C1 .
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14 V. Beresnevich et al.

Thus, for a = ru + v with a ∈ A(q,ψ , θ ,u) we have

∥

∥

∥

∥

∥

qfj
(

ru+λ̃

q

)

+

d
∑

i=1

vi
∂fj

∂αi

(

ru+λ̃

q

)

− γj

∥

∥

∥

∥

∥

< 2ψ(q) (1 ≤ j ≤ m). (2.21)

Therefore

A(q,ψ , θ ,u) ≤ B(q,ψ ,u)

where B(q,ψ ,u) := #B(q,ψ ,u) and

B(q,ψ ,u) := {v ∈ Rd : (2.21) holds}.

Let

H :=

⌊

1

4ψ(q)

⌋

(2.22)

so that H ≥ 1 and H := [−H ,H ] ∩ Z. Then

∑

h∈H

H − |h|

H2
e(hx) = H−2

∣

∣

∣

∣

∣

H
∑

h=1

e(hx)

∣

∣

∣

∣

∣

2

=

(

sinπHx

H sinπx

)2

≥
4

π2

whenever ‖x‖ ≤ (2H)−1. Thus

B(q,ψ ,u) ≪ B∗(q,ψ ,u)

where

B∗(q,ψ ,u) :=
∑

h∈Hm

H − |h1|

H2
· · ·

H − |hm|

H2

∑

v∈Rd

e(h.(F(u,v) − γ )) (2.23)

and

h := (h1, . . . ,hm) ,

F := (F1, . . . ,Fm) ,

Fj(u,v) := qfj
(

ru+λ̃

q

)

+

d
∑

i=1

vi
∂fj

∂αi

(

ru+λ̃

q

)

.

By the definition of H, we have that

0 ≤
H − |h1|

H2
· · ·

H − |hm|

H2
≤ H−m
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Diophantine Approximation on Manifolds 15

for any h = (h1, . . . ,hm) ∈ Hm. Therefore, by (2.23), we get that

B∗(q,ψ ,u) ≤ H−m
∑

h∈Hm

∣

∣

∣

∣

∣

∣

∑

v∈Rd

e(h.(F(u,v) − γ ))

∣

∣

∣

∣

∣

∣

. (2.24)

On using the fact that e(x1 + · · · + xℓ) = e(x1) · · · e(xℓ) and |e(x)| = 1 for any real numbers

x,x1, . . . ,xℓ, we find that

∣

∣

∣

∣

∣

∣

∑

v∈Rd

e(h.(F(u,v) − γ ))

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

v∈Rd

e(h.F(u,v)) · e(−h.γ )

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

v∈Rd

e(h.F(u,v))

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

v∈Rd

e

⎛

⎝

m
∑

j=1

hj

(

qfj
(

ru+λ̃

q

)

+

d
∑

i=1

vi
∂fj

∂αi

(

ru+λ̃

q

)

)

⎞

⎠

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

v∈Rd

e

⎛

⎝

m
∑

j=1

d
∑

i=1

hjvi
∂fj

∂αi

(

ru+λ̃

q

)

⎞

⎠

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

v∈Rd

d
∏

i=1

e

⎛

⎝vi

m
∑

j=1

hj
∂fj

∂αi

(

ru+λ̃

q

)

⎞

⎠

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

d
∏

i=1

∑

vi∈R

e

⎛

⎝vi

m
∑

j=1

hj
∂fj

∂αi

(

ru+λ̃

q

)

⎞

⎠

∣

∣

∣

∣

∣

∣

.

Hence

∣

∣

∣

∣

∣

∣

∑

v∈Rd

e(h.(F(u,v) − γ ))

∣

∣

∣

∣

∣

∣

=

d
∏

i=1

∣

∣

∣

∣

∣

∣

∑

v∈R

e

⎛

⎝v

m
∑

j=1

hj
∂fj

∂αi

(

ru+λ̃

q

)

⎞

⎠

∣

∣

∣

∣

∣

∣

.

Therefore, by (2.24), it follows that

B∗(q,ψ ,u) ≤
1

Hm

∑

h∈Hm

d
∏

i=1

∣

∣

∣

∣

∣

∣

∑

v∈R

e

⎛

⎝v

m
∑

j=1

hj
∂fj

∂αi

(

ru+λ̃

q

)

⎞

⎠

∣

∣

∣

∣

∣

∣

. (2.25)

Since R = [0, r) ∩ Z, for any given ρ ∈ R we have that
∣

∣

∑

v∈R
e(vρ)

∣

∣ ≤ r and also

that

∣

∣

∣

∣

∣

∑

v∈R

e(vρ)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

e(rρ) − 1

e(ρ) − 1

∣

∣

∣

∣

≤
2

|e(ρ) − 1|
≪ ‖ρ‖−1 ,
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16 V. Beresnevich et al.

where the implied constant is absolute. Hence, on taking ρ =
∑m

j=1 hj
∂fj

∂αi

(

ru+λ̃

q

)

we have

that

∣

∣

∣

∣

∣

∣

∑

v∈R

e

⎛

⎝v

m
∑

j=1

hj
∂fj

∂αi

(

ru+λ̃

q

)

⎞

⎠

∣

∣

∣

∣

∣

∣

≪ min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

ru+λ̃

q

)

∥

∥

∥

∥

∥

∥

−1⎞

⎠ .

This together with (2.25), implies that

B∗(q,ψ ,u) ≤
1

Hm

∑

h∈Hm

d
∏

i=1

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

ru+λ̃

q

)

∥

∥

∥

∥

∥

∥

−1⎞

⎠ . (2.26)

For a given u ∈ [0, s]d we consider the intervals Ii = [ui − 1/2,ui + 1/2], unless ui = 0 or

ui = s in which case we consider [ui,ui + 1/2] or [ui − 1/2,ui], respectively. For βi ∈ Ii

we have

∂fj

∂αi

(

ru+λ̃

q

)

=
∂fj

∂αi

(

rβ+λ̃

q

)

+ O(r/q)

by the mean value theorem. Hence

m
∑

j=1

hj

(

∂fj

∂αi

(

ru+λ̃

q

)

−
∂fj

∂αi

(

rβ+λ̃

q

)

)

≪ Hr/q

where the implicit constant depends at most onm and the size of the second derivatives.

Moreover

Hr2

q
≤

δqψ(q)

4qψ(q)
=

δ

4
< δ ,

where the left hand side inequality follows from the definitions of r and H—see (2.20)

and (2.22). Hence

∣

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

ru+λ̃

q

)

∥

∥

∥

∥

∥

∥

−

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

rβ+λ̃

q

)

∥

∥

∥

∥

∥

∥

∣

∣

∣

∣

∣

∣

≪
δ

r
≪

1

r
.

Thus

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

ru+λ̃

q

)

∥

∥

∥

∥

∥

∥

−1⎞

⎠ ≪ min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

rβ+λ̃

q

)

∥

∥

∥

∥

∥

∥

−1⎞

⎠
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Diophantine Approximation on Manifolds 17

and furthermore, by considering their product over i, we get that

d
∏

i=1

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

ru+λ̃

q

)

∥

∥

∥

∥

∥

∥

−1⎞

⎠ ≪

d
∏

i=1

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

rβ+λ̃

q

)

∥

∥

∥

∥

∥

∥

−1⎞

⎠ .

Since themeasure of I1×· · ·×Id is≍ 1, integrating the above inequality over β ∈ I1×· · ·×Id

gives that

d
∏

i=1

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

ru+λ̃

q

)

∥

∥

∥

∥

∥

∥

−1⎞

⎠ ≪

∫

I1×···×Id

d
∏

i=1

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

rβ+λ̃

q

)

∥

∥

∥

∥

∥

∥

−1⎞

⎠dβ.

Now recall that the rectangles I1×· · ·×Id depend on the choice of u. Note that their union

taken over integer points u ∈ Sd, where S := [0, s], is exactly Sd. Furthermore, different

rectangles can only intersect on the boundary. Hence summing the above displayed

inequality over all integer points u ∈ Sd gives

∑

u∈Sd

d
∏

i=1

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

ru+λ̃

q

)

∥

∥

∥

∥

∥

∥

−1⎞

⎠ ≪

∫

Sd

d
∏

i=1

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

rβ+λ̃

q

)

∥

∥

∥

∥

∥

∥

−1⎞

⎠dβ.

Now combining this together with (2.26) we obtain that

∑

u∈Sd

B∗(q,ψ ,u) ≪ H−m
∑

h∈Hm

∫

Sd

d
∏

i=1

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂αi

(

rβ+λ̃

q

)

∥

∥

∥

∥

∥

∥

−1⎞

⎠dβ. (2.27)

Now finally observe that

A(q,ψ , θ) ≤
∑

u∈Sd

A(q,ψ , θ ,u) ≤
∑

u∈Sd

B(q,ψ ,u) ≪
∑

u∈Sd

B∗(q,ψ ,u) . (2.28)

3 The Proof of Theorem 1

With reference to Section 2, by (2.27)

∑

u∈Sd

B∗(q,ψ ,u) ≪ rd−1H−m
∑

h∈Hm

∫

Sd
min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hj
∂fj

∂α1

(

rβ+λ̃

q

)

∥

∥

∥

∥

∥

∥

−1⎞

⎠dβ.

Since (1.1) holds we may make the change of variables

ωj =
∂fj

∂α1

(

rβ+λ̃

q

)

(1 ≤ j ≤ m), ωj = βj (m < j ≤ d).
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18 V. Beresnevich et al.

Thus

∑

u∈Sd

B∗(q,ψ ,u) ≪
rd−1

Hm

∑

h∈Hm

(q

r

)m
∫

Jd

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hjωj

∥

∥

∥

∥

∥

∥

−1⎞

⎠dω (3.1)

where Jd := F1 × · · · × Fm × [0, s]d−m, Fj := [f −
j , f +

j ] and

f −
j := inf

∂fj

∂α1

(α)

and

f +
j := sup

∂fj

∂α1

(α).

The contribution from h = 0 is

≪
rd−1

Hm

(q

r

)m
∫

Jd

rdω ≪
rd−m

Hm
qmsd−m ≪ H−mqd

since rs ≍ q. Next observe that

M :=

∫

F1×···×Fm

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hjωj

∥

∥

∥

∥

∥

∥

−1⎞

⎠dω1 . . .dωm

is constant with respect to ωm+1, . . . ,ωd. Hence, by Fubini’s theorem and the fact that

Jd := F1 × · · · × Fm × [0, s]d−m, integrating M over (ωm+1, . . . ,ωd) ∈ [0, s]d−m gives that

∫

Jd

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hjωj

∥

∥

∥

∥

∥

∥

−1⎞

⎠dω = sd−mM . (3.2)

If h �= 0, then assuming, for example, that h1 �= 0 and using Fubini’s theorem again we

get that

M =

∫

F1×···×Fm

min

⎛

⎝r,

∥

∥

∥

∥

∥

∥

m
∑

j=1

hjωj

∥

∥

∥

∥

∥

∥

−1⎞

⎠dω1 . . .dωm

≪ sup
ρ∈[0,1]

∫

F1

min
(

r, ‖h1ω1 − ρ‖
−1
)

dω1

≪ sup
ρ∈[0,1]

∑

p∈Z

|p|≪h1

∫

F1

min
(

r, |h1ω1 − ρ − p|−1
)

dω1
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≪ sup
ρ∈[0,1]

∑

p∈Z

|p|≪h1

(

1

h1r
+

1

h1

log r

)

≪ max{1, log r} .

Hence, by the above inequalities and (3.2), the contribution from the h �= 0 terms within

(3.1) is estimated by

rd−1

Hm

∑

h∈Hm

(q

r

)m

sd−mmax{1, log r}

≪ r−1(rs)d−mqmmax{1, log r}

≪ r−1qdmax{1, log r}.

In view of (2.28), it follows that

A(q,ψ , θ) ≪ H−mqd + r−1qdmax{1, log r} .

Given the definitions of H and r, this gives (1.6) and thereby completes the proof of the

theorem.

4 The Proof of Theorem 3

Recall that within Theorem 3, we have thatm = 1 and d = n− 1. Hence, with reference

to Section 2, (2.27) becomes

∑

u∈Sd

B∗(q,ψ ,u) ≪ H−1
∑

h∈H

∫

Sd

d
∏

i=1

min

(

r,

∥

∥

∥

∥

h
∂f

∂αi

(

rβ+λ̃

q

)

∥

∥

∥

∥

−1
)

dβ ,

where f = f : U → R. Since (1.12) holds we may make the change of variables

ωi =
∂f

∂αi

(

rβ+λ̃

q

)

(1 ≤ i ≤ d).

Thus

∑

u∈Sd

B∗(q,ψ ,u) ≪ H−1
∑

h∈H

(q

r

)d
∫

Jd

d
∏

i=1

min
(

r, ‖hωi‖
−1
)

dω
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20 V. Beresnevich et al.

where Jd := F1 × · · · × Fd, Fi := [f −
i , f +

i ] and

f −
i := inf

∂f

∂αi

(α)

and

f +
i := sup

∂f

∂αi

(α).

The contribution from h = 0 is

≪ H−1
(q

r

)d
∫

Jd

rddω ≪ H−1qd

and the contribution from the remaining terms is

≪ H−1
∑

h∈H\{0}

(q

r

)d
∫

Jd

d
∏

i=1

min
(

r, ‖hωi‖
−1
)

dω

= H−1
∑

h∈H\{0}

(q

r

)d
d
∏

i=1

∫

Fi

min
(

r, ‖hωi‖
−1
)

dωi

≪ H−1
∑

h∈H\{0}

(q

r

)d
d
∏

i=1

max{1, log r}

≪ r−dqdmax{1, (log r)d}.

In view of (2.28), it follows that

A(q,ψ , θ) ≪ H−1qd + r−dqdmax{1, (log r)d} .

Given the definitions of H and r this gives (1.13) and thereby completes the proof of the

theorem.

5 Proof of Theorem 2

Step 1. As mentioned in Section 1, in view of the Implicit Function Theorem, we can

assume without loss of generality that the manifold Mf is of the Monge form (1.3). Note

that, since U is compact and f is C1, this implies via the Mean Value Theorem that

f = (f1, . . . , fm) is bi-Lipschitz and so there exists a constant c1 ≥ 1 such that

max
1≤i≤m

|fi(α) − fi(α
′)| ≤ c1 |α − α′| ∀ α,α′ ∈ U = [0, 1]d . (5.1)
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Let �f
n(ψ , θ) denote the projection of Mf ∩ Sn(ψ , θ) onto U ; that is,

�f
n(ψ , θ) := {α ∈ U : (α, f(α)) ∈ Sn(ψ , θ)} .

Explicitly, given θ = (λ, γ ) ∈ R
d × R

m, the set �f
n(ψ , θ) consists of points α ∈ U such that

the system of inequalities

⎧

⎪

⎨

⎪

⎩

∣

∣αi −
ai+λi
q

∣

∣ <
ψ(q)

q
1 ≤ i ≤ d

∣

∣fj(α) −
bj+γj

q

∣

∣ <
ψ(q)

q
1 ≤ j ≤ m

(5.2)

is satisfied for infinitely many (q,a,b) ∈ N × Z
d × Z

m. Furthermore, there is no loss of

generality in assuming that a+λ

q
∈ U for solutions of (5.2). In view of (5.1), the sets�f

n(ψ , θ)

and Mf ∩ Sn(ψ , θ) are related by a bi-Lipschitz map and therefore

Hs (Mf ∩ Sn(ψ , θ)) = 0 ⇐⇒ Hs(�f
n(ψ , θ)) = 0 .

Hence, it suffices to show that

Hs(�f
n(ψ , θ)) = 0 . (5.3)

Step 2. Notice that the set B = {α ∈ U : l.h.s. of (1.1) = 0} is closed and therefore

G = U \B can be written as a countable union of closed rectangles Ui on which f satisfies

(1.1). The constant η associated with (1.1) depends on the particular choice of Ui. For the

moment, assume that Hs(�f
n(ψ , θ)∩Ui) = 0 for any i ∈ N. On using the fact that Hs(B) = 0,

we have that

Hs(�f
n(ψ , θ)) ≤ Hs

(

B ∪
(

∞
⋃

i=1

�f
n(ψ , θ) ∩ Ui

)

)

≤ Hs(B) +
∞
∑

i=1

Hs
(

�f
n(ψ , θ) ∩ Ui

)

= 0

and this establishes (5.3). Thus, without loss of generality, and for the sake of clarity,

we assume that f satisfies (1.1) on U .

Step 3. For a point p+θ

q
∈ R

n with p = (a,b) ∈ Z
d × Z

m, let σ
(

p+θ

q

)

denote the set of α ∈ U

satisfying (5.2). Trivially,

diam
(

σ
(

p+θ

q

))

≪ ψ(q)/q , (5.4)

where the implied constant depends on n only.
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22 V. Beresnevich et al.

Assume that σ
(

p+θ

q

)

�= ∅. Thus, q lies in the integer supportN ofψ . Let α ∈ σ
(

p+θ

q

)

.

The triangle inequality together with (5.1) and (5.2), implies that

∣

∣f
(

a+λ

q

)

−
b+γ

q

∣

∣ ≤
∣

∣f( a+λ

q
) − f(α)

∣

∣ +
∣

∣f(α) −
b+γ

q

∣

∣

< c1
∣

∣α − a+λ

q

∣

∣ + ψ(q)/q

≤ c2 ψ(q)/q ,

where c2 := 1 + c1 is a constant. Thus, for q sufficiently large so that c2 ψ(q) < 1/2 we

have that

#
{

p ∈ Z
n : σ(

p+θ

q
) �= ∅

}

≤ #
{

p ∈ Z
n : a+λ

q
∈ U ,

∣

∣f( a+λ

q
) −

b+γ

q

∣

∣ < c2 ψ(q)/q
}

= #
{

a ∈ Z
d : a+λ

q
∈ U , ‖q f

(

a+λ

q

)

− γ ‖ < c2ψ(q)
}

.

By definition, the right hand side is simply the counting function A(q, c2ψ , θ). Thus, by

Corollary 1, for q ∈ N sufficiently large we have that

#
{

p ∈ Z
n : σ(

p+θ

q
) �= ∅

}

≪ ψ(q)m qd . (5.5)

Step 4. For q > 0, let

�f
n(ψ , θ ;q) :=

⋃

p∈Zn, σ(
p+θ
q ) �=∅

σ
(

p+θ

q

)

.

Then Hs(�f
n(ψ , θ)) = Hs(lim supq→∞ �f

n(ψ , θ ;q)) and the Hausdorff-Cantelli Lemma [8,

p. 68] implies (5.3) if

∞
∑

q=1

∑

p∈Zn, σ(
p+θ
q ) �=∅

(

diam
(

σ
(

p+θ

q

))

)s

< ∞ . (5.6)

In view of (5.4) and (5.5), it follows that

L.H.S of (5.6) ≪
∑

q∈N

∑

p∈Zn, σ(
p+θ
q ) �=∅

(ψ(q)/q)s

≪
∑

q∈N

(ψ(q)/q)s × ψ(q)m qd =

∞
∑

q=1

(ψ(q)/q)s+m qn < ∞ .

This completes the proof of Theorem 2.
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