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FREE MONOIDS ARE COHERENT

VICTORIA GOULD, MIKLÓS HARTMANN, AND NIK RUŠKUC

Abstract. A monoid S is said to be right coherent if every finitely generated subact of
every finitely presented right S-act is finitely presented. Left coherency is defined dually
and S is coherent if it is both right and left coherent. These notions are analogous to
those for a ring R (where, of course, S-acts are replaced by R-modules). Choo, Lam and
Luft have shown that free rings are coherent. In this note we prove that, correspondingly,
any free monoid is coherent, thus answering a question posed by the first author in 1992.

1. Introduction and preliminaries

The notion of right coherency for a monoid S is defined in terms of finitary properties of
right S-acts, corresponding to the way in which right coherency is defined for a ring R via
properties of right R-modules. Namely, S is said to be right (left) coherent if every finitely
generated subact of every finitely presented right (left) S-act is finitely presented. If S
is both right and left coherent then we say that S is coherent. Chase [1] gave equivalent
internal conditions for right coherency of a ring R. The analogous result for monoids states
that a monoid S is right coherent if and only if for any finitely generated right congruence
ρ on S, and for any a, b ∈ S, the right annihilator congruence

r(aρ) = {(u, v) ∈ S × S : au ρ av}

is finitely generated, and the subact (aρ)S∩(bρ)S of the right S-act S/ρ is finitely generated
(if non-empty) [4]. Left coherency is defined for monoids and rings in a dual manner; a
monoid or ring is coherent if it is both right and left coherent. Coherency is a rather
weak finitary condition on rings and monoids and as demonstrated by Wheeler [7], it is
intimately related to the model theory of R-modules and S-acts.
A natural question arises as to which of the important classes of infinite monoids are

(right) coherent? This study was initiated in [4], where it is shown that the free commuta-
tive monoid on any set Ω is coherent. For a (right) noetherian ring R, the free monoid ring
R[Ω∗] over R is (right) coherent [2, Corollary 2.2]. Since the free ring on Ω is the monoid
ring Z[Ω∗] [6], it follows immediately that free rings are coherent. The question of whether
the free monoid Ω∗ itself is coherent was left open in [4]. The purpose of this note is to
provide a positive answer to that question:

Theorem 1. For any set Ω the free monoid Ω∗ is coherent.
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Our proof of Theorem 1, given in Section 2, provides a blueprint for the proof in [5] that
free left ample monoids are right coherent. Further comments are provided in Section 3.
A few words on notation and technicalities follow. If H is a set of pairs of elements of a

monoid S, then we denote by 〈H〉 the right congruence on S generated by H. It is easy
to see that if a, b ∈ S, then a 〈H〉 b if and only if a = b or there is an n ≥ 1 and a sequence

(c1, d1, t1; c2, d2, t2; . . . ; cn, dn, tn)

of elements of S, with (ci, di) ∈ H or (di, ci) ∈ H, such that the following equalities hold:

a = c1t1, d1t1 = c2t2, . . . , dntn = b.

Such a sequence will be referred to as an H-sequence (of length n) connecting a and b. It
is convenient to allow n = 0 in the above sequence; the empty sequence is interpreted as
asserting equality a = b. Where convenient we will use the fact that Ω∗ is a submonoid of
the free group FG(Ω) on Ω, in order to give the natural meaning to expressions such as
yx−1, where x, y ∈ Ω∗ and x is a suffix of y.

2. Proof of Theorem 1

Let Ω be a set; it is clearly enough to show that Ω∗ is right coherent. To this end let ρ
be the right congruence on Ω∗ generated by a finite subset H of Ω∗ × Ω∗, which without
loss of generality we assume to be symmetric.

Definition 2. A quadruple (a, u; b, v) of elements of S is said to be irreducible if (au, bv) ∈ ρ
and for any common non-empty suffix x of u and v we have that (aux−1, bvx−1) 6∈ ρ.

Definition 3. An H-sequence (c1, d1, t1; . . . ; cn, dn, tn) with

au = c1t1, d1t1 = c2t2, . . . , dntn = bv

is irreducible with respect to (a, u; b, v) if u, t1, . . . , tn, v ∈ Ω∗ do not have a common non-
empty suffix. Clearly, this is equivalent to one of u, t1, . . . , tn, v being ǫ.

Throughout this note for an H-sequence as above we define a = d0, u = t0, cn+1 = b and
tn+1 = v. It is clear that if the quadruple (a, u; b, v) is irreducible then any H-sequence
connecting au and bv must be irreducible with respect to (a, u; b, v).
We define

K = max{|p| : (p, q) ∈ H}.

Lemma 4. Let the H-sequence (c1, d1, t1; . . . ; cn, dn, tn) with

au = c1t1, d1t1 = c2t2, . . . , dntn = bv

be irreducible with respect to (a, u; b, v). Then either the empty H-sequence is irreducible
with respect to (a, u; c1, t1) (in which case |u| ≤ max (|b|, K) and u = ǫ or t1 = ǫ) or there
exist an index 1 ≤ i ≤ n such that ti+1 = ǫ (so that au ρ ci+1) and x ∈ Ω+ such that
|x| ≤ max (|b| , K), the sequence

(c1, d1, t1x
−1; . . . ; ci−1, di−1, ti−1x

−1)
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satisfies

aux−1 = c1t1x
−1, d1t1x

−1 = c2t2x
−1, . . . , di−1ti−1x

−1 = citix
−1,

and is an irreducible H-sequence with respect to (a, ux−1; ci, tix
−1).

Proof. If the empty sequence is irreducible with respect to (a, u; c1, t1) then either u = ǫ or
t1 = ǫ. In both cases we have that |u| ≤ max (|b|, K). Suppose therefore that the empty
sequence is not irreducible with respect to (a, u; c1, t1). Let i ∈ {1, . . . , n} be the smallest
index such that ti+1 = ǫ (such an index exists, because our original sequence is irreducible),
and let x be the longest common non-empty suffix of u = t0, t1, . . . , ti. Then the sequence

(c1, d1, t1x
−1; . . . ; ci−1, di−1, ti−1x

−1)

clearly satisfies

aux−1 = c1t1x
−1, d1t1x

−1 = c2t2x
−1, . . . , di−1ti−1x

−1 = citix
−1

and is irreducible with respect to (a, ux−1; ci, tix
−1). Furthermore, since ti+1 = ǫ, we have

that diti = ci+1, so x is a suffix of ci+1. If i < n then (ci+1, di+1) ∈ H, while if i = n we
have ci+1 = b. In either case |x| ≤ |ci+1| ≤ max (|b|, K). �

We deduce immediately that one condition for coherency of Ω∗ is fulfilled.

Corollary 5. Let a, b ∈ S. Then (aρ)S ∩ (bρ)S is empty or finitely generated.

Proof. Let us suppose that (aρ)S ∩ (bρ)S 6= ∅ and let

X = {aρ, bρ, cρ : (c, d) ∈ H} ∩ (aρ)S ∩ (bρ)S.

We claim that X generates (aρ)S ∩ (bρ)S. It is enough to show that for every irreducible
quadruple (a, u; b, v) we have that (au)ρ ∈ X. For this, let (c1, d1, t1; . . . ; cn, dn, tn) be an
H-sequence with

au = c1t1, . . . , dntn = bv.

Note that this sequence is necessarily irreducible with respect to (a, u; b, v). Then by
Lemma 4, either u = ǫ, or ti = ǫ for some i ∈ {1, . . . , n}, or v = tn+1 = ǫ. In each of these
cases we see that (au)ρ ∈ X. �

It remains to show that for any a ∈ Ω∗, the right congruence r(aρ) is finitely generated.
To this end we first present a technical result.

Lemma 6. Let (c1, d1, t1; . . . ; cn, dn, tn) with

au = c1t1, . . . , dntn = bv

be an irreducible H-sequence with respect to (a, u; b, v). Then either u = ǫ, or there exist
a factorisation u = xk . . . x1 and indices n + 1 ≥ ℓ1 > ℓ2 > . . . > ℓk ≥ 1 such that for all
1 ≤ j ≤ k:
(i) 0 < |xj| ≤ max (|b| , K) and
(ii) aux−1

1 . . . x−1

j−1 ρ cℓj (note that for j = 1 we have au ρ cℓ1).
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Proof. We proceed by induction on |u|: if |u| = 0 the result is clear. Suppose that |u| > 0
and the result is true for all shorter words. If the empty sequence is irreducible with respect
to (a, u; c1, t1), then t1 = ǫ and the factorisation u = x1 satisfies the required conditions,
with k = 1 and ℓ1 = 1. Otherwise, by Lemma 4, there exist an index 1 ≤ i ≤ n such that
ti+1 = ǫ, so that au ρ ci+1, and x1 ∈ Ω+ such that |x1| ≤ max (|b| , K) and the sequence

(c1, d1, t1x
−1

1 ; . . . ; ci−1, di−1, ti−1x
−1

1 )

satisfies

aux−1

1 = c1t1x
−1

1 , d1t1x
−1

1 = c2t2x
−1

1 , . . . , di−1ti−1x
−1

1 = citix
−1

1

and is an irreducible H-sequence with respect to (a, ux−1

1 ; ci, tix
−1

1 ). Put ℓ1 = i+ 1. Since
|ux−1

1 | < |u|, the result follows by induction. �

Lemma 7. Let a ∈ Ω∗. Then r(aρ) is finitely generated.

Proof. Let K ′ = max(K, |a|) + 1, L = 2 |H|+ 2, N = K ′L and define

X = {(u, v) : |u|+ |v| ≤ 3N} ∩ r(aρ).

We claim that X generates r(aρ). It is clear that 〈X〉 ⊆ r(aρ).
Let (u, v) ∈ r(aρ). We show by induction on |u| + |v| that (u, v) ∈ 〈X〉. Clearly, if

|u| + |v| ≤ 3N , then (u, v) ∈ X. We suppose therefore that |u| + |v| > 3N and make the
inductive assumption that if (u′, v′) ∈ r(aρ) and |u′| + |v′| < |u| + |v|, then (u′, v′) ∈ 〈X〉.
If the quadruple (a, u; a, v) is not irreducible, it is immediate that (u, v) ∈ 〈X〉. Without
loss of generality we therefore suppose that the quadruple (a, u; a, v) is irreducible and
|v| ≤ |u|, so that |u| > N . Let (c1, d1, t1; . . . ; cn, dn, tn) with

au = c1t1, . . . , dntn = av

be an irreducible H-sequence with respect to (a, u; a, v). We apply Lemma 6, noting here
that a = b. Clearly u 6= ǫ, so by Lemma 6, there exists a factorisation u = xk . . . x1

such that for all 1 ≤ j ≤ k we have 0 < |xj| ≤ K ′ and aux−1

1 . . . x−1

j−1
ρ cℓj for some

1 ≤ ℓj ≤ n + 1. Since |u| > K ′L we have that k > L. Note that the number of distinct
elements among c1, . . . , cn is less than L − 1. This in turn implies that there exist two
indices 1 ≤ k − L < j < i ≤ k such that cℓi = cℓj , so that

aux−1

1 . . . x−1

i−1
ρ cℓi = cℓj ρ aux−1

1 . . . x−1

j−1
.

Since i, j > k − L we have that k − i + 1 ≤ L, so
∣

∣ux−1

1 . . . x−1

i−1

∣

∣ = |xk . . . xi| ≤ K ′L, and

similarly
∣

∣ux−1

1 . . . x−1

j−1

∣

∣ ≤ K ′L. As a consequence (ux−1

1 . . . x−1

i−1, ux
−1

1 . . . x−1

j−1) ∈ X, and

letting u′ = ux−1

1 . . . x−1

i−1xj−1 . . . xk, we see that

(u′, u) = (ux−1

1 . . . x−1

i−1, ux
−1

1 . . . x−1

j−1)xj−1 . . . x1 ∈ 〈X〉.

In particular, au′ ρ au ρ av. Note that |u′| < |u|, because j < i and xj 6= ǫ. Thus by the
induction hypothesis we have that (v, u′) ∈ 〈X〉 and so the lemma is proved. �

In view of the characterisation of coherency given in [4] and cited in the Introduction,
Corollary 5 and Lemma 7 complete the proof of Theorem 1.
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3. Comments

Given that the class of right coherent monoids is closed under retract [5], it follows from
the results of that paper that free monoids are coherent. However, as the arguments in
[5] for free left ample monoids are burdened with unavoidable technicalities, we prefer to
present here the more transparent proof that Ω∗ is coherent, by way of motivation for the
work of [5]. With free objects in mind, we remark that we also show in [5] that the free
inverse monoid on Ω is not coherent if |Ω| > 1.
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