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Abstract: Classification of different motor imagery tasks 

using electroencephalogram (EEG) signals is challenging, since 

EEG presents individualized temporal and spatial characteristics 

that are contaminated by noise, artifacts and irrelevant mental 

activities. In most applications, the EEG time interval on which 

feature extraction algorithms operate is fixed for all subjects, 

whereas the start time and the duration of motor imagery-based 

brain activities can vary from subject to subject. To improve the 

classification accuracy, this paper proposes a novel entropy-

based algorithm to accurately identify the time interval that 

motor imagery has been performed. The proposed algorithm 

searches through different time intervals across trials and finds 

the one with minimum irregularity. The hypothesis behind the 

proposed algorithm is that when motor imagery is performed, the 

activities of the neurons in the motor cortex tend to become more 

synchronized and less irregular. We evaluate our proposed 

algorithm using a publicly available motor imagery-based BCI 

dataset. The experimental results show that the proposed 

algorithm selects the EEG intervals leading to superior BCI 

performance compared to fixed EEG intervals that are 

commonly used for all subjects. 

Keywords— brain-computer Interface, EEG time interval, 

motor imagery, multi scale entropy 

I.  INTRODUCTION 

Brain-computer interface (BCI) aims to improve the quality 

of life of people with severe disability by providing a new 

pathway for communication and control [1], [2]. This 

technology can replace, restore, improve, and supplement the 

natural central nervous system by analyzing and decoding 

brain signals and translating them to control commands  [1], 

[2]. In BCI applications, electroencephalogram (EEG) is 

commonly used to measure electrical activities of brain due to 

its high temporal resolution and lower cost compared to other 

modalities such as functional magnetic resonance imaging 

(fMRI), functional near-infrared spectroscopy (fNIRS), etc., 

Several BCI systems operate based on EEG patterns 

generated by performing different motor imagery tasks. 

Performing motor imagery generally leads to short-term 

inhibition and suppression of the sensory rhythms across 

motor cortex, which are called event-related de-

synchronization (ERD) and event-related synchronization 

(ERS) respectively [3], [4]. However, accurate detection of 

performed motor imagery task is challenging due to noise and 

non-stationarity inherent in the recorded EEG signals. 

Consequently, advanced signal processing and machine 

learning algorithms are applied on short EEG time intervals to 

mitigate effects of noise and non-stationarity and subsequently 

improve the BCI performance [5]. As an example, common 

spatial pattern (CSP) is a commonly used algorithm in BCI 

that has a great influence on its performance [6]. The CSP 

algorithm is a spatial filter that maximizes the difference 

between variances of two classes of EEG signals. 

Nevertheless, the BCI performance greatly depends on the 

EEG frequency band and the time interval on which CSP is 

applied on [7], [8], [9]. 

There are several BCI research studies published on 

automatic selection of most discriminative EEG frequency 

bands before employing CSP [8]. However, relatively very 

few studies have focused on automatic selection of relevant 

EEG time intervals. Typically, the EEG time interval on which 

the CSP algorithm operates is unspecifically set to a fixed 

value for all subjects (e.g. 0.5 to 2.5 s after onset of cue) [10]. 

However, the start time and the duration of motor imagery-

based brain activity can vary from subject to subject. Using a 

fixed EEG time interval for all subjects often leads to 

deteriorated BCI performance due to either excluding some 

relevant information or including irrelevant brain activities 

that cause great non-stationarity across trials. Ang et al. 

suggested to select a subject-specific time interval among a 

few options based on cross validation results on training data 

[8]. However, this is a very time consuming approach. 

In this paper, we propose a new entropy-based algorithm to 

identify individualized time EEG time intervals for motor 

imagery BCIs. The hypothesis behind the proposed algorithm 

is that when the brain responses to a stimulus, in the 

corresponding brain region, activities of neurons become more 

regular and synchronized and less noisy in comparison with 

the neutral state [11]. Based on this hypothesis, our proposed 

algorithm identifies the best EEG time interval, which is more 

regular than other ones across trials, by using the entropy 

theory. Entropy metric is a well-known approach in measuring 

the irregularity of physiological signals [12]. Generally, 

entropy increases with the degree of disorder and is maximum 

for completely random systems. Sample entropy (SE) [13] and 
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permutation entropy (PE) [14] are two algorithms proposed to 

compute the degree of regularity in time series. Recently, 

authors in [15] have proposed a multiscale sample entropy 

(MSE) algorithm to improve the calculation of entropy for 

complex physiological signals. They showed the effectiveness 

of MSE in measuring the degree of irregularities using cardiac 

inter-beat signals.  

In this paper, we propose a novel MSE-based EEG time 

interval selection algorithm. Our proposed algorithm measures 

the complexity and irregularity of the EEG signals, and 

identifies when the brain has started performing motor 

imagery and how long performing motor imagery has lasted. 

The effectiveness of the proposed algorithm is evaluated using 

the publicly available dataset 2a from BCI competition IV 

[16]. The performance of the proposed algorithm is also 

compared with the state-of-the-art algorithm where a fixed 

EEG time interval is used for all subjects. 

II. METHODS 

A. Multiscale Sample Enthropy (MSE) 

MSE has been used as a measure of irregularities across 

multiple time scales. Costa et al. proposed an improved 

version of the MSE algorithm to show its effectiveness in 

measuring the degree of irregularities of cardiac interbeat time 

series [15]. In this paper, we adapted the MSE algorithm 

proposed in [15] to be applied on EEG signals. The following 

steps illustrate the proposed MSE algorithm for measuring the 

degree of irregulary across samples of an EEG signal recorded 

from a single channel.  

1. Let },..,,{ 21 LxxxX   denotes an EEG signal with 

L samples recorded from a single channel. As suggested 

in [15, 17], the coarse-graining procedure is applied on 

the signal X  to construct the new signal 
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with the length of C . In fact, the coarse-graining 

procedure divides X  to C  non-overlapping epochs with 

a length of   each. Thereafter, 
by
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is calculated by 

averaging the EEG samples of the 
th

b  epoch (see Fig. 1 

as examples). This procedure can be summarized as: 
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where   is called the scale factor. The coarse-graining 

procedure not only reduces the computation time of the 

MSE algorithm by down-sampling the signal but also 

attenuates the high frequency noise. 

2. GivenY


, in this step, the vectors of m consecutive data 

points are formed as
,m 1
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where {1,2,..., 1}i c m   . m is referred to as the 

embedding dimension. 

3. In the third step,  the distances between all the possible 

pairs of  
,mY ( )i

 and 
,mY ( )j

 are calculated, where  

, {1,2,..., 1}i j c m    and i j . The lower distance 

between two vectors indicates more similarity and less 

irregularity between them. We used Chebyshev method to 

measure the distance between two vectors which is the 

greatest of their differences along any coordinate 

dimensions. Indeed, other distanse methods can be also 

used to do this. Next, the number of paired vectors that 

had distances less than r  are calculated, where r  is a 

small predefined value. We will explain in Section IV 

how we chose the r  value in this study. Subsequently, we 

calculate ( )m
B r  as the probebility of having 

,m ,m[Y ( ),Y ( )] ,  d i j r i j
     for the given Y


. 

4. In this step, , 1( )m
B r

   is calculated by repeting the second 

and the third steps with m+1. 

5. Consequently, MSE is defined as:  
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It should be added that a lower value of MSE implies more 

similarity in time series.  

 

 
Fig. 1. The scheme illustrating how to construct the coarse-grained data from 

original data over two different scales, adapted from [17].  

B. The proposed MSE-based interval selection algorithm 

The hypothesis behind the proposed algorithm is that when 

the brain responses to an external stimulus, the activities of the 

neurons in the associated regions tend to become more 

synchronized. In other words, during a short time interval 

when the user is performing motor imagery, the brain signals 

generated from motor cortex become more regular, and 

irrelevant neural activities as well as muscle artifacts are 

minimized. Based on this hypothesis, in this paper, we 

investigate whether or not MSE can be used to identify when 

the brain has started performing motor imagery and how long 

performing motor imagery has lasted.  

The proposed MSE-based EEG interval selection algorithm 

is applied on band-passed EEG data. Since the CSP algorithm 

changes the spatial structures of the EEG signals, we apply the 



proposed method before the CSP algorithm to check the 

generated patterns of brain signals before any changes in their 

spatial structure.  

In the first step of our proposed MSE-based interval 

selection algorithm, the EEG trials of the training set recorded 

from motor cortex (i.e. C3, C4, Cz) are divided to a number of 

overlapping intervals. Fig. 2 displays how an EEG trial is 

divided into multiple intervals. In this figure, T and ΔT 

respectively indicate the length of the EEG interval and the 

sliding shift from the previous EEG interval. The procedure of 

dividing an EEG trial to multiple sub-windows can be 

repeated with different values of T and ΔT. In this study, we 

set ΔT to the fixed value of 0.5 s to reduce the search space 

and consecuently the computational time.  

 
Fig. 2: Dividing an EEG trial to n+1 intervals with the length of T 

Algorithm 1 presents the proposed MSE-based EEG 

interval selection algorithm. As shown in Algorithm 1, the 

average MSE of each EEG interval is calculated across all the 

training trials and all the selected motor cortex channels (i.e. 

C3, C4, Cz) using  , ,W T j ß , where T is the length of the 

EEG interval started jΔT seconds after the onset of the cue. 

Thereafter, the EEG interval that resulted in the minimum 

average MSE is selected as the time interval with minimum 

irregularity during performing motor imagery. We believe that 

this interval is an effective EEG interval for discriminating 

between the two performed motor imagery tasks as in this 

time interval the irrelevant brain activities that cause 

irregularity and non-stationarity in the activities of motor 

cortex are minimum. We will validate this hypothesis in the 

result section by comparing the classification accuracy 

obtained using the MSE-based selected time intervals with the 

results of the state-of-the-art BCI algorithm that uses a fixed 

EEG time interval for all the subjects.  

 

Algorithm 1 MSE-based EEG interval selection 

W(T,j,ß) is the average MSE of EEG intervals with the length 

T started jΔT seconds after the onset of cue, 
 

m is embedding dimension (in this study m=2),  
 

r is matching threshold (in this study r=0.2* std), 
 

ΔT= sliding shift (in this study 0.5 sec),  
 

for  =1: number of  scale factors do 

    for different lengths of T  do 

        for j=0: n do 

for  i=1: number of training trials do 

   for  Ch=[ C3, C4, Cz] do 

Calculate X as ith EEG trial from channel Ch with 

the length of T, recorded jΔT seconds after the 
onset of cue, 

Calculate Y


as mentioned in Equation (1), 

                    R(i, , , , ) ( , , ,X)Ch T j MSE m r  , 

 End do 
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      End do 

   End do 

End do 
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The selected EEG interval has the length of T* and starts 

j*ΔT sec after onset of stimulus. 
 

III. EXPERIMENTS 

A. Data description 

In this paper, we used the publicly available dataset 2a from 

BCI Competition IV [16]. This dataset has been provided by 

the BCI research group at the University of Gras. It includes 

four different motor imagery tasks; left hand, right hand, both 

feet, and tongue. In this study, we use only left hand and right 

hand motor imagery tasks. The signals were recorded from 

nine subjects using 22 EEG channels with the sampling rate of 

250 Hz. The EEG data for each subject comprised of a training 

and a testing set of which each set included 72 trials for each 

motor imagery task. The training and test sessions were 

conducted on different days. Each trial began with a 

preparation beep sound. After 2 s a visual cue instructed the 

participants to perform one of the four above-mentioned motor 

imagery tasks for 4 s followed by a few seconds rest. 

B. Data processing 

Fig. 3 shows the proposed procedure applied for 

classification of motor imagery signals. As shown in Fig. 3, 

first, 8-35 Hz band pass filter was applied on the raw EEG 

signals since this frequency band included the range of 

frequencies that are mainly involved in performing motor 

imagery [18]. The filtering was performed using a Chebyshev 

filter. In the training phase, the next step was dividing the EEG 

signals into a number of time windows and selecting the EEG 

time window with the lowest average MSE as described in 

Section II.b. Thereafter, the spatially filtered signals were 

obtained using the first and the last three spatial filters of CSP. 

Finally, the variances of the spatially filtered signals were 

applied as the inputs of the LDA classifier. Note that, in this 

paper, we did not reject any trials or electrodes. 

As mentioned, we assume that ΔT is fixed to 0.5s in order to 

reduce the research space. The maximum value of time 



window is chosen 4.5s, because of the timing of the paradigm 

of the dataset. 

IV. RESULT AND DISCUSSION 

A. Selecting the parameters of the proposed algorithm 

The parameters of the proposed MSE-based EEG interval 
selection algorithm should be carefully chosen as their values 
may have great influence on the performance. These 
parameters include the matching threshold (r), the embedding 
dimension (m), the length of the coarse-grained signal (C), and 
the scale factor (ß) [19]. In the following, we discuss how to 
define the values of the abovementioned parameters. 

Matching threshold (r): Recent studies on MSE suggested 
to set the r value as either 0.15 or 0.2 of the standard deviation 
of the signal [12, 13]. Accordingly, we defined the r value as 
0.2 of the standard deviation of the investigated EEG time 
interval as it achieved better classification results in our pilot 
experiment compared to the other suggested value.  

Embedding dimension (m): the value of 2 was assigned for 
this parameter as suggested in [19].  

Data length (C): The minimum data length for calculating 

the sample entropy equals to 10
m
, however, for a better 

estimation higher values such as 20
m
 are recommended [20]. 

Since, the length of data is different using different scale 
factors, we propose using the following equation to identify the 
minimum length of the data under examination: 

( )
10 ,  1, ,max,ms

f T
N 




                    (3)   

where fs and T are  respectively the sampling rate and the 

duration of the EEG interval in second. m and ß indicate 

embedding dimension and scale factor, respectively.  

Scale factor (ß): For different lengths of EEG intervals, the 

maximum value of ß is selected such that (3) is satisfied. For 

example, since in this study fs and m are 250Hz and 2 

respectively, ß should be 4 or less for 2 s time windows. 

B. Performance Comparison 

Fig. 4 presents the average MSEs (for ß=1) as well as 

classification results of different EEG time intervals for subject 

9. In Fig. 4, the x-axes present different EEG time intervals, 

and the right and left y-axes indicate the classification accuracy 

and the average MSE, respectively. Besides, different sub-

figures are corresponding to different lengths of EEG intervals.  

As Fig. 4 shows, EEG time intervals with lower average 

MSEs resulted in higher classification accuracies. Indeed, this 

behavior can be observed in all the subfigures. In addition, the 

duration of an EEG interval has a great influence on the 

classification result. For example, when the time window is 

greater than 3.5s, the average MSE increases and the 

classification accuracy decreases, since the time window 

exceeds the duration of motor imagery and includes other 

irrelevant neural activities. On the other hand, when the EEG 

interval is too short, some parts of relevant information is 

missed resulting in a degraded classification accuracy.  

Comparing the average MSE values across all the 

subfigures, we can see the window (1s-2.5s) in Fig 4.a has the 

lowest average MSE. Indeed, the highest obtained 

classification accuracy also belongs to this time interval. In 

summary, this figure clearly demonstrates the effectiveness of 

the proposed MSE-based EEG interval selection algorithm for 

subject 9. 

 
Fig. 3. Overview of the proposed platform for classification in the BCI application 



As demonstrated in Table I, to evaluate the influence of 

different scale factors, the classification results for all nine 

subjects were obtained using EEG time intervals that were 

selected based on different scale factors. Table I shows that on 

average the value 3 for the scale factor yielded the highest 

average classification accuracy. However, the results of the 

scale factor 3 are not statistically better than the results 

obtained using the other scale factors (p>0.05). According (3), 

selecting large scales may make calculating MSE for short 

EEG intervals inaccurate. For example, the scale greater than 3 

for the length 1.5s is not acceptable. On the other hand, the 

computation time of the MSE algorithm is remarkably faster 

when the scale is larger due to down sampling of the signal. 

In our proposed algorithm, we calculated the MSE values 

for all the possible scale factors over a number of multiple EEG 

time intervals. Thereafter, the time interval with the lowest 

MSE is selected for feature extraction and classification. The 

results of our proposed algorithm based on considering all 

possible scale factors are presented in Table II.  

Table II shows that the proposed algorithm outperformed 

the state of the art algorithms where fixed EEG intervals were 

used for all the subjects. Our proposed algorithm performed on 

average 3.5%, 5.6%, and 6.1% better than using the fixed time 

window of (0.5s to 2.5s), (0s to 3s) and (1.5s to 3s) 

respectively. Interestingly, the paired t-test revealed that 

compared to the results of using the fixed EEG time intervals 

of (0 s to 3s) and (1.5s to 3s), the superior performance of our 

algorithm is statistically significant (i.e. p=0.002). 

V. CONCLUSION 

In this paper, we proposed an algorithm for automatic 

identification of the most relevant EEG time windows applied 

for motor imagery classification. We believe by initiation of a 

motor imagery task, synchronization of the relevant neuronal 

population decreases the irregularity of the corresponding brain 

signals. To this line, we proposed an entropy-based approach, 

to select the EEG time interval with minimum irregularity 

across trials. The classification accuracy in the BCI application 

has been increased by choosing this new dynamic window for 

our feature extraction step. The success of our proposed 

algorithm in improving BCI performance was presented using 

a publicly available motor imagery dataset. The experimental 

results suggest that the concept of entropy can be potentially 

 

 

 

 a) 1.5s b) 2s 

   

c) 2.5s d) 3s e) 3.5s 

 

 

Fig. 4. The average MSEs wit scale = 1 and the 

corresponding classification accuracies for 

subject 9 over the consecutive EEG time 

intervals with varied lengths: (a) 1.5s, (b) 2s, 

(c) 2.5s, (d) 3s, (e) 3.5s, (f) 4s , and (g) 4.5s .  

f) 4s g) 4.5s  

A
cc

u
ra

cy
 



used in many different EEG-based applications to extract 

more informative temporal features.  
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TABLE II. COMPARING CLASSIFICATION RESULTS OF THE PROPOSED 

ALGORITHM WITH THE RESULTS WHEN FIXED EEG INTERVALS ARE 

APPLIED FOR ALL SUBJECTS  

  

fixed time window 

 

proposed  

MSE-base algorithm 

(0.5s-

2.5s) 

(0 s-

3s) 

(1.5s-

3s) 
selected 

time 
Acc. Scale 

sub 1 91.5 86.8 82.1 (0.5s-4s) 95.3 5 

sub 2 45.3 60.4 54.7 (0s-1.5s) 66 3 

sub 3 97.2 93.4 92.5 (0.5.-3s) 98.2 4 

sub 4 65.1 59.4 65.1 (1s-4s) 66 4 

sub5 68.9 62.3 63.2 (0.5s-2.5s) 68.9 3 

sub 6 57.5 62.3 65.1 (2s-4.5s) 69.8 3 

sub 7 74.5 67 63.2 (0.5s-3.5s) 68.9 4 

sub 8 95.3 95.3 92.5 (1.5-3.5s) 93.4 3 

sub 9 92.5 82.1 85.8 (0.5s-2.5s) 92.5 5 

Mean 76.4 74.3 73.8   79.9   

TABLE I.  CLASSIFICATION RESULTS AND THEIR CORRESPONDING SELECTED TIME INTERVALS OF THE PROPOSED ALGORITHM FOR DIFFERENT SCALE FACTORS 

Scale=1 Scale=2 Scale=3 Scale=4 Scale=5 

Subject 
selected 

time 
Acc. selected time Acc. 

selected 

time 
Acc. 

selected 

time 
Acc. 

Selected 

time 
Acc. 

sub 1 (0s-1.5s) 83 (0s-1.5s) 83 (0.5s-3s) 92.5 (0.5s-4s) 95.3 (0.5s-4s) 95.3 

sub 2 (0s-1.5s) 66 (0s-1.5s) 66 (0s-1.5s) 66 (0s-2s) 57.5 (0s-2.5s) 52.8 

sub 3 (0s-1.5s) 78.3 (0s-2s) 84 (0.5.-3s) 98.2 (0.5.-3s) 98.2 (0s-2.5s) 89.6 

sub 4 (1s-4s) 66 (1.5s-4s) 64.2 (1s-4s) 66 (1s-4s) 66 (1s-4s) 66 

sub5 (0.5s-2s) 68 (0.5s-2.5s) 68.9 (0.5s-2.5s) 68.9 (0.5s-3.5s) 59.4 (1.5s-4s) 63 

sub 6 (2s-4.5s) 69.8 (2s-4.5s) 69.8 (2s-4.5s) 69.8 (2s-4.5s) 69.8 (2s-4.5s) 69.8 

sub 7 (1.5s-3s) 63.2 (0.5s-3.5s) 68.9 (1s-3.5s) 61.3 (0.5s-3.5s) 68.9 (0.5s-2.5s) 74.5 

sub 8 (1s-2.5s) 86.8 (1.5-3.5s) 93.4 (1.5-3.5s) 93.4 (1s-3.5s) 95.3 (1s-3.5s) 95.3 

sub 9 (1s-2.5s) 87.7 (0.5s-3s) 89.6 (0.5s-2.5s) 92.5 (0.5s-2.5s) 92.5 (0.5s-2.5s) 92.5 

Mean 74.3 76.4 78.7 78.10 77.6 


