
This is a repository copy of Facilitating motor imagery-based brain–computer interface for 
stroke patients using passive movement.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/100762/

Version: Published Version

Article:

Arvaneh, M., Guan, C., Ang, K.K. et al. (6 more authors) (2016) Facilitating motor 
imagery-based brain–computer interface for stroke patients using passive movement. 
Neural Computing and Applications. pp. 1-14. ISSN 0941-0643 

https://doi.org/10.1007/s00521-016-2234-7

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


ORIGINAL ARTICLE

Facilitating motor imagery-based brain–computer interface

for stroke patients using passive movement

Mahnaz Arvaneh1 • Cuntai Guan2 • Kai Keng Ang2 • Tomas E. Ward3 •

Karen S. G. Chua4 • Christopher Wee Keong Kuah4 • Gopal Joseph Ephraim Joseph4 •

Kok Soon Phua2 • Chuanchu Wang2

Received: 22 May 2015 / Accepted: 16 February 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Motor imagery-based brain–computer interface

(MI-BCI) has been proposed as a rehabilitation tool to

facilitate motor recovery in stroke. However, the calibra-

tion of a BCI system is a time-consuming and fatiguing

process for stroke patients, which leaves reduced time for

actual therapeutic interaction. Studies have shown that

passive movement (PM) (i.e., the execution of a movement

by an external agency without any voluntary motions) and

motor imagery (MI) (i.e., the mental rehearsal of a move-

ment without any activation of the muscles) induce similar

EEG patterns over the motor cortex. Since performing PM

is less fatiguing for the patients, this paper investigates the

effectiveness of calibrating MI-BCIs from PM for stroke

subjects in terms of classification accuracy. For this pur-

pose, a new adaptive algorithm called filter bank data space

adaptation (FB-DSA) is proposed. The FB-DSA algorithm

linearly transforms the band-pass-filtered MI data such that

the distribution difference between the MI and PM data is

minimized. The effectiveness of the proposed algorithm is

evaluated by an offline study on data collected from 16

healthy subjects and 6 stroke patients. The results show that

the proposed FB-DSA algorithm significantly improved the

classification accuracies of the PM and MI calibrated

models (p\ 0.05). According to the obtained classification

accuracies, the PM calibrated models that were adapted

using the proposed FB-DSA algorithm outperformed the

MI calibrated models by an average of 2.3 and 4.5 % for

the healthy and stroke subjects respectively. In addition,

our results suggest that the disparity between MI and PM

could be stronger in the stroke patients compared to the

healthy subjects, and there would be thus an increased need

to use the proposed FB-DSA algorithm in BCI-based stroke

rehabilitation calibrated from PM.
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1 Introduction

A brain–computer interface (BCI) provides a direct com-

munication pathway between a human brain and an

external device [1, 2]. Using appropriate sensors and data

processing algorithms, a BCI maps patterns of brain

activity associated with a volitional thought onto signals

suitable for communication and control [3, 4]. Such tech-

nology holds great promise as a basis for assisting people

with severe communication and motor disabilities. More

recently, BCI systems have been adapted to operate so as to

encourage neurophysiological activity that might promote

motor recovery in conditions such as stroke [5–7]. Several

studies have demonstrated that motor imagery (MI) has a

positive effect on motor rehabilitation after stroke through

activation of the affected sensorimotor networks [8–10].

Since the performance of MI is internal to the subject, and

thus not directly observable, BCI can facilitate the MI-

based stroke rehabilitation by providing direct and imme-

diate feedback on the MI performance.

In most of BCI systems, brain signals are measured by

electroencephalogram (EEG), due to its low cost and high

temporal resolution [2]. However, the EEG patterns used

for discerning MI vary considerably between sessions even

for the same subject [11]. Thus, MI-BCIs typically require

the recording of labeled training data (acquired without

giving feedback to the patient) during a so called calibra-

tion phase at the beginning of each session. The calibration

phase takes around 20–30 min, and is thus time-consuming

and tedious, particularly for patients who require long-term

BCI therapy. Hence, algorithms that require less calibration

time is highly desirable for patients use.

Several approaches have been proposed in the literature

to remove the calibration phase, for example, through

concatenating and clustering historic spatial filters and data

from the same subject [12–14], or by creating an ensemble

of historic spatial filters and classifiers derived from dif-

ferent subjects [15]. These methods, however, require a

large amount of historic data to be available. Other tech-

niques have sought to reduce the calibration phase through

the use of co-adaptive methods or semi-supervised learning

approaches [16–21]. These methods may initially have a

limited performance, but it improves after a considerable

adaptation time. Despite several studies in this issue,

reducing the calibration time has still remained a chal-

lenging issue.

Previous research studies have demonstrated that

specific EEG synchronization (ERS), are largely similar

during passive movement (PM) and MI [22–24]. There-

fore, PM could potentially serve as a repeatable, and

observable input to produce the stereotypical EEG patterns

required for calibrating a BCI model. Since PM exercises

are a part of normal stroke rehabilitation [25], MI-based

BCI rehabilitation therapy could start immediately by

training the classifier using the PM data collected in the

previous physical therapy session. The issue is that PM-

induced EEG patterns may not be identical to those pro-

duced during MI [24, 26], and further, due to other inter-

session variations (e.g., electrode positioning, cognitive

state etc), the use of adaptive methods may be required to

enhance the performance of a BCI system calibrated in this

way.

To address this issue, this paper proposes a new filter

bank data space adaptation (FB-DSA) algorithm to linearly

transform the filter bank band-passed MI data, such that the

distribution difference between the PM and MI data is

minimized. This algorithm is a modified version of our

previously proposed algorithm called EEG data space

adaptation [27]. The performance of the proposed FB-DSA

algorithm is evaluated on data collected from 6 stroke and

16 healthy subjects. The experiments performed for both

the stroke and healthy subjects are based on those previ-

ously practised for MI-BCI in stroke rehabilitation [5]. For

the first time, this paper also provides evidence supporting

that the disparity between PM and MI is significantly

stronger in the stroke patients compared to the healthy

subjects, and it would thus increase the need to use adap-

tive algorithms such as the proposed FB-DSA algorithm in

BCI-based stroke rehabilitation calibrated from PM data.

2 Methodology

2.1 Filter bank common spatial patterns (FBCSP)

Recently, the FBCSP algorithm [28] was proposed that

combined a filter bank framework with the common spatial

patterns (CSP) algorithm [29] to select the most discrimi-

native features using a mutual information-based crite-

rion [30]. In this paper FBCSP was used to classify the

EEG data as it was the basis of all the winning algorithms

in the EEG category of the BCI competition IV [31]. The

FBCSP algorithm comprises the following steps:

1. Spectral filtering: This step uses a filter bank that

decomposes the EEG data using nine equal bandwidth

filters, namely 4–8, 8–12, …, 36–40 Hz. These

frequency ranges cover most of the manually or

heuristically selected settings used in the literature.

2. Spatial filtering: In this step, the EEG data from each

frequency band are spatially filtered using the CSP

algorithm. Let xb 2 Rn�s represent a single-trial EEG

data from the bth band-pass filter, where n and s denote

the number of channels and the number of
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measurement samples respectively. The CSP matrix

linearly transforms xb to spatially filtered Zb as

Zb ¼ Wb xb; ð1Þ

where Wb 2 R
n�n denotes the CSP matrix. Wb, is

generally computed by solving the eigenvalue

decomposition problem:

Cb;1Wb ¼ Cb;1 þ Cb;2

� �

WbD; ð2Þ

where Cb;1 and Cb;2 are respectively the averaged

covariance matrices of the band-passed EEG data of

each class; D is the diagonal matrix that contains the

eigenvalues of ðCb;1 þ Cb;2Þ�1
Cb;1. A direction that

has a large variance in events of one class (high

eigenvalue) has a small variance in events of the other

class (low eigenvalue). Usually, only the first and last

m rows of Wb, corresponding to the highest and lowest

eigenvalues, are used as the most discriminative filters

to perform spatial filtering [32].

3. Feature extraction: The m pairs of the CSP features

corresponding to the ith trial from the bth band-pass

filter are computed as [32]

fb;i ¼ log diag zb;iz
T
b;i

� �

=tr zb;iz
T
b;i

h i� �

; ð3Þ

where fb;i 2 R
1�2m; zb;i represents the first and the last

m rows of Zb; diag(.) returns the diagonal elements of

the square matrix; tr[.] returns the sum of the diagonal

elements of the square matrix; and the superscript T

denotes the transpose operator. Since the nine fre-

quency bands are used, the feature vector for the ith

trial is formed as

Fi ¼ ½f1;i ; f2;i ; . . . ; f9;i�; ð4Þ

where Fi 2 R
1�18m. In this study, m ¼ 2 pairs of the

spatial filters were used as suggested in [28].

4. Feature selection: The last step selects four pairs of the

features from the feature vector F as the most

discriminative features using the mutual information-

based best individual feature (MIBIF) algorithm [30].

The selected features are used as the inputs to the

classifier.

2.2 Filter bank data space adaptation (FB-DSA)

In this work, the set of the labeled EEG trials in the cali-

bration session filtered by the bth band-pass filter is

denoted as �Db ¼ fð�xb;i; �yiÞg
�N
i¼1, where �xb;i 2 �Xb � R

n�s

denotes the ith single-trial EEG filtered by the bth filter,

and �yi 2 �Y � R is the class label of the ith single-trial

EEG. In the evaluation session, the available labeled EEG

trials from the bth band-pass filter are denoted as

Db ¼ fðxb;i; yiÞgNi¼1, where xb;i 2 Xb � R
n�s, and

yi 2 Y � R.

The dissimilarities between the calibration and evalua-

tion sessions from the bth band-pass filter can yield dif-

ferent joint distributions for the corresponding evaluation

session PðXb;YÞ and calibration session Pð �Xb; �YÞ. How-
ever, changing the representation of Xb, while the repre-

sentation of Y is fixed, can change the joint distribution of

the evaluation session. Following this concept, assume g :

Xb �! Hb as a function that transforms a band-pass-fil-

tered single-trial EEG, xb, from the evaluation space into

another space hb ¼ gðxbÞ 2 Hb. Thus, if for each band-pass

filter, a transformation function g can be computed to yield

the same joint distributions for both the calibration and

evaluation sessions PðHb;YÞ ¼ Pð �Xb; �YÞ, the optimal

model that classifies the calibration session will be still

optimal for classifying the evaluation session.

For this purpose, a linear transformation function is

proposed as

hb ¼ VT
bxb; ð5Þ

where Vb 2 R
n�n denotes the FB-DSA transformation

matrix. The transformation matrix Vb should be computed

such that the distribution difference between the evaluation

session and the calibration session filtered by the bth band-

pass filter is reduced.

Similar to [33], we assume that the differences between

the calibration and evaluation sessions can be observed in

the first two moments of the single-trial EEG (i.e., mean

and covariance). Following this assumption, to simplify the

problem, we only compare the average distributions of the

EEG trials between the calibration session and the evalu-

ation session to compute a transformation matrix that

minimizes the differences between their first two moments.

Since the single-trial EEG is band-pass-filtered, it has

approximately zero mean value. Consequently, the average

distribution of a group of band-pass-filtered EEG trials can

be defined by a zeromean and a covariancematrix computed

from averaging the covariance matrices over the multiple

EEG trials. Based on the maximum entropy principle, the

most prudent model for modeling the distribution of the

single-trial EEG that is consistent with zero mean and a

covariance matrix is Gaussian [33]. Thus, the Kullback–

Leibler (KL) divergence between gaussians can be used to

measure the difference between the distributions.

The KL divergence between the distributions of two

groups of band-pass-filtered EEG trials, presented as

N0ð0;RÞ and N1ð0;RÞ (taken as reference), has a closed

form expression

KL½N0jjN1� ¼
1

2
trðR�1

RÞ � ln
detðRÞ
detðRÞ

� �

� d

� 	

; ð6Þ
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where R and R denote the average covariance matrices of

the two groups of the EEG trials; det and d denote the

determinant function and the dimensionality of the data

respectively.

Let Nð0;Rb;jÞ be the average distribution of the bth

band-pass-filtered EEG trials belonging to the class j in the

calibration session. Using the available labeled trials from

the evaluation session Db ¼ fðxb;i; yiÞgNi¼1, the average

distribution of the transformed EEG trials belonging to the

class j and the bth filter is estimated as Nð0;VT
bRb;jVbÞ,

where Vb denotes the linear transformation matrix for the

bth filtered data, and Rb;j denotes the average covariance

matrix of class j in the evaluation session estimated using

Db. When the class probabilities are balanced, using the KL

divergence the optimal Vb can be computed as the solution

of the minimization problem

min
Vb

LbðVbÞ ¼ min
Vb

X

2

j¼1

KL Nð0;VT
bRb;jVbÞjjNð0;Rb;jÞ


 �

¼ min
Vb

X

2

j¼1

1

2

�

trðRb;j
�1
VT

bRb;jVbÞ:

� ln
detðVT

bRb;jVbÞ
detðRb;jÞ

 !

� d

	

:

ð7Þ

To minimize (7), it is sufficient to calculate the first

order derivative of the loss function LbðVbÞ with respect to

Vb, and set it to zero;

dLb

dVb

¼
X

2

j¼1

1

2

d

dVb

tr Rb;j
�1
VT

bRb;jVb

� �

� ln det VT
bRb;jVb

� �� �

h i

:

ð8Þ

Thus, one solution for (8) is when (see [27] for more

details)

V�
b ¼

ffiffiffi

2
p

Rb;1
�1
Rb;1 þ Rb;2

�1
Rb;2

� �y� �0:5

; ð9Þ

where y denotes the pseudoinverse of the matrix. V�
b is the

optimal linear transformation matrix computed for the bth

filter in the FB-DSA algorithm. Therefore, V�
b linearly

transforms the EEG data of the bth filter from the evalua-

tion session to the corresponding calibration session, such

that the distribution difference between these sessions is

minimized. As expected, in the case that the calibration and

the evaluation data have similar distributions, (i.e., the

average covariance matrices of the corresponding classes

are equal), V�
b is the identity matrix.

The architecture of the proposed FB-DSA algorithm in

the FBCSP framework is demonstrated in Fig. 1. In the

calibration phase, the FBCSP algorithm is used to train a

subject-specific model using PM or MI data. In the eval-

uation phase, the new trials from each band-pass filter are

optimally transformed by their corresponding FB-DSA

transformation matrix computed using a few past EEG

trials of the evaluation session (i.e., 20 trials in this study).

Subsequently, the transformed FB-DSA trials are directly

applied to the corresponding CSP filters and the classifier

Fig. 1 Architecture of the FB-

DSA algorithm in the FBCSP

framework for the calibration

and evaluation phases
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trained in the calibration phase. To avoid irrelevant com-

putation, it suffices to compute the FB-DSA transformation

matrices only for the frequency bands which have features

selected for the classification.

3 Experiments

3.1 Subjects

This study recruited 18 healthy subjects and seven

hemiparetic stroke patients. Ethics committee approval

was obtained from the institution’s Domain Specific

Review Board, National Healthcare Group, Singapore.

Informed consent were obtained from all the participants

prior the study enrollment. One of the stroke patients

could not commit to the whole study. Thus, the corre-

sponding data were excluded. The experiments performed

for both the stroke and healthy subjects were based on

those previously practised for EEG-based MI-BCI in

stroke rehabilitation [5]. From among the healthy sub-

jects, two subjects chose to perform MI and PM of the

left hand while the remaining 16 subjects chose to per-

form on the right hand. For four patients, the stroke

affected their left hand, while the right hand was affected

in the remaining two patients.

3.2 Data description

3.2.1 Dataset collected from the healthy subjects

EEG from 27 channels was collected. The subjects were

instructed to minimize physical movements and eye

blinking throughout the EEG recording process. For each

subject, EEG data were collected without feedback in two

measurement sessions conducted on separate days. For the

first day, four runs of EEG data were collected. In the first

two runs, the subjects were instructed to perform MI of the

chosen hand and background rest condition. Subsequently,

in the next two runs, the subjects engaged in PM of the

chosen hand using the haptic knob robot [34], and back-

ground rest condition. Figure 2 shows the experimental

setup to collect EEG data, as the haptic knob robot is used

to move the subject’s left hand.

The subjects were instructed to perform kinesthetic

MI of the chosen hand during the first two runs. The

subjects were also instructed to perform mental counting

during the background rest condition. In the last two

runs, the subjects were asked to relax while the move-

ment of the chosen hand was performed using the haptic

knob robot [34]. The instructions were on the computer

screen in each trial. As shown in Fig. 3, each trial lasted

for 12 s, as the subject was first prepared with a cue for

2 s, then an ‘‘action’’ command instructed the subject for

4 s, and finally the subject was asked to rest for 6 s.

Each run comprised of 40 trials of either MI or PM, and

40 trials of background rest condition. Considering the

EEG set up time, the practice time, and the rest time

between the blocks, the session on the first day took

around an hour and 45 min. The EEG data from the first

and second runs were used to calibrate a subject-specific

model referred to as the MI model, and subsequently the

EEG data from the third and fourth runs were used to

calibrate a subject-specific model referred to as the PM

model.

In the second day of this study, three runs of the EEG

data were collected without feedback from each subject

while performing MI of the chosen hand and background

rest condition. Each run again comprised of 40 trials of

MI and 40 trials of background rest condition. The

session on the second day took around an hour and a

half in total. The EEG data collected from these three

runs were used to evaluate the calibrated models from

the first day.

Before calibrating the subject-specific models, 10� 10-

fold cross-validation accuracies of the first two runs as well

as the last two runs recorded on the first day were

Fig. 2 Experimental setup to collect EEG data from passive

movement of the left hand using the haptic knob robot [34] for

calibrating the EEG-based motor imagery BCI

Fig. 3 Timing of each trial including performing MI/PM of the hand

or background rest tasks
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calculated to find those subjects performing either MI or

PM at chance level. Using the inverse of the binomial

cumulative distribution function with 95 % confidence, the

accuracy on the respective action at chance level is

approximately 43–57 %. Hence, those subjects whose PM

or MI data have 10� 10-fold cross-validation accuracies

between 43 and 57 % can be excluded as their data are not

proper enough for calibrating a model. The results showed

that two subjects from the 18 aforementioned subjects

performed MI and PM at chance level. Hence, these two

subjects were removed, and the remaining 16 subjects were

used for this study.

3.2.2 Dataset collected from the stroke patients

Table 1 provides more clinical information about the six

stroke patients. The protocol used for EEG recording from

the stroke subjects was very similar to that used for the

healthy subjects. The minor differences are as follows:

During the experiments, the patients performed either MI

or PM of the stroke affected hand rather than the chosen

hand. In addition, in the second day of this study, two runs

of the EEG data were recorded from each subject while

performing MI of the affected hand and rest condition

without feedback. Similar to the healthy subjects, the EEG

data recorded on the second day were used to evaluate the

subject-specific MI and PM models calibrated using the

data collected on the first day.

Before calibrating the subject-specific models, 10� 10-

fold cross-validation accuracies of the first two runs, as

well as the last two runs recorded on the first day were used

to ensure that the stroke patients performed neither PM nor

MI at chance level. Consequently, the study was performed

using all the 6 stroke patients.

3.3 Data processing

In this study, the FBCSP [28] algorithm was used to train

the subject-specific models. First, EEG data segments from

0.5 to 2.5 s after the onset of the visual cue were used for

the analysis, as a range which has been demonstrated to be

effective for BCI applications [31]. Subsequent processing

was carried out as described in steps 1–4, Sect. 2.1. It is

noted that Chebyshev Type II was used for band-pass

filtering, and for each applied CSP, m = 2 pairs of the

spatial filters (i.e., four filters in total) were used as sug-

gested in [28]. Finally, the LDA classifier was employed in

the classification step.

4 Results

4.1 Comparing the classification results

In this subsection, the performances of the subject-specific

PM and MI calibration models in detecting MI versus the

rest condition were examined. Further, the proposed FB-

DSA algorithm was used to reduce the dissimilarities

between the MI and PM data. In the FB-DSA algorithm, to

classify each new trial from the evaluation session, V in (9)

was computed using the immediate past 20 trials (i.e 10

trials from each class). It should be noted that the first 20

trials of the evaluation session were only used for the

adaptation, and no classification was performed on these

trials. The results therefore were obtained using the

reminder of the evaluation session.

4.1.1 Healthy subjects

Table 2 presents the classification accuracies of detecting

MI versus the rest condition for the 16 healthy subjects,

using the different calibration models. The results in

Table 2 show that the calibration model using MI (MIcs)

yielded, on average, higher classification accuracy (i.e.,

67.44 %) compared to the calibration model using PM

(PMcs) (i.e., 65.13 %) when no adaptation was applied.

This result is supportive of the findings of the previous

studies [24, 35], which suggest that robot-assisted PM can

be used for calibrating MI-based BCI for healthy subjects.

Interestingly, in some subjects the PM models considerably

outperformed the MI models (e.g., H6). On the other hand,

the results for some other exhibit a deterioration of more

than 8 % in the classification accuracy when the models

were calibrated using PM instead of MI (e.g., H3, H8, H10,

H12 and H14).

Table 2 shows that the proposed FB-DSA algorithm

improved the classification accuracy of the PM models by

an average of 4.65 %. The results also show that the PM

model adapted by the FB-DSA algorithm performed better

Table 1 Demographic and

clinical information for N = 6

stroke subjects who participated

in this study

Gender Type Stroke Duration since FMA

Side Nature Mean

M/F I/H R/L C/S Age Stroke (days) (Week 0)

4M 2I 2R 1C 54.0 � 8.9 285.7 � 64 33.0 � 16.2

M male, F female, I infarction, H hemorrhagic, R right, L left, C cortical, S subcortical, FMA Fugl–Meyer

assessment (i.e., measure of severity of motor impairment)
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than the MI model with no adaptation by an average of

2.34 %. Furthermore, the MI models adapted by FB-DSA

only slightly outperformed the PM models adapted by FB-

DSA (i.e., on average \0.8 %).

Performing a two-way repeated-measures ANOVA test

with model (No-adap vs. FB-DSA) and task (MI vs. PM) as

the within-subject independent variables revealed a sig-

nificant main effect of Model on the classification accura-

cies [Fð1; 15Þ ¼ 8:82; p ¼ 0:005]. Interestingly, no

significant main effect was found for Task

[Fð1; 15Þ ¼ 0:85; p ¼ 0:37]. Moreover, the interaction

between Model and Task was also insignificant

[Fð1; 15Þ ¼ 0:87; p ¼ 0:37].

4.1.2 Stroke patients

Table 3 presents the classification accuracies of detecting

MI versus the rest condition for the six stroke patients,

obtained by the different calibration models. Similar to the

healthy subjects, the results show that the calibration model

using MI (MIcs) outperformed the calibration model using

PM (PMcs) in terms of the classification accuracy. The

results demonstrate that the PM model adapted by FB-DSA

outperformed the MI model by an average of 4.54 %. The

results also show that the MI models adapted by FB-DSA

performed on average 1.5 % better than the PM models

adapted by FB-DSA.

Similar to the previous section, a two-way repeated-

measures ANOVA test with model (No-adap vs. FB-DSA)

and task (MI vs. PM) as the within-subject independent

variables was performed on the classification results

obtained from the stroke patients. Interestingly, a signifi-

cant main effect of Model on the classification accuracies

[Fð1; 15Þ ¼ 8:82; p ¼ 0:038] was observed. Moreover, no

significant main effect was found for Task [Fð1; 15Þ ¼
2:93; p ¼ 0:15]. The interaction between Model and Task

was also insignificant [Fð1; 15Þ ¼ 0:75; p ¼ 0:43].

We also performed a 3-way mixed design ANOVA with

model (No-adap vs. FB-DSA) and task (MI vs. PM) as the

within-subject independent variables and group (healthy

vs. stroke subjects) as the between subject independent

variable. The results showed a significant main effect of

Model on the classification results [Fð1; 20Þ ¼ 16:88;

p ¼ 0:001]. Interestingly, the interaction between Model

and Group tended to be significant [Fð1; 20Þ ¼ 3:75;
p ¼ 0:06]. This indicates a significant larger increase in the

accuracy of the stroke group compared to the healthy group

when applying adaptation. As a result, the big drop in the

performance of PM model compared to the MI model in

the stroke patients was compensated after applying the

proposed adaptation algorithm. On the contrary, the main

effect of Task [Fð1; 20Þ ¼ 3:28; p ¼ 0:09], the interaction

between Group and Task [Fð1; 20Þ ¼ 0:67; p ¼ 0:42], and

the interaction between Task and Model

[Fð1; 20Þ ¼ 1:45; p ¼ 0:24] were not significant.

4.1.3 Comparing with two existing non-adaptive

algorithms:

In this part, the performance of the proposed FBDSA

algorithm is compared with two existing non-adaptive

algorithms that are computationally as efficient as the

proposed algorithm. In the first approach, the FBCSP

algorithm was trained using only the first 20 trials of the

test session that were previously used only for adaptation.

This calibration model is called FBCSP-20. In the second

approach, again the first 20 trials of the test session were

used for training a FBCSP model, whereas the covariance

matrices for computing CSP were estimated using the BC

shrinkage algorithm [36]. This calibration model is called

FBCSP-20Shrink. BC shrinkage is a computationally effi-

cient algorithm to estimate covariance matrices without

requiring time-consuming cross-validation procedures.

Interestingly, BC shrinkage is shown to be very effective

when the number of samples is limited [36]. To apply the

BC shrinkage algorithm, as suggested in [36], for each

subject, the average of the class covariances of the other

subjects was used as the shrinkage target.

Figure 4 shows that the proposed FBDSA algorithm

trained using either the MI or PM data outperformed the

FBCSP-20 and FBCSP-20Shrink algorithms. The paired

t-tests on the healthy group showed that FBCSP-20

Table 2 Classification accuracies of the motor imagery sessions for

healthy subjects using motor imagery calibration models without and

with adaptation (denoted as MIcs-No adap., and MIcs-FBDSA) and

passive movement calibration models without and with adaptation

(denoted as PMcs-No adap., and PMcs-FBDSA)

Subject Healthy subjects

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12 H13 H14 H15 H16 Mean

MIcs-No adap. 59.4 51.3 75.2 54.8 94.5 52.7 48.9 63.1 64.6 58.7 76.1 82.9 68.3 77.9 75.4 75 67.44

MIcs-FBDSA 61.5 66.5 86.7 63.9 89.5 54.5 57.3 64.3 60.9 63.2 76.4 76.4 75.4 77.7 80 74.5 70.55

PMcs-No adap. 63.6 54.6 51.3 57.0 92.8 62.9 51.0 54.4 58.3 50 80.3 74.2 75.8 66.2 73.7 75.8 65.13

PMcs-FBDSA 67.9 56.9 73.8 68.3 90.4 65.4 58.2 59.3 59.5 58.2 77.3 81.8 75.9 74.5 75.5 73.6 69.78
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performed significantly worse than MIcs-No adap

[tð15Þ ¼ �3:85; p ¼ 0:002], MIcs-FBDSA [tð15Þ ¼
�4:82; p\0:001], PMcs-No adap [tð15Þ ¼ �6:26; p ¼
0:007], and PMcs-FBDSA [tð15Þ ¼ �3:14; p\0:001].

Furthermore, MIcs-FBDSA [tð15Þ ¼ �2:63; p ¼ 0:019]
and PMcs-FBDSA [tð15Þ ¼ �2:27; p ¼ 0:038] signifi-

cantly performed better than FBCSP-20Shrink. In the

stroke group, the paired t-test showed that FBCSP-20

performed significantly worse than MIcs-FBDSA

[tð5Þ ¼ �4:3; p ¼ 0:008], and PMcs-FBDSA

[tð5Þ ¼ �3:29; p ¼ 0:002]. Moreover, a significant differ-

ence between FBCSP-20Shrinkage and PMcs-FBDSA was

observed [tð5Þ ¼ �2:59; p ¼ 0:04[, whereas the difference

between FBCSP-20Shrinkage and MIcs-FBDSA tended to

be significant [tð5Þ ¼ �2:39; p ¼ 0:06].

4.1.4 Discussion on the classification results

Our results show a potential mismatch between the col-

lected PM data in the calibration session and the collected

MI data in the evaluation session. This mismatch may have

arisen due to differences in the EEG patterns produced

during PM and those produced during MI. Other interses-

sion variations may also be responsible (e.g., task

involvement, attention, placement or impedance of the

electrodes etc), leading to deterioration in the BCI

performance.

Our results show that for the healthy subjects the MI

models on average performed 2.31 % better than the PM

models (see Table 2), whereas this difference increased to

7.06 % in the stroke patients. Indeed, for the stroke patients

although the PM model performed at a level better than

chance, the average 7.06 % drop in the performance

compared to the MI model suggests that PM as utilized

could not be an acceptable substitute for an MI calibration

step. However, when the proposed FB-DSA algorithm is

applied to the PM model, the results indicate a compelling

compensatory effect.

Our patients in our informal talks confirmed that per-

forming passive movement was less mentally fatiguing for

them. Thus, when no previous data are available for a

studied patient, we suggest using PM data for calibration

and the proposed FB-DSA algorithm for adaptation,

resulting in a less tired patient for the actual BCI thera-

peutic interaction. Furthermore, since PM exercises are a

part of normal stroke rehabilitation [25], PM data can be

collected in a previous physical therapy session. Otherwise,

if there are some previously collected MI data belonging to

Table 3 Classification accuracies of the motor imagery sessions for

stroke patients using motor imagery calibration models without and

with adaptation (denoted as MIcs-No adap., and MIcs-FBDSA) and

passive movement calibration models without and with adaptation

(denoted as PMcs-No adap., and PMcs-FBDSA)

Patient’s code Stroke patients

A006 A018 A019 A024 A028 A031 Mean

MIcs-No adap. 81.9 65 64.4 57.5 85.6 90.6 74.16

MIcs-FBDSA 85.7 69.3 86.4 67.1 85.7 87.1 80.21

PMcs-No adap. 85.6 55 51.3 55.6 61.3 93.8 67.10

PMcs-FBDSA 84.3 67.9 80 59.3 87.86 92.86 78.70

No adap FBDSA No adap FBDSA 20 20Shrink No adap FBDSA No adap FBDSA 20 20Shrink
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the same patient, our results suggest using the available MI

data for calibration along with the proposed FB-DSA for

reducing inter-session variations.

It is noted that our conclusions are limited to the data

collected from only 6 stroke subjects. Thus, there is a need

to further investigate our findings with larger cohorts.

4.2 Disparity between PM and MI data in stroke

and healthy subjects

The results in 4.1 motivated us to investigate whether the

disparity between the PM and MI data is stronger in the

stroke subjects compared to the healthy subjects.

4.2.1 Event-related spectral perturbation

In the first investigation, the grand mean event-related

spectral perturbation (ERSP) [37], time locked to the cue

time, was used to compare the PM and MI tasks for the

healthy and stroke subjects. ERSP is a 2-D (frequency-by

latency) image of average changes in the spectral power (in

dB) from a baseline. Calculating an ERSP typically

requires computing the power spectrum over a sliding

latency window, then correcting baseline by subtracting the

pre-stimulus power spectrum, and finally averaging across

all the data trials.

Figure 5 presents the ERSP images obtained by grand

averaging the data recorded from channel C3 for the right

hand tasks and the data recorded from channel C4 for the

left hand tasks. The ERSP images were plotted using the

newtimef function in EEGLAB toolbox [38]. In the MI and

PM ERSP images, red indicates enhancement of activity

(increase of power) with respect to the pre-cue baseline

(i.e., starting from 200 ms before the cue), and blue indi-

cates suppression of activity with respect to the pre-cue

baseline. All the non-green pixels of the MI and PM ERSP

images show significant (two-tailed permutation test,

p\0:01) post-stimulus increases or decreases (see color

scale) in the spectral power compared to the averaged 200-

ms pre-stimulus spectral power. In the PM minus MI ERSP

images, red indicates higher activity (power) in PM com-

pared to MI, and blue indicates higher activity in MI

compared to PM. All the non-green pixels of the PM minus

MI ERSP images show the areas that the spectral powers

Fig. 5 The event-related spectral perturbation (ERSP) images for the

passive movement (PM), motor imagery (MI) and their differences,

for a the 16 healthy and b six stroke subjects. The ERSP images were

plotted at the corresponding activated motor regions (ie. channels C3

and C4 for right and left hand tasks, respectively). The dashed lines

denote the cue time. In MI and PM ERSP images, the non-green

pixels indicate the areas that the power spectrum is significantly

different from the pre-cue baseline. In PM minus MI ERSP images,

thenon-green pixels indicate the areas that the power spectrum

between PM and MI is significantly different (p\0:01). a Healthy

subjects. b Stroke patients
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are significantly different between MI and PM (two-tailed

permutation test, p\0:01).
Figure 5a shows that both PM and MI tasks significantly

increased the mu power (i.e 8–13 Hz) in the healthy sub-

jects. However, the increase in power in MI is slightly

greater compared to PM. This could be due to the very

simple passive movement used in this study, whereas the

imagined motor movements over the MI task were most-

likely more complicated. In the same line, Fig. 5b shows

that the PM and MI tasks yielded significant increase in the

mu and beta (i.e., 13–30 Hz) powers. In the stroke patients,

PM yielded considerably stronger enhancements in the mu

and beta powers compared to the MI task. Interestingly,

PM also yielded an enhancement in the theta power (i.e.,

4–8 Hz).

The last ERSP image in Fig. 5a shows that the PM and

MI signals obtained from the healthy subjects were sig-

nificantly different in some time/frequency points, partic-

ularly 1 s after the cue. The last ERSP image in Fig. 5b

reveals that the differences between PM and MI were much

stronger in the stroke patients compared to the healthy

subjects (see the scale). Importantly, the mu power was

significantly different between the PM and MI data in the

stroke patients.

4.2.2 KL divergence between PM and MI data

In the second investigation, the KL divergence between the

PM and MI data filtered by the most discriminative fre-

quency band (i.e., subject-specific) was calculated for each

subject as given in (6). The reason behind this investigation

is that in the applied FBCSP algorithm the features

obtained by the most discriminative frequency band are

used for classification. As mentioned in Sect. 2.1, the most

discriminative frequency band is the one generating the

feature with the highest mutual information. Indeed, unlike

the ERSP images, this method measures the disparity

between the PM and MI data using all (or a group) of

channels.

Figure 6 compares the KL divergence between the PM

and MI data in the healthy and the stroke subjects. Each

star corresponds to a subject. The boxplots of the obtained

results were also depicted to ease the comparison between

the healthy and stroke subjects. In Fig. 6a the KL diver-

gence was obtained using all the 27 channels, while in

Fig. 6b only 6 channels in the motor cortex area were used

to obtain the KL divergence (i.e C3, CP3, CF3, C4, CP4,

CP3). The Y-axes of Fig. 6 have been drawn in the log

scale to be more presentative.

Using all the channels, Fig. 6a shows that the difference

between the PM and MI data is on average larger in the

stroke subjects compared to the healthy subjects. However,

according to the independent samples t test, the difference

between the results of these two groups was not statistically

significant [tð20Þ ¼ 1:86; p ¼ 0:07], since there were a few

healthy subjects with high KL divergences between their

PM and MI data. Indeed, the obtained KL values measured

not only the inherent dissimilarities between the PM and

MI data but also other inter-session variations (e.g task

involvement, electrode impedance) that may not be negli-

gible. Supporting this fact, our investigation showed that in

one of the healthy subjects an EEG channel became loose

at the middle of the PM session, and consequently caused a

large KL divergence between the PM and MI data. Thus, to

reduce the effect of other inter-session non-stationarities, in

Fig. 6b we focused on the motor cortex area, and obtained

the KL divergence using only six channels (i.e., C3, CP3,

CF3, C4, CP4, CP3). The results in Fig. 6b showed that in

the stroke subjects the difference between the PM and MI

data recorded over the motor cortex area was statistically
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Fig. 6 Comparing the disparity between PM and MI data in the

stroke and healthy subjects obtained by the KL divergence. To

calculate the KL divergence a used all the channels, and b used six

channels in the motor cortex area, namely C3, CP3, CF3, C4, CP4,

CF4. Each star denotes a subject. The boxplots of the obtained results

were plotted to ease the comparison
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stronger compared to the healthy subjects (i.e independent

samples t test, tð20Þ ¼ 2:14; p ¼ 0:04).

4.2.3 Discussion on the disparity between PM and MI

According to the study presented by Galán et al. [39], the

lack of sensory feedback in the MI data might cause some

fundamental differences between MI and PM. To further

investigate this issue, the ERSP images for centro-parietal

electrodes which are closer to the sensorimotor cortex (i.e.,

CP3 for the right hand tasks and CP4 for the left hand

tasks) were plotted. The ERSP images were relatively

similar to the ones in Fig. 5 confirming the available dif-

ferences between the PM and the MI data over the senso-

rimotor cortex. Due to the limited space these ERSP

images are not included in the paper.

According to Fig. 5, it appears that most of the inter-

esting different activities between the PM and MI data is in

the mu band. In order to find which frequencies are more

different between MI and PI, we looked at the data space

adaptation matrices (V�
b) calculated for the different fre-

quency bands. If the MI and PM for a specific frequency

band are similar, the V�
b matrix is close to the identity

matrix. To measure the differences between PM and MI in

each frequency band, the Frobenious norm between V�
b and

the identity matrix was calculated as kV�
b � IkF , where I is

the identity matrix and k:kF denotes the Frobenious norm.

Interestingly, the results showed that for all the stroke

patients the mu rhythm had the largest difference between

the PM and MI data. Besides, the theta rhythm was

observed as the second largest different frequency band in

4 out of 6 patients. Several studies reported the theta

enhancement during working memory, memory decoding

and retrieval process. A recent study also reported the theta

enhancement during the initiation of movement, and linked

it to spatial exploration and self-direction learning [40].

This initial interesting findings should be further explored

using a large number of stroke patients in future.

In the healthy subjects, mu, alpha, and the lower beta

(i.e., 12–16 Hz) showed the largest difference between PM

and MI for 8, 4 and 2 subjects, respectively. For the

remaining two subjects the 28–32 Hz band and the

36–40 Hz band presented the largest difference. Thus, our

results suggest that in most of the subjects the main dis-

criminative frequency bands between PM and MI were mu

and theta, respectively. However, since the proposed FB-

DSA adaptation is a very computationally fast algorithm, it

might not be worth to just apply the adaptation algorithm

on one or two bands.

In summary, our results in Sect. 4.2 suggest that due to a

stronger difference observed between the PM and the MI

data in the stroke patients, there might be an increased need

to use adaptive algorithms such as the proposed FB-DSA

algorithm in BCI-based stroke rehabilitation calibrated

from PM data.

4.3 Impact of FB-DSA on the feature space

To better understand the impact of the proposed FB-DSA

algorithm on the classification accuracies of MI-BCIs

calibrated using passive data, the training features and

the evaluation features before and after applying the FB-

DSA algorithm were plotted for the patient A019.

Adapting the PM model of this patient by the proposed

FB-DSA algorithm resulted in the highest improvement

in the classification accuracy, which was 28.75 % (see

Table 3).

Figure 7a shows the train features of the PM model

extracted from the PM data. Figure 7b, c, respectively

show the evaluation features of the PM model extracted

from the MI data before and after applying the FB-DSA

algorithm. For ease of visualization only two features

which had the highest mutual information on the train data

were plotted. Moreover, the features were plotted after the

normalization process. The blue crosses and the red squares

denote the features of the hand MI/PM and the rest class

respectively. The black line represents the LDA hyperplane

obtained using the training data. Figure 7 shows that there

were big changes between the distributions of the training

features and the evaluation features before applying FB-

DSA, that resulted in the inferior classification accuracy. In

contrast, the differences between the train and the evalua-

tion features after the proposed FB-DSA algorithm were

considerably reduced. The FB-DSA algorithm not only

compensated the shift in the feature spaces but also

increased the discrimination between the two classes of the

evaluation features. Thus, the classification accuracy was

substantially improved.

4.4 Number of trials for adapting the PM model

by FB-DSA

In this subsection, we examined the influence of the

number of trials used for computing the FB-DSA trans-

formation matrices on the classification results of the PM

and MI models in BCI-based stroke rehabilitation. For this

purpose, the data from the 6 stroke patients were only used.

Figure 8 shows the average classification accuracy of the

PM and MI models adapted by the proposed FB-DSA

algorithms for the six stroke subjects as a function of the

number of trials used for computing V�
b in (9). Thus, to

classify each new trial in the evaluation session, V�
b was

computed using a number of immediate past trials varying

from 0 to 30. It is noted that in this experiment the first 30
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trials of the evaluation sessions (i.e., 15 trials from each

class) were only used for computing the FB-DSA trans-

formation matrices, and the classification was performed

on the remaining 210 trials of the evaluation sessions.

Figure 8 shows that increasing the number of trials used

in the FB-DSA algorithm up to around 20 (i.e., 10 trials

from each class) improved the average classification

accuracy of both the PM and MI models. This improve-

ment would be due to better estimations of the covariance

matrices in (9) using more trials. In contrast, a further

increase in the number of trials to 30 caused a decrease in

the average accuracy. This could be due to the fact that

increasing the number of trials reduces the influence of the

recent trials in computing V�
b. Figure 8 also shows that

when six trials or more were used to compute the FB-DSA

transformation matrices, the PM model adapted by FB-

DSA averagely outperformed the MI model with no

adaptation.

In a BCI-based stroke rehabilitation, it would be desir-

able if we could provide appropriate feedback to the patient

from the very beginning. Overall, our results suggest that

the BCI-based stroke rehabilitation session with appropri-

ate feedback can be started after collecting just a few trials

(e.g., only 3 trials from each class). This is achieved by a

subject-specific model calibrated from PM data that is

continually adapted using the proposed FB-DSA algorithm.

As such, before collecting 20 evaluation trials (i.e., 10 trials

from each class), the PM model classifies an upcoming trial

using the FB-DSA transformation matrices computed from

all the previous trials. After reaching 20 trials, to classify

each new trial, the FB-DSA transformation matrices are

computed using the immediate past 20 trials.

5 Conclusion

This paper investigated the effectiveness of calibrating

EEG-based motor imagery BCIs using passive movement.

For this purpose, a new algorithm called FB-DSA was

proposed to linearly transform the filter bank band-passed

MI data, such that the distribution difference between the

MI and PM data is minimized. The proposed algorithm was

evaluated using data from six stroke patients and 16 heal-

thy subjects. The design of this study for both the stroke

and healthy subjects was based on the use of motor ima-

gery-based BCI for stroke rehabilitation [5]. The EEG data

were collected during MI or PM of the chosen hand versus

Fig. 7 Distributions of the two best features obtained by the PM

calibration model, for: Patient A019. a The train features extracted

from the PM data, subsequently b and c The evaluation features

extracted from the MI data before and after adapting by the proposed

FB-DSA algorithm. The blue crosses and the red squares denote the

features of the hand MI/PM and the rest class respectively. The black

line represents the LDA hyperplane obtained by the train data
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the rest condition for the healthy subjects, and the stroke

affected hand versus the rest condition for the patients.

Our results suggest using PM data for calibration and the

proposed FB-DSA algorithm for adaptation when no pre-

vious data are available for a studied patient. Importantly,

collecting PM data for calibration leads to a less mentally

tired patient for the actual BCI therapeutic interaction.

Furthermore, since PM exercises are a part of normal

stroke rehabilitation, PM data can be collected in a previ-

ous physical therapy session. On the other hand, if there are

some previously collected MI data belonging to the same

patient, our results suggest using the available MI data for

calibration along with the proposed FB-DSA for reducing

inter-session variations. We also provided some analytical

evidence suggesting that the disparity between the MI and

PM data could be significantly stronger in the stroke

patients compared to the healthy subjects. Thus, there

might be an increased need to use adaptation algorithms

such as the proposed FB-DSA algorithm in BCI-based

stroke rehabilitation calibrated from PM.

Overall, the results showed that a BCI-based stroke

rehabilitation session with appropriate feedback could be

reliably started after collecting just a few trials (e.g., only 3

trials from each class). This could be achieved by using a

subject-specific model calibrated from robot-assisted PM

data that was continually adapted using the proposed FB-

DSA algorithm.
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