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Abstract

Railway wheel wear prediction is essential for reliability and optimal maintenance strategies of railway systems. Indeed, an accurate

wear prediction can have both economic and safety implications. In this paper we propose a novel methodology, based on Archard’s

equation and a local contact model, to forecast the volume of material worn and the corresponding wheel Remaining Useful Life

(RUL). A universal kriging estimate of the wear coefficient is embedded in our method. Exploiting the dependence of wear

coefficient measurements with similar contact pressure and sliding speed, we construct a continuous wear coefficient map that

proves to be more informative than the ones currently available in the literature. Moreover, this approach leads to an uncertainty

analysis on the wear coefficient. As a consequence, we are able to construct wear prediction intervals that provide reasonable

guidelines in practice.
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1. INTRODUCTION

In the maintenance of railway wheel suspending operations,

reductions in transportation and safety accidents caused by un-

foreseen failures are very costly, both in terms of repairs and

unrealized profits. These huge losses arouse great interest in

the development of efficient methods and procedures that could

reduce unforeseen failures and improve equipments safety and

availability [1]. Prognostics enables safer and more reliable op-

erations, allowing the equipment to run as long as it is healthy.

Moreover, it is useful for optimally scheduling the maintenance

interventions. In other words, prognostics substantially helps in

achieving the goals of maximum safety and availability, mini-

mum unscheduled shutdowns of transportation and economic

maintenance [2], which are issues of utmost relevance for rail-

way systems. In this paper, we propose a novel methodology

to predict the future degradation of railway wheel, by means

of wear, and to calculate the Remaining Useful Life (RUL),

namely the residual distance that the wheel can run according

to its design specifications.

According to [3], the wheel wear of rail vehicles is typi-

cally predicted evaluating either the sliding contact by using

Archard’s equation, or rolling/sliding contact by using the en-

ergy dissipation effect (developed for the first time in [4]). Ar-

chard’s equation is more commonly used in railway industry
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for wear prediction [3, 5, 6, 7]; indeed, it has been success-

fully applied in [8] to predict wear of roller bearings, which is

quite similar to wheel-rail rolling contact wear. For this reason,

we choose to employ Archard’s equation in our methodology.

Briefly, Archard’s equation states that the volume of material

worn Vw is proportional to the sliding distance s and the normal

load N, and inversely proportional to the hardness of material

H, namely

Vw = K
sN
H
, (1)

where the wear coefficient K is a dimensionless constant that

indicates the severity of wear.

Wear is a complicated process that involves a large variety of

contributions from different phenomena, combining the short-

term dynamics that produces the wear debris and the long-term

dynamics of the material transportation that goes on. For these

reasons, exact wear prediction is usually unattainable. As for

engineering applications, the sliding contact model seems suffi-

ciently accurate and adequate to approximate the wheel failure

due to wear.

The wear coefficient K plays an important role in wheel wear

prediction through equation (1). Currently, it can be derived

from laboratory tests or, alternatively, from extensive calibra-

tions based on geometrical comparisons between simulated and

measured wheel profiles. Nowadays there exist in literature

a few wear charts and maps for the wear coefficient K as a

function of contact pressure p and sliding speed v, concern-

ing different rail-wheel materials and environments (see for ex-

ample Figure 1, with data from [5], or the charts presented in
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[9]). Conversely, there are really limited data on cases where

third body materials (grease, water, friction modifiers etc.) are

present [10]. The available wear maps are mostly for dry condi-

tions. Furthermore, they are not very accurate due to the limited

number of experiments available in each condition. Hence such

charts are of restricted usefulness and it would be desirable to

have more accurate maps.

Given this background, it is advisable to provide a measure of

the uncertainty concerning wear prediction. Actually, no uncer-

tainty analysis is usually supplied by available wear prediction

tools. In sensitivity analysis, metamodels are built to approxi-

mate the behavior of large computational models and study how

the inputs can influence the predicted output values. Several

global sensitivity analysis techniques have been investigated in

literature (see e.g. [11]). Regression-based methods employ

linear regression models to measure the effect of the inputs on

the model response. For example, polynomial chaos expansion

[12, 13] and sparse polynomial chaos expansion [14] of the re-

sponse have been shown to provide an efficient and accurate

computation of global sensitive indices. Another class of tech-

niques is based on an ANOVA decomposition (variance-based

methods) of the output variance as a sum of contribution of the

different inputs. In this framework, a complex model can be

approximated via smoothing spline ANOVA [15] or using state

dependent parameter modeling [16, 17, 18]. Gaussian process

models [19] and kriging [20] have also been successfully ap-

plied to build metamodels. All these different approaches are

very useful when there is uncertainty about the input values in

a particular setting and evaluating the actual model response on

all possible input configurations requires too much time. An

underlying hypothesis is the smoothness of the function of re-

sponse given inputs. Here we want to employ a methodology

similar to these global sensitivity analysis techniques, to com-

pute the wear coefficient K given the contact pressure p and

sliding speed v as inputs. In this setting we do not have any

uncertainty about the values of pressure and speed (since they

are derived by the local contact model as explained in Section

2). However, an approximate model of the wear coefficient K
is needed because, as noted above, only a limited number of

experiments, for particular choices of p and v, are available.

In this paper we propose a novel wear prediction methodol-

ogy that provides an assessment for the wear of a rail vehicle

wheel with uncertainty. The wear coefficient is estimated in a

continuous way by using spatial statistic techniques (in partic-

ular, universal kriging). In this way, we are able to take ad-

vantage of the spatial dependence of measures (in the v and p
plane) to overcome the issue of having few available data. In

addition, these techniques provide a measure of the uncertainty

concerning the value of the coefficient K. Hence, we can com-

pute a prediction interval for K associated to each choice of v
and p instead of a single point prediction. As a consequence,

our model predicts a range for the amount of wheel material

removal and a prediction interval for the RUL.

In the following, Section 2 contains the wheel wear model

proposed; Section 3 shows the mathematical model used to es-

timate K with uncertainty, and Section 4 describes the predic-

tion of RUL. Finally, applications of the proposed methodology

are presented in Section 5.

2. WHEEL WEAR MODEL

The degradation model for wheel wear prediction adopted in

this article is shown in Figure 2. We consider the wear coeffi-

cient K involved in Archard’s equation as a function of contact

pressure p and sliding speed v, both varying over the specific

contact patch of interest. A local contact model is implemented

by employing the non-Hertzian contact method developed in

[21]. Using this method, we estimate the shape of the con-

tact patch and the pressure distribution given the normal force,

the local geometry and the material properties. Here the con-

tact stress distribution is assumed to be ellipsoidal and it is dis-

cretized in the direction of rolling. The density of discretization

can be tuned to ensure that the size of each cell is small enough

to consider the pressure p as a constant on the cell. Next, the

corresponding sliding speed for each cell in the slip area of the

contact patch is obtained using the method suggested in [5], as

depicted in Figure 3. In detail, the sliding velocity is given by

~v = Vvehicle

[

γ2 + γ3x
γ1 − γ3y

]

, (2)

where Vvehicle is is the forward speed of wheel; γ1, γ2 and γ3 are

respectively the longitudinal, lateral and spin creepages; x, y are

the Cartesian coordinates of the contact patch. The creepages

can be obtained from multibody system (MBS) simulation of a

rail vehicle or, alternatively, from field measurement combined

with some post-processing. We employ the latter strategy in

our methodology, in accordance with [3]. By using Archard’s

equation (1), the wear volume at the center of each cell j is

therefore approximated by

Vw, j = K(p j, v j)
s jN j

H
j = 1, . . . , n. (3)

Then, we compute the total wear volume after a given run-

ning distance of the wheel, assuming that the contact patch re-

mains constant when the wheel is running on a straight track,

using the formula

Vw,tot = Vw,patch

(

1 + m
L
2a

)

, (4)

where Vw,patch =
∑n

j=1 Vw, j is the wear volume over the contact

patch, m is the maximum discrete number of contact patches

in the rolling direction, L is the running distance of the wheel

center of mass, and 2a is the maximum length of the contact

patch in the rolling direction (see Figure 4).

3. WEAR COEFFICIENT ESTIMATION WITH UNCER-

TAINTY

To estimate (with uncertainty) the wear coefficient K that is

needed in the wheel wear model presented in Section 2, we use

data taken from [22] as collected and preprocessed by Lewis

and Olofsson in [9]. Experiments have been carried out using
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Figure 1: Wear coefficient K chart, with data from [5]. Figure 2: The proposed methodology for wheel wear prediction.

Figure 3: Sliding speed for each cell in contact patch, computed as sug-

gested in [5]. Figure 4: Illustration of the total wear volume calculation in (4).
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Figure 5: Locations of wear coefficient K measures. Colors indicate the

different rail disc materials.

Estimate Std. Error t value Pr(> |t|)

β0 2.564 0.114 22.52 <2e-16

β1 -3.651 0.442 -8.26 6.17e-13

β2 -3.081 0.514 -5.99 3.33e-08

β3 -4.145 0.571 -7.27 8.31e-11

β4 14.534 2.213 6.57 2.33e-09

β5 22.564 5.079 4.44 2.30e-05

β6 23.498 4.337 5.42 4.16e-07

β7 0.00243 0.000431 5.64 1.57e-07

β8 0.00170 0.000433 3.91 1.67e-04

β9 0.00258 0.000470 5.49 3.10e-07

Table 1: Estimates, standard errors and t-tests for the nullity of the coeffi-

cients of the linear model in (8).

3



a wear testing machine in dry, cool condition for Class D tyre

and four different rail materials: BS11, UICA, UICB and 1%

Chrome. We have more than 100 measurements of the wear

coefficient, according to varying sliding speed v and contact

pressure p. Figure 5 shows the locations of wear coefficient

K measurements, colored according to the rail material used.

Unfortunately, most of observations lie in the range 400-1300

MPa and 0.00-0.08 m/s and only few experiments belong to

more extreme regimes. Moreover, the distribution of the mea-

surements in the v and p plane differs among the different rail

materials. In particular, all the extreme regimes measurements

belong to BS11 rail. Therefore, we propose to estimate the wear

coefficient K with a spatial statistics model (universal kriging),

exploiting similarities among different materials and the spatial

dependence of data (in the v and p plane). In this way we are

able to partially overcome the limitation of having few available

measurements. In the following, we briefly review the funda-

mentals of universal kriging, as employed here. A detailed pre-

sentation of spatial statistics theory can be found, for instance,

in [23].

Let D ⊂ R
2 be a fixed subset of R2 that contains a rectangle

of positive area, and consider the random process {Z(s) : s ∈ D}.
Given a set of N realizations Z(s1), . . . ,Z(sN) at known spatial

locations {s1, . . . , sN}, we are interested in finding the random

process Z that best describes the observed data. In universal

kriging, the assumed model is

Z(s) = µ(s) + δ(s), s ∈ D (5)

where µ(·) = β0 f0(·) + · · · + βp fp(·) is the drift (or large scale

variability) given by an unknown linear combination of known

functions, and δ(·) is a zero-mean second-order stationary and

isotropic random process, i.e. for every s, si, s j ∈ D we have

E[Z(s)] = µ(s), E[δ(s)] = 0 and Cov(δ(si), δ(s j)) = C(‖si − s j‖).

Given these assumption, the random process has variogram

2γ(·), defined by 2γ(si − s j) = Var(δ(si) − δ(s j)). The universal

kriging prediction in a new location s0 is then given by the best

linear unbiased predictor of the form

Ẑ(s0) =

N
∑

i=1

λiZ(si). (6)

Using the kriging prediction Ẑ(s0) and the corresponding vari-

ance σ̂2(s0), prediction intervals can be constructed. Specifi-

cally, under the assumption that Z is Gaussian, the interval

I(s0) =
(

Ẑ(s0) − z1− α
2
σ̂(s0), Ẑ(s0) + z1− α

2
σ̂(s0)

)

(7)

where z1− α
2

is the quantile of order 1− α
2

of the standard normal

distribution, is the (1−α)100% prediction interval for Ẑ(s0), i.e.

the interval such that Pr(Z(s0) ∈ I(s0)) = (1 − α)100%.

3.1. A linear model for the drift

The first step consists of using a linear model to estimate the

drift (large scale variability) and to assess whether there are sta-

tistically significant differences in wear coefficient among the

four different rail materials (details on this type of model can

be found, for example, in [24]). Given that the distribution of K
is highly asymmetrical and concentrated on very small values,

we perform a logarithmic transformation on this variable. Then

we start fitting a linear model with response log(K), in which

sliding speed v and contact pressure p constitute the quantita-

tive predictors, and rail materials make up categorical variables.

Interactions between sliding speed and rail materials, as well as

between contact pressure and rail materials, are also included

in the complete linear model. Stepwise variable selection leads

to the reduced model:

log(K) = β0 + β1 · BS 11 + β2 · UICB + β3 · 1%Chr

+ β4 · BS 11 · v + β5 · UICB · v + β6 · 1%Chr · v

+ β7 · BS 11 · p + β8 · UICB · p + β9 · 1%Chr · p + ǫ,
(8)

where BS 11, UICB and 1%Chr are dummy variables that

take the value 1 to indicate the corresponding rail material (we

have UICA when all the three dummy variables are 0). Table 1

shows coefficients estimates, standard errors and p-values of the

t-tests assessing whether such coefficients are 0: all the regres-

sors are significant. Moreover, the F-test assesses the signifi-

cance of the model (p-value < 2.2e− 16) and the adjusted coef-

ficient of determination R2 is quite high (0.65), so the model fits

the data quite well. However, residuals do not respect the inde-

pendence assumption, that is fundamental for the linear model.

In fact, as revealed for example by the sample variogram in

Figure 6, residuals are spatially correlated (the space being the

v and p plane); hence, we exploit this feature to accurately pre-

dict the value of the coefficient K by using universal kriging, as

explained below. Figure 7(a) shows the drift given by the linear

model, concerning BS11 rail. The drift for the other rail mate-

rials can be found in panel (a) of the Additional Figures A.11,

A.12 and A.13.
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Figure 6: Sample variogram (dots) and fitted spherical variogram (line).
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(a) (b)

(c) (d)

Figure 7: Wear coefficient K (10−4) maps concerning BS11 rail discs: (a) describes the drift given by the linear model (large scale variability); (b) is the prediction

with universal kriging; (c) and (d) show the 90% pointwise prediction intervals.

3.2. Prediction and uncertainty analysis with universal kriging

We consider our data as spatial data, with coordinates given

by the sliding speed v (m/s) and the contact pressure p̃ (10−4

MPa), where the pressure scale is changed in order to obtain

comparable coordinates ranges. Our aim is to predict the wear

coefficient K within the domain D = {0 < v < 0.25, 0 < p̃ <
0.2}, taking advantage of the spatial correlation of data. We

adopt model (5) with random process Z(·) = log(K(·)), i.e.

log(K(s)) = µ(s) + δ(s), s ∈ D, (9)

where the large scale variability µ(·) is chosen as the reduced

linear combination of the regression model (8) obtained above.

We fit a spherical variogram model to the estimated one, fix-

ing the nugget thanks to some repeated measures of the wear

coefficient in the same position s (see Figure 6). The isotropic

variogram is given by

γ(h) =



























0 h = 0

c0 + cs

[

3‖h‖

2as
− 1

2

(

‖h‖

as

)3
]

0 < ‖h‖ ≤ as

c0 + cs ‖h‖ > as

(10)
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Figure 8: Sketch map of RUL prediction.

Large

creepage

Small

creepage

Longitudinal

creepage γ1
-0.0020 -0.0004

Lateral

creepage γ2
-0.0015 -0.0003

Normal force

N
60 kN

Velocity Vvehicle 30 m/s

Table 2: Parameters used in the two conditions considered.
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Figure 9: Wear distribution over contact patch in (a) large creepage case and (b) small creepage condition. The different lines refer to the values of the wear

coefficient K used: universal kiging predictions (Prediction), 90% prediction intervals (Lower bound and Upper bound), average values in each region of the wear

chart in Figure 1 (Average) and constant K from [3] (Reference).

where the nugget is c0 = 0.178, the parameter of the spherical

model is cs = 0.142 and the range is as = 0.0375. Universal

kriging is then used to predict log(K(·)) on a grid in the domain

D, for each of the four rail materials considered. The prediction

variance is also computed on the grid, allowing the construction

of 90% pointwise prediction intervals for log(K(·)) by equation

(7) with α = 0.1 on each point of the grid, under the assump-

tion that log(K(·)) is Gaussian (and hence K(·) is log-normal).

Figure 7(b) shows the prediction obtained with this model con-

cerning the BS11 rail material, while Figures 7(c) and (d) depict

the 90% pointwise prediction intervals. Analogous plots for the

other rail materials can be found in Additional Figures A.11,

A.12 and A.13. It is important to notice that kriging prediction

is much more informative than the piecewise constant chart in

Figure 1 from [5]. Moreover, it is comparable to the wear coeffi-

cient map in [9] and, in addition, it is associated with a rigorous

quantification of uncertainty (prediction intervals).

4. REMAINING USEFUL LIFE PREDICTION

We use a model-based prognostics approach to predict the

RUL of train wheel (reviews on model-based prognostics ap-

proaches for RUL computation can be found in [25] and [26]).

First we use Archard’s equation (1) and the wear model pre-

sented in Section 2 to predict the wheel degradation trend in the

future. Next, we combine this prediction with a known failure

threshold to calculate the RUL (see [27] and [28]). The RUL

predicted at L(i) (i.e. for a wheel that has already run a distance

L(i)) is given by the expression

RUL (L(i)) =
[

L f (i)
∣

∣

∣ Vw,tot

(

L f (i)
)

= VT

]

− L(i), (11)

where L f (i) is the predicted running distance when the wear

of the wheel reaches its failure threshold VT . L f (i) can be ob-

tained using (4). In our application, the only source of uncer-

tainty in RUL (L(i)) is the wear coefficient K. Using the upper

and lower bounds of the 90% pointwise prediction intervals for
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Longitudinal creepage γ1 0.00043 Normal force N 63.396 kN

Lateral creepage γ2 0.00156 Running distance L 49300 km

Spin creepage γ3 0.163 1/m Constant wear coefficient K 3.56×10-4

Velocity Vvehicle 27.8 m/s Measured wear volume 235.84×103 mm3

Table 3: Relevant parameters for the simulation, from [3].

Vw,tot,L

(×103 mm3)

Vw,tot,P

(×103 mm3)

Vw,tot,U

(×103 mm3)
Factor

Case 1 58.02 130.29 292.84 0.5525

Case 2 104.92 243.39 565.85 1.0320

Case 3 66.44 151.63 346.52 0.6429

(a)

RULL

(×103 km)

RULP

(×103 km)

RULU

(×103 Km)

326.61 112.74 20.40

(b)

Table 4: Simulation results concerning (a) the wear volume in the three cases of contact locations and (b) the RUL in the second case. Vw,tot,L, Vw,tot,P and Vw,tot,U

indicate, respectively, the total wear volume obtained by applying the lower bound, the prediction and the upper bound of the wear coefficient K estimated through

universal kriging. RULL, RULP, RULU have the same meaning for the RUL.

K computed in Section 3, we can create inferior and superior

bands for RUL can be predicted. Figure 8 shows the sketch

map of RUL prediction.

5. SIMULATION RESULTS

5.1. The effect of wear coefficient K on wear prediction

In order to analyze the effect of the wear coefficient K on

wear prediction over a single contact patch, two typical condi-

tions are considered for comparison: large creepage and small

creepage (details about the parameters used in the two condi-

tions can be found in Table 2). In both cases the wheel/rail

combination is chosen so that the wheel profile is S1002 and

the rail profile is UIC60, with the material property of BS11

and an inclination of 1/20 for each rail. The normal force N is

60 kN and the speed Vvehicle is 30 m/s.

Simulations are carried out using the universal kriging pre-

dictions and the 90% prediction intervals for the wear coeffi-

cient K as computed in Section 3 (Figure 7). Moreover, we

compare our methodology with simulations performed evaluat-

ing the wear coefficient K in different ways. In particular, we

simulate the wear volume considering average values in each

region of the wear chart in Figure 1 (data from [5]) and assum-

ing the coefficient K is constant, with value 3.56 × 10−4 ac-

cording to reference [3]. The resulting wear depths have been

normalized with respect to the maximum value obtained in the

average K case. Figure 9 depicts the wear distribution over a

contact patch with the given conditions, for the different choices

of the wear coefficient.

These results suggest that uncertainty in the wear coefficient

affects both the wear distribution and the wear amount over the

whole contact patch, depending on the contact situation. The

constant and average K lead to underestimating and overesti-

mating the wear volume with respect to the prediction band ob-

tained using universal kriging, in simulation scenarios of large

and small creepages, respectively.

5.2. Application to a real case prediction

One real case is chosen from the literature with the aim to val-

idate our methodology. According to [3], we use the parameters

shown in Table 3 for the simulation. In addition, the wheel/rail

contact combination is chosen to be S1002 wheel profile and

UIC60 rail profile as in [3], with rail material BS11. We con-

sider three contact locations around the nominal rolling circle

of the wheel from left to right, because the exact contact posi-

tion is not provided in the reference. As for the computation of

the RUL, we fix the failure threshold at 800 ×103 mm3, corre-

sponding to a re-profile interval of the wheel. This threshold is

used here as example and should not be adopted in practice: in

fact, in each real application the threshold should be carefully

chosen based on specific circumstances.

The results obtained using our methodology to compute wear

volume are given in Table 4(a), and the corresponding RUL in

case 2 in Table 4(b). Moreover, the wear distributions over the

contact patch in the second case are presented in Figure 10. We

can observe that the choice of wear coefficient influences the

distribution of wear depth over the contact patch and, conse-

quently, affects the vehicle dynamic behavior.

Comparing simulation results with the measured wear vol-

ume (235.84×103 mm3), we see that our prediction factors,

defined as the ratio between calculated and measured values,

range from 0.55 to 1.03 in the three different contact locations

considered. In all cases, these results are much better than by

fixing K = 3.56 × 10−4 as in [3], which leads to a prediction

factor of 4.23. Moreover the measured data falls, in each of the

three contact locations, inside our prediction interval. Hence,

we can conclude that our prediction methodology is quite ef-

fective.

6. CONCLUSIONS

In this paper we proposed a novel wear prediction method-

ology that accounts for dependence of wear coefficient K on
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Figure 10: Wear distribution over contact patch simulated by using (a) universal kriging prediction for K, (b) average K values in each region of the wear chart in

Figure 1 and (c) constant K from [3].

contact pressure and sliding speed, as they vary over the con-

tact patch. Our methodology also quantifies uncertainty on K.

We applied this approach to two typical contact conditions

in Section 5.1, to analyze the effect of wear coefficient uncer-

tainty on wear prediction over a single contact patch. The sim-

ulations revealed that both wear distribution and wear amount

over the whole contact patch are affected by this uncertainty.

This should be taken into account in wear prediction, especially

when incorporating multibody dynamics simulation of rail ve-

hicle system in the model.

In Section 5.2, we validated our methodology on a real case

prediction. Our results are much better than those currently

available in literature, and the measured wear volume falls in-

side our prediction intervals.

It should be noted that many factors involved in the predic-

tion, such as material hardness, contact situation, creepages etc,

are not known with accuracy and can affect final results, by

adding errors. However, the uncertainty analysis we performed

on the wear coefficient is expected account for these additional

error sources. Therefore, the methodology proposed in this pa-

per can provide reasonable guidelines in practice. Nevertheless,

further studies on the effect of the uncertainty of the wear coef-

ficient on wheel profile wear prediction are needed, as well as

a strong validation of our methodology. Moreover, the method

from [21] for the local contact model and the online calcula-

tion of wear coefficient enable our wear prediction model to

be incorporated into multibody dynamics simulation (see [29]).

This co-simulation technology is expected to be even more ef-

fective.
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AppendixA. Additional figures

(a) (b)

(c) (d)

Figure A.11: Wear coefficient K (10−4) maps concerning UICB rail discs: (a) describes the drift given by the linear model (large scale variability); (b) is the

prediction with universal kriging; (c) and (d) show the 90% pointwise prediction intervals.
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(a) (b)

(c) (d)

Figure A.12: Wear coefficient K (10−4) maps concerning UICA rail discs: (a) describes the drift given by the linear model (large scale variability); (b) is the

prediction with universal kriging; (c) and (d) show the 90% pointwise prediction intervals.
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(a) (b)

(c) (d)

Figure A.13: Wear coefficient K (10−4) maps concerning 1%Chr rail discs: (a) describes the drift given by the linear model (large scale variability); (b) is the

prediction with universal kriging; (c) and (d) show the 90% pointwise prediction intervals.
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