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Abstract

Travel time has been identified as an important variable to evaluate the performance of a transportation

system. Based on the travel time prediction, road users can make their optimal decision in choosing route

and departure time. In order to utilize adequately the advanced data collection methods that provide real-

time different types of information, this paper is aimed at a novel approach to the estimation of long roadway

travel times, using Automatic Vehicle Identification (AVI) technology. Since the long roads contain a large

number of scanners, the AVI sample size tends to reduce and, as such, computing the distribution for the

total road travel time becomes difficult. In this work, we introduce a probabilistic framework that extends

the deterministic travel time progression method to dependent random variables and enables the off-line

estimation of road travel time distributions. In the proposed method, the accuracy of the estimation does

not depend on the size of the sample over the entire corridor, but only on the amount of historical data that

is available for each link. In practice, the system is also robust to small link samples and can be used to

detect outliers within the AVI data.

Keywords: off-line travel time estimation, long corridor, Automatic Vehicle Identification (AVI), data

impoverishment problem, probabilistic travel time progression

1. Introduction

Travel time is a key component for the performance evaluation of transport systems. Moreover, travel

time is easily perceived by the road users so the provision of travel time information may have a great impact

on the route choice of travellers (Mahmassani and Liu, 1999). As is turns out, the provision of travel time

information may reduce traffic congestion significantly and improve the performance of the whole network

system (Ben-Akiva et al., 1991). Because of its critical role in traffic monitoring, extensive research has been

conducted on the estimation and prediction of travel times on both freeways and urban roadways (Bhaskar

et al., 2011, 2014, Coifman, 2002, Coifman and Krishnamurthy, 2007, Du et al., 2012, Ndoye et al., 2011,

Sun et al., 2008, van Lint et al., 2005, van Lint and van der Zijpp, 2003). The widely used sensors to collect

travel time data are loop detectors, which have been found to suffer from high maintenance costs and poor

Preprint submitted to Elsevier September 1, 2015
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reliability (Rajagopal and Varaiya, 2007). In recent years, rapid advances in information technology have

led to cheaper data collection systems that are enriching the sources of empirical data for use in transport

systems including travel time estimation and real-time traffic prediction problems (Deng et al., 2013, Herrera

and Bayen, 2010, Herrera et al., 2010, Hofleitner et al., 2012a,b, Jenelius and Koutsopoulos, 2013, Kwong

et al., 2009, Liu and Ma, 2009). Data collection systems are classified as fixed sensors and mobile sensors.

Fixed sensors are inductive loop detectors, Automatic Number Plate Recognition (ANPR) and Automatic

Vehicle Identification (AVI) systems. AVI systems provide traffic information at the location where the

sensors are installed. On the other end, mobile sensors, such as GPS equipped vehicles and other Automatic

Vehicle Location (AVL) systems, provide data for the entire journey of the vehicle equipped with such

sensors (e.g. trajectory data). This paper mainly focuses on the travel time estimation problems using AVI

data, such as Bluetooth.

The application of Bluetooth data for travel time estimation became available about a decade ago,

when Murphy et al. (2002), Pasolini and Verdone (2002), Sawant et al. (2004) attempted to investigate the

use of BT for Intelligent Transport System (ITS) services, and found that the Bluetooth equipped devices

in moving vehicles could be discovered. The Bluetooth scanners use the Bluetooth discovery protocol to

‘sniff’ the unique electronic identifier, the Machine Access Control (MAC) address, of the transiting devices.

Vehicles carrying discoverable Bluetooth devices (e.g. car kits, mobile phones and headsets) can be detected

by Bluetooth scanners installed at multiple locations along the road network. Both the MAC address and

the detection time of the traveller are recorded by the sensors and can be used for measuring the experienced

travel times (Haghani et al., 2010). The increasing number of Bluetooth-enabled devices among road users,

anonymity of MAC addresses, flexibility of deployment and maintenance of Bluetooth scanners have resulted

in increasing scientific investigation into the cost-effectiveness of Bluetooth for travel time estimation (Aliari

and Haghani, 2012, Bhaskar and Chung, 2013).

It has been widely reported that point-to-point data sources like the Bluetooth are self-sufficient, as

far as the prediction of travel times is concerned (Khoei et al., 2013, Khosravi et al., 2011, Qiao et al.,

2013). However, the assumption that is often made is that the data samples are large enough for computing

the statistics of interest and that any variation from the expectation can safely be labelled as zero-mean,

additive Gaussian noise. In fact, the travel time statistics are meaningful only when the sample is large; and

the Bluetooth sample is usually rather small. Moreover, as we will show, the travel time distribution may

exhibit multi-modal structures that cannot be completely defined through statistics like mean, median and

standard deviation. Some cluster-based approaches have been proposed to address these issues by treating

travel time as a random variable and, simultaneously, dealing with the problem of small samples (Jenelius

and Koutsopoulos, 2013, Ramezani and Geroliminis, 2012). However, these approaches are computationally

expensive and their accuracy depends on the way the AVI data is clustered (Ramezani and Geroliminis,

2012). Furthermore, it is not clear how the length of the road and the number of scanned links within it
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affects the estimation, when real data is used (Jenelius and Koutsopoulos, 2013).

In an attempt to address all of these issues, we propose a novel probabilistic framework which extends

the deterministic travel time progression rule to the case of random variables. We will show that such

a framework can be implemented using non-parametric, polynomial-time algorithms whose accuracy only

depends on the amount of link-based data available. Besides being effective and efficient at estimating travel

time, in a off-line fashion, our probabilistic approach leads naturally to a simple Bayesian outlier detector

of travel times. The rest of this paper is organized as follows. In Section 3, we will introduce the AVI Data

Impoverishment problem, which may prevent researchers and practitioners from estimating travel times over

long corridors. In Section 4, we will discuss the deterministic approach to travel time progression and explain

why such an approach may fail to properly describe experienced travel times, in the case of long arterial

roadways. We will then present our probabilistic travel time progression framework and its non-parametric

implementation, in Section 5. Section 6 introduces a discrete version of the travel time distribution derived

in Section 5, which is used for empirical validation. The accuracy and robustness of the system and the

probabilistic outlier detection method are discussed in Section 7, using real data. Conclusions will be drawn

in the last section.

2. Notation

For convenience, the notation in Table 1 below defines the symbols used in this paper.

Table 1: Table of symbols.

Symbol Definition

N number of scanned nodes of the target road

β probability of successful detection by a AVI scanner

L number of time and travel time bins used for the distribution histograms

Kn−1,n number of AVI samples available for link (n− 1, n)

τ
(k)
n−1,n travel time expirenced by traveller k over link (n− 1, n)

Tn−1,n overall travel time over link (n− 1, n)

ε
(k)
n time at which traveller k has departed from node n

En departure time from node n

[ta, tb] observation time interval

3. The AVI Data Impoverishment Problem

Travel times are extracted from AVI data, such as Bluetooth, by simply computing the difference between

the time, ε
(k)
n , at which a traveller k is detected at some destination node n (e.g. downstream intersection of
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a link), minus the time, ε
(k)
n−1, at which the same traveller is detected at some origin node n (e.g. upstream

intersection of a link)

τ
(k)
n−1,n = ε(k)n − ε

(k)
n−1 (1)

where τ
(k)
n−1,n denotes the travel time experienced by traveller k from origin n−1 to destination n. Computing

travel times over specific corridors typically involves collecting data from individual travellers, in order to

extract meaningful travel time statistics – e.g. average, median and variance – about the target link or

road. Unfortunately, as the number of scanned links in the route increases, the AVI data sample tends to

reduce in size and the sampling variation or error grows. This is a consequence of the miss-detection rate

of the AVI scanners, as well as the patronage of the target road. Let us consider an example of a route of

N scanned nodes and let β be the probability of successful detection proper to all scanners. Assuming that

the detections are all independent of each other, e.g. the scanners do not interfere with one another, the

probability for a traveller to be detected by all N scanners along the road is

Pr(N) = βN (2)

Figure 1: Visualization of the AVI-DI issue in the Bluetooth data, for 3 major arterial roads in Brisbane, namely Lutwyche

Rd., Oxley Rd. and Wynnum Rd. The graph shows the trend of the average Bluetooth sample size, as the number of nodes

increases. Sample size here signifies the number of travellers that have been detected at each intersection of the road, in the

correct order, i.e. 1, 2, . . . , N . Vertical bars indicate the standard deviation around the average. The data used for these

statistics covered a period of 30 days.

Because real scanners do fail to detect sometimes, we have that 0 ≤ β < 1. This entails that the

probability above decreases exponentially as N increases. If the travel times are estimated from the travellers

that are detected at each scanned node, the travel time sample too is doomed to decrease exponentially with

N . In such cases, the upper bound of the sample size is established by the number of detections over the least

traversed link, which in turn, greatly depends on the amount of travellers that actually traverse that link.
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We will use the term AVI Data Impoverishment (AVI-DI) to denote the combined effect of miss-detections

and route patronage on data reduction. Figure 1 shows an example of AVI-DI in the case of Bluetooth

data, for 3 arterial stretches of the Brisbane metropolitan area, in Australia. As expected, the number of

travellers that are detected at each scanned node (e.g. intersection) of the road decreases exponentially with

the number of nodes. The AVI-DI issue may prevent road authorities from obtaining accurate travel times

measurements for long corridors, due to insufficient AVI data.

4. Deterministic Travel Time Progression

Logically, if travel time is estimated from the travellers that are detected at each scanned node, then

the travel time data about the individual sub-links is at least as abundant as the data for the entire road

stretch. Thus, as far as this type of data (i.e. AVI) is concerned, the road travel time is best estimated

from the sum of link travel times. Recovering the road travel time from the individual links is typically

carried out through a method known as travel time progression (Friesz et al., 1993, Nanthawichit et al.,

2013, Shim et al., 2011). Using the formalisation of Friesz et al. (1993), given a road defined as a sequence

of N connected nodes, we will let τn,n−1 be the travel time for link (n − 1, n); and εn(t) the departure

time from node n ∈ {1, . . . , N}, given that the departure from node 1 occurs at some given time t. The

expression for the total road travel time τ1:N , from node 1 through N , is

τ1:N (t) =
N
∑

n=2

[εn(t)− εn−1(t)] = εN (t)− t (3)

where we have defined

εn(t) = εn−1(t) + τn−1,n(εn−1(t)) ∀ 1 < n ≤ N (4)

ε1(t) = t (5)

If the link-travel time functions τn−1,n are known or can be determined for any time t, for example from

the statistics extracted form the AVI data, one can easily determine the road travel time τ1:N (t). Despite

its simplicity, this approach fails to address two important issues related to the nature of travel time. On

the one hand, two or more vehicles exiting the origin at the exact same time and travelling along the same

road may experience different travel times. This difference mainly depends on the possibility of vehicles to

overtake each other and on the decision to break or accelerate at the traffic lights, for instance, when the

lights turn amber. Put it differently, the travel time is partially influenced by the randomness component

of the human behaviour and, as such, it should be treated as a random variable. The random nature of

travel time can be observed in Figure 2-a , which shows how real Bluetooth travel times are distributed over

a period of time, represented by the grey area on the left diagrams. Notice that the related distribution

(upper right diagram) has two prominent peaks (modes), supposedly due to the presence of a signalised
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(a)

(b)

Figure 2: Travel time distributions. (a) Travel times for a link with a signalised intersection between upstream and downstream

ends. The travel time distributions on the left concerns the observation time intervals (grey rectangles). (b) Travel times over

a long arterial roadway. The observation interval encompasses regions of both free-flow and congested traffic.

intersection between the node n− 1 and n. Another issue with the deterministic progression method is that

it only allows dealing with instantaneous departure times, such as t. From a practical perspective, however,

it may be more interesting to estimate travel times over arbitrary observation time windows, e.g. between

ta and tb, like in Figure 2. It is expected that large observation time windows will yield multi-modal travel

time distributions, as a consequence of incorporating data from both free-flow and congested traffic (see

Figure 2-b).

5. Probabilistic Travel Time Progression

This section presents the main contribution of our work, which is, accounting for the random nature of

travel time when progressively summing up the link travel times. In fact, the problem of estimating road

travel time distributions from link data has previously been tackled by Ramezani and Geroliminis (2012)

through the ordinary (non-progressive) sum of independent random variables. In order to account for the

dependency between data from across adjacent links, the authors identify regions of homogeneous density

within such data. Conditioned on these regions, link travel times become independent and can be summed

up using convolution. This method produces a set of road travel time distributions, for the target road, which

are then mixed together into a single target distribution. The disadvantage of this approach is, however,

that the quality of the estimation depends on the definition of the conditioning regions, as acknowledged by
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the authors. Moreover, the complexity of the method is exponential on the number of regions and links.

In the approach we present here the relationship between variables from adjacent links is defined through

the travel time progression rule introduced earlier, rather than being learned from the data. As we will see

in Section 6, this allows solving the problem in polynomial time. For consistency of notation, we will use

the symbol En to denote the random variable ‘departure time from node n’ and Tn−1,n to indicate the

random variable ‘travel time over link (n − 1, n)’. The recursive relationship between these variables is

similar to that of (4), and is depicted in Figure 3-b, through a Bayesian network. In this network, directed

edges represent conditional distributions, whereas vertices represent random variables. For example, for the

conditional distribution Pr(E3 | E2, T2,3) there are links from node E2 and T2,3 to E3, whereas for Pr(E1)

there are no incoming links. A vertex in the graph is shaded (e.g. E1 in Figure 3-b) to indicate that the

corresponding random variable is set to some observed value. We note that such a Bayesian network is

static, in that, the values of random variables do not change overtime. Instead, the probability distributions

of all variables is fixed and shaped by the behaviour of travellers, once they have completed their trips from

origin to destination. As we shall see, such distributions can be elicited from historical AVI data.

1 2 3 N − 2 N −1 N

ε
1

τ
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!

ε
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(a)

(b)
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Figure 3: Probabilistic Travel Time Progression. (a) Representation of a road stretch with N nodes. (b) Probabilistic graphical

representation of travel time progression for the target road. (c) Examples of conditional distributions over link travel times

extracted from the Bluetooth data.

Similarly to (3), we are interested in the posterior over road travel time T1:N , for a route from node 1

through N , conditional to the fact that the departure time E1 from the origin node occurred between time

7



ta and time tb. More specifically, we wish to compute the posterior probability distribution

Pr(T1:N = τ1:N | ta ≤ E1 ≤ tb) ∀ τ1,N and ta < tb (6)

The problem, posed in these terms, is more general than that the deterministic travel time progression in

(3). The road travel time T1:N is now allowed to take on a set of possible different values, each with an

associated probability. This probability will depend on the width of the observation time window [ta, tb],

the probability distribution of E1 and the probability distributions of the link travel times Tn−1,n.

Lemma 1 (Posterior over departure time). Let pTn−1,n
(τn−1,n | εn−1) be the conditional probability density

function of Tn−1,n evaluated at Tn−1,n = τn−1,n, given En−1 = εn−1; and let pEn−1
(εn−1 | ε1) be the

conditional density function of En−1 evaluated at En−1 = εn−1, given E1 = ε1. Then

Pr(En = εn | E1 = ε1) =

∫

pTn−1,n
(εn − εn−1 | εn−1) pEn−1

(εn−1 | ε1) dεn−1 (7)

Proof. From (4) we know that E2 is a deterministic node, for its value is specified exactly by the values of

its parents E2 = E1 + T1,2. The posterior over the departure time from node 2 is therefore

Pr(E2 = ε2 | E1 = ε1) = Pr(E1 + T1,2 = ε2 | E1 = ε1) (8)

that is, the posterior over E2 is a copy of the posterior over T1,2, shifted to the right by ε1 units

Pr(E2 = ε2 | E1 = ε1) = Pr(T1,2 = ε2 − ε1 | E1 = ε1) (9)

Let us now consider the posterior over the departure time E3 from node 3. Similarly to the previous case,

E3 = E2 + T2,3 and we can write

Pr(E3 = ε3, E2 = ε2 | E1 = ε1) = Pr(T2,3 = ε3 − ε2, E2 = ε2 | E1 = ε1)

= Pr(T2,3 = ε3 − ε2 | E2 = ε2, E1 = ε1)

Pr(E2 = ε2 | E1 = ε1)

(10)

Since we are interested in Pr(E3 = ε3 | E1 = ε1), we will marginalize (10) over E2

Pr(E3 = ε3 | E1 = ε1) =

∫

pT2,3
(ε3 − ε2 | ε2, ε1) pE2

(ε2 | ε1) dε2 (11)

=

∫

pT2,3
(ε3 − ε2 | ε2) pE2

(ε2 | ε1) dε2 (12)

The transformation from (11) to (12) is a consequence of the conditional independence property of the

Bayesian network in Figure 3-b , that is

Pr(Tn−1,n | En−1, En−2, . . . , E1) = Pr(Tn−1,n | En−1) (13)

Using the induction method, we arrive at Eq. (7).
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Lemma 1 enables expressing the posterior over En recursively. Indeed, such posterior is computed from

the conditional posterior over En−1 which, in turn, is computed from the posterior over En−2, and so forth

up to E2. It is worth noticing that the right hand side of (7) is the convolution integral of the joint density

function pTn−1,n, En−1
(εn − εn−1, εn−1 | ε1). This integral defines the distribution of the sum of the two

dependent random variables Tn−1,n and En−1, in agreement with equation (10).

Our initial goal was to find the posterior over the road travel time T1:N , given that E1 was defined within

a time interval [ta, tb].

Lemma 2 (Posterior over road travel time). Let pEN
(εN | ε1) be the conditional probability density function

of EN evaluated at EN = εN , given E1 = ε1; and let pE1
(ε1) be prior probability density function of E1

evaluated at E1 = ε1. Further, let [ta, tb] be an arbitrary support for pE1
. Then

Pr(T1:N = τ1:N | ta ≤ E1 ≤ tb) =

∫ tb

ta
pEN

(τ1:N + ε1 | ε1) pE1
(ε1) dε1

∫ tb

ta
pE1

(ε1) dε1
(14)

Proof. Using the product and chain rule we have

Pr(T1:N = τ1:N | ta ≤ E1 ≤ tb) =

∫ tb

ta
pT1:N

(τ1:N | ε1) pE1
(ε1) dε1

∫ tb

ta
pE1

(ε1) dε1
(15)

where pT1:N
(τ1:N | ε1) is the conditional probability distribution of T1:N evaluated at T1:N = τ1:N , given that

E1 = ε1. From (3), we have that T1:N = EN − E1; that is, the travel time is equal to the difference between

the departure time from the destination node minus the departure time from the origin node. Thus, given

E1 = ε1, the conditional distribution over road travel time is obtained by shifting the distribution over EN

to the left by τ1:N units, that is

Pr(T1:N = τ1:N | E1 = ε1) = Pr(EN = τ1:N + ε1 | E1 = ε1) (16)

Applying this result to (15) we obtain (14).

Note that Pr(EN | E1 = ε1) is computed recursively via (7) from the posteriors over EN−1, EN−2, . . . , E2.

The shape of the probability density functions introduced here depends on the classes of users for which the

travel time is to be determined, such as cars, taxies, bikes or pedestrians; on the hindrances along the road,

such as traffic signals. Eq. (14) describes formally how the target road distribution is linked to the travel

time density function pTn−1,n
(τn−1,n | εn−1) for each link (n−1, n), the prior over departure time from origin

node E1 and the observation time window [ta, tb]. The method presented here is fully Bayesian; it does not

require the integration of traffic models and can be used for off-line travel time estimations, whenever enough

AVI data is available over the target observation window. Other methods have been recently proposed to

enable the on-line prediction of traffic state, including travel time, in urban networks using heterogeneous

data (Nantes et al., 2015). Such methods rely on traffic flow models, as a means of predicting the next state
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of traffic, which are embedded in the Bayesian estimation fitlers such as Kalman filters or particle filters

(Ngoduy, 2008, 2011, Wang and Papageorgiou, 2005, Wang et al., 2007).

6. Implementation

In this section we will show how a discrete version of the target travel time distribution in (14) can be

constructed from historical AVI data, such as Bluetooth, by using a numerical approach. Since we wish to

keep the number of parameters of the system to a minimum, we propose to use histograms to represent the

probability distributions. In particular, we will use 2-D histograms to represent all conditional probability

density functions. Such histograms are maintained through 2-D arrays; with the 2 dimensions referring to

the 2 random variables involved. Accordingly, the value of pε1(ε1 = i | ε1 = j) will be stored in some

2-D array, at row i and column j. Likewise, prior distributions will be represented though 1-D histograms

maintained through 1-D arrays; thus, the value of p(E1 = i) will be stored in some array, at position i.

The 2-D arrays have have fixed size L × L; whereas the 1-D arrays will have fixed size L. Here, L is the

number of bins in which both time and travel time are partitioned. Finally, we will assume that these bins

have uniform unit width, in order to simplify the mechanism of travel time estimation. In order to fulfil our

goal, we first need to estimate the distribution over departure times Pr(En = εn | E1 = ε1), for all nodes

n = {1, 2, . . . , N}. We propose Algorithm 1 to carry out this task. From these distributions, the distribution

over road travel time Pr(T1:N = τ1:N | ta ≤ E1 ≤ tb) can finally be computed, as in Eq. (14). This can be

achieved by using Algorithm 2.

Algorithm 1 assumes that the arrays representing the functions pTn−1,n
(τn−1,n | εn−1) are available from

the input set P, for instance, through the function get distribution, in line 6. The algorithm also requires

the value n indicating the node up to which Pr(En = εn | E1 = ε1) is to be computed; as well as the number

of bins L. In line 8, the convolution function computes the integral in Eq. (7). Before this operation can be

carried out, however, the posterior over departure times for the previous node needs to be computed. Hence,

the recursive call of the function departure time cdf, in line 7, using the previous node, n − 1, as an

input. The recursion calls will terminate in lines 3, in which the probability pE1
(ε1 | ε1) is computed. Such

a conditional distribution is represented though the identity matrix. Although recursion is not necessary, it

is used here for illustrative purposes, as a reflection of the method proposed in the previous section.

Algorithm 2 computes the road travel time distribution through Algorithm 1. It takes a data set D

of point-to-point measurements such as Bluetooth, along with the boundaries ta and tb of the observation

time period. The algorithm starts by initialising the set of link-based travel time distributions P (line 1)

and setting the array c (line 2) to zero. This array represents the road travel time posterior and has size

(L− 1), where L is a parameter indicating a sufficiently large observation time, that is at least as big as tb.

Lines 2 through 8 compute pTn−1,n
(τn−1,n | εn−1) for each link, by extracting the link-specific travel times
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Algorithm 1 Distribution over departure time from node n, given E1
1: function departure time cdf(P, n, L)

2: if n=1 then

3: E← identity matrix(L) ⊲ Ei,j ← pε1(ε1 = i | ε1 = j)

4: return E

5: end if

6: T← get distribution(P, n) ⊲ Ti,j ← pTn−1,n
(Tn−1,n = i | En−1 = j)

7: Ē← departure time cdf(P, n− 1, L) ⊲ Ēi,j ← pεn−1
(εn−1 = i | ε1 = j)

8: E← convolution(T, Ē, L) ⊲ Ei,j ← pεn(εn = i | ε1 = j)

9: return E

10: end function

11: function convolution(T, E, L)

12: C← zeros(L, L) ⊲ zero matrix of size L× L

13: for i← 0, L− 1 do

14: for k ← i, L− 1 do

15: Ck,i ←
∑k

j=0 Tk−j,j Ej,i

16: end for

17: end for

18: return C

19: end function

and departure times from the dataset D (line 5) and generating the non-parametric distribution over travel

time τn−1,n, for each departure time εn−1 (line 6), though the function histogram cdf. Here, the travel

times τ
(k)
n−1,n are computed as in Eq. (1) (e.g. from the Bluetooth data) and Kn−1,n denotes the number of

travellers that have been detected at both nodes n−1 and n. Algorithm 1 is then called in line 9, in order to

compute the posterior over departure time, for destination node N . Line 10 extracts the departure times of

all travellers that have traversed the entire corridor (denoted by K1:N ), through the function get epsilon.

The prior p(E1) is represented by a 1-D histogram, computed in line 11 through the function histogram.

Finally, lines 12 through 15 compute the target distribution Pr(T1:N | ta ≤ E1 ≤ tb), using a discrete version

of Eq. (14).

Algorithm 1 and 2 are polynomial-time. In particular, Algorithm 1 is O
(

(N − 1)L3
)

due to the con-

volution of 2-D arrays repeated for each one of the N − 1 links. As for Algorithm 2, the 2-D histogram

produced in line 6, for an unsorted array in D is O((N − 1)KL2), assuming there were at most K data

samples for each link. Line 11 is linear in K and lines 13 through 15 are O(L(tb− ta)). Since Algorithm 1 is

called outside the for-loops of Algorithm 2 (line 9), the complexity of the system is O
(

(N − 1)ML2
)

, where
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Algorithm 2 Distribution over road travel time, given ta ≤ E1 ≤ tb

1: function road travel time cdf(D, ta, tb)

2: P ← ∅ ⊲ initialize set of travel time posteriors

3: c← zeros(L) ⊲ 1-D zero array of L elements

4: for n← 2, N do

5: D← get tau epsilon(D, n) ⊲ D←

















τ
(1)
n−1,n ε

(1)
n−1

τ
(2)
n−1,n ε

(2)
n−1

...
...

τ
(Kn−1,n)

n−1,n ε
(Kn−1,n)

n−1

















6: T← histogram cdf(D) ⊲ Ti,j ← pTn−1,n
(Tn−1,n = i | En−1 = j)

7: add T to P

8: end for

9: E← departure time cdf(P, N, L) ⊲ Ei,j ← pEN
(EN = i | E1 = j)

10: d← get epsilon(D, 1, N) ⊲ d← (ε
(1)
1 , ε

(2)
1 , . . . , ε

(K1:N )
1 )

11: e← histogram(d) ⊲ ei ← p(E1 = i)

12: η ←
(

∑tb
j=ta

ej

)−1

13: for i← 0, L− tb − 1 do

14: ci ← η
∑tb

j=ta
Ei+j,j ej ⊲ ci ← Pr(T1:N = i | ta ≤ E1 ≤ tb)

15: end for

16: return c

17: end function

M = max(K,L). Note that Algorithm 1 needs to be called only once, in order to determine the posterior

over departure times. Such posterior can then be utilised to compute the target ravel time distribution for

any time interval [ta, tb], e.g. through lines 10 though 15 of Algorithm 2. The cost of this latter operation

is only O(L(tb − ta)).

7. Case study

The framework proposed was tested on the Bluetooth data available for 3 arterial stretches of the Brisbane

metropolitan area, in Australia. The experiments concerned a 10,484 m stretch (Wynnum Rd.); a 5,510 m

stretch (Lutwyche Rd.); and a 8,405 m stretch (Oxley Rd.). Our system was tested using Bluetooth data,

collected over a period of 30 days. This data consisted of tuples of the kind

< Scanner ID,Traveller ID,Time Of First Detection > (17)

indicating the identifier of the scanner, the identifier of the detected traveller and the time of first detection

as the traveller entered the scanning area. The location of the Bluetooth scanners and the roads targeted for
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Wynnum Rd. 

16 nodes 

10,484 m 

Oxley Rd. 

13 nodes 

8,405 m 

Lutwyche Rd. 

10 nodes 

5,510 m 

Figure 4: Arterial stretches of the Brisbane area monitored through Bluetooth scanners. The position of the scanners is

indicated by filled circles.
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our experiments are depicted in Figure 4. Travel times from individual travellers where computed as in (1).

Link travel times that exceeded a threshold (1 hour in our experiments) were removed prior to processing,

as considered outliers. No other filtering was applied to the data.

7.1. System Accuracy

In order to measure the accuracy of our system, we compared the travel time distribution produced by

Algorithm 2 with the actual travel times from the set of Bluetooth travellers that were detected at each

node of the target roads, and where thus specific to the experienced travel time over the entire stretch.

Let Dlinks be the set of Bluetooth travel times specific to the links of the target road; and Droad the set

of Bluetooth travel times specific to the entire target road. We tested the null hypothesis that the travel

times in Droad came from the distribution estimated from Dlinks, through Algorithm 2. Each experiment

consisted of partitioning the domain of E1 (departure time form origin node) into intervals [ta, tb] that were

large enough to contain K travel time points from the set Droad; where K was the minimum amount of

points chosen for testing (K = 30 in our tests). For each of these intervals, we generated a 1-D histogram o

from all travel times in Droad that fell within the interval [ta, tb]. This same time interval was also used to

generate the estimated road travel time distribution c, using Algorithm 2, that is, by calling the function

road travel time cdf(Dlinks, ta, tb). Both o and c were of size L. The comparison between measured

and estimated histograms was then carried out through a chi square test. Specifically, let oi be the number

of measured road travel times falling within bin i of the measurement histogram; and ci the value of bin i of

the estimated road travel time distribution. The expected number of travel times, ei for bin i was computed

as follows

ei = n ci; where n =

L
∑

i

oi (18)

The measure of discrepancy between the observed and estimated histogram computed under the null hy-

pothesis was

χ̄2 =

L
∑

i=1

(oi − ei)
2

ei

(19)

The chi square test involves measuring

p = Pr(χ2 ≥ χ̄2) =

∫ ∞

χ̄2

pχ2(x, L− 1) dx (20)

where pχ2(x, L − 1) is the probability density function of the random variable chi square, χ2, with L − 1

degrees of freedom.

It can be shown that, if the measured travel times that produced o came from the estimated histogram

distribution in c, then χ̄2 would be an outcome of the random variable χ2. Therefore, if p is smaller than a

pre-defined significance α (0.01 in our tests) the null hypothesis is rejected, as the measured travel times are

likely to come from a different distribution. An example of measured and expected histograms generated
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from Droad and Dlinks, respectively, is shown in Figure 5. The diagrams on the right show the observation

(a)

(b)

p = 0.1069

p = 0.0053

Figure 5: Examples of estimated histograms (right diagrams) from the Bluetooth travel times (dots on the left diagrams) over

different observation time intervals, visualised through gray rectangles. The expected histogram (dashed line) was computed

from the link travel times in Dlinks, using Algorithm 2. The measured histogram (continuous line) was computed directly from

the road travel times in Droad. The p values of the chi square tests on the right diagrams are computed as in (20).

time intervals [ta, tb] that were large enough to contain K road travel time points from Droad. The diagrams

on the left visualize the histograms o (continuous line) and e (dashed line), corresponding to the observation

time interval chosen. The p values resulting from the chi square test are also reported on the right diagrams.

In order to assess how the accuracy of our method varied with respect to the number of nodes N of the

target road, we consideredN−1 sub-stretches defined as follows: stretch 1 was made of link {(1, 2)}; stretch 2

was made of links {(1, 2), (2, 3)} and so forth up to stretch N−1, made of links {(1, 2), (2, 3), . . . , (N−1, N)}.

We therefore applied our travel time progression method to each one of these sub-stretches and used the

chi squared test to validate the results. Since the Bluetooth data concerned a period of 30 days and given

that, on average, the choice of K = 30 enabled us to test on several observation time intervals per day, each

sub-stretch was tested hundreds of times, yielding hundreds of p values. From the many p values available

for each sub-stretch, we could then estimate the probability of the test to succeed, given the number of nodes

of the road. This likelihood, which we shall indicate as Pr(p ≥ α | N), was simply obtained by counting

the instances in which p ≥ α, versus the total number of tests, for the stretch at hand. The results of this

operation are depicted in Figure 6 (left diagram).

As expected, the system is most accurate in the case of one-link stretches, where Pr(p ≥ α | N = 2) ≈ 1.
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Figure 6: Accuracy tests. (left) Probability of the chi square test to succeed at α = 0.01 significance. (right) Width of

observation time interval [ta, tb] containing at least K = 30 travel time points, versus number of nodes of the road. Vertical

bars indicate the standard deviation around the mean values.

This likelihood appears to decrease, somewhat linearly, with N . For the longest road (10, 484 m) made of

15 links, the chi test was successful about 60% of the time. This seems to contrast with the hypothesis

that the road travel time distribution is always equal to the distribution of the progressive sum of link

travel times. We propose that the decreasing trend of the likelihood may be linked to the amount and

quality of data available. First and foremost, the link travel time distributions are extracted from the

AVI sample rather than the entire population of vehicles. if the link data are scarce, the distribution of

the sample may not coincide with the distribution of the population. Second, as the number of nodes

increases, due to the data impoverishment issue, the sample size reduces or, equivalently, the observation

time intervals [ta, tb] containing the minimum sample size becomes wider. This phenomenon can be observed

in Figure 6 (right diagram), for the 3 roads considered in our experiments. The chi square test requires

the number of observations to be large. However, as the observation time interval grows wider, the number

of observed travel times in them (30 in our case) may become insufficient for the chi square test to still

produce meaningful statistics. A third factor that may contribute to the unexpected trend of the likelihood

of p is the latency introduced by the Bluetooth scanners in time-stamping the travellers, as they enter the

scanning area. As explained by Nantes et al. (2014), this latency distorts the actual travel time distribution

and may yield a carry-over effect on the final estimated distribution.

7.2. System Robustness

In the previous section, we established that the probabilistic travel time progression can effectively be

used to estimate the road travel time distribution. The system accuracy depends on the amount of data

that is available for the sub-links, and is independent of the amount of road travel time data, for this latter
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is not even used for the estimation. In this section, we aim to show that the probabilistic travel time

progression can also be more robust, compared to methods that ignore link travel time data. Again, we will

use Dlinks to denote the set of travel times available for all links of the target road; and Droad the set of travel

times of all travellers that were detected at each node of the target road. In order to measure robustness,

each test involved considering a varying fraction ρ ∈ {0.01, 0.1, 0.3, 1} of the total number of road travel

times in Droad and Dlinks. More precisely, ρ = 0.01 indicates that 10% of the data was sub-sampled from

Droad and another 10% was sub-sampled from each link of Dlinks. These samples were chosen uniformly

at random. We repeated this process 30 times for each of the 4 values of ρ, thus generating 120 different

data sets for each one of the 3 target roads. For each data set, we used our travel time progression method

for estimating the road travel time distribution from the link data sub-sampled from Dlinks, and fitted two

different types of distributions to the road data sub-sampled from Droad. These latter were the histogram

and the kernel density distributions. We therefore measured the variation of the shape of the distributions

due to random sub-sampling, also known as variance of the sampler. In order to quantify the variation

due to random sub-sampling between two distribution arrays p and q of size L, we used the symmetric

non-negative Kullback-Leibler divergence, defined as

VariabilityKL = DKL(p‖q) +DKL(q‖p) (21)

where

DKL(p‖q) =

L
∑

i=1

pi ln
pi

qi

(22)

Figure 7 shows examples of the density function estimates using a histogram distribution (a), a kernel

density function (b) and our approach (c), for a given road, upon a given observation period [ta, tb] and for a

given ρ. The smaller the value of the divergence measure, the more similar p and q are to each others. This

divergence was computed for each value of ρ, across all distributions of the same type — i.e. histogram,

kernel or probabilistic travel time progression (PTTP) – produced from the 30 tests and across various

observation time intervals. The outcome of the robustness tests is shown in Figure 7-d.

7.3. Probabilistic Outlier Detection

Besides being a robust mechanism of travel time estimation over long roadways, the probabilistic frame-

work introduced here can also be used to determine the boundaries that best separate valid travel time data

from outliers. By outliers, we mean travellers whose travel time diverges significantly from the one of the

target class (or classes). We have seen earlier that the AVI data concerning the whole road, Droad, consists

of departure times from origin ε1 and related total road travel times τ1:N . Using the travel time progression

applied to the link data Dlinks, we wish to determine whether the measurement x = (τ1:N , ε1)
T ∈ Droad is

likely to be normal or anomalous, i.e. an outlier. Precisely, we are interested in the probability of x which,
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(a)

(b)

(c)

(d)

Figure 7: Robustness tests. (a) Histogram distribution fit using only 30% (ρ = 0.3) of the data in Droad. (b) Kernel distribution

fit using only 30% of the data in Droad. (c) Distribution estimation using our Probabilistic Travel Time Progression (PTTP)

and only 30% of the data from each link in Dlinks. The difference across tests 1 through 4 is due to random sub-sampling.

Observation intervals [ta, tb] are fixed for all tests. (d) Variability of the travel time distribution across all tests, as a function

of the fraction ρ of total sample size. This plot, being in log-scale, shows the values of VariabilityKL + 1.
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by using the chain rule, can be expressed in the form

Pr(x) = Pr(T1:N = τ1:N , E1 = ε1) = Pr(T1:N = τ1:N | E1 = ε1) Pr(E1 = ε1) (23)

The posterior over road travel time is given by the probabilistic progression mechanism presented earlier.

The prior probabilities Pr(E1 = ε1) are estimated from the data in Droad. Clearly, the smaller Pr(x),

the higher the chance that the point is an outlier. Thus, the decision on whether to retain or reject x

can be based on a threshold. Accordingly, any observation x whose probability is below that threshold is

considered anomalous and thus rejected. An example of this type of outlier detection is depicted in Figure 8.

In literature, it is common to resort to the Median Absolute Deviation (MAD) and other similar statistics, in

(a)

(b)

Figure 8: Probabilistic Outlier Detection. (a) AVI data from travellers that have traversed the entire road stretch (dots). The

surface of the joint probability Pr(x) is shown in the background; darker regions indicate higher probability values. (b) Outliers

(crosses) are the points in Droad whose probability is below a threshold (9× 10−10 in this case).

order to effectively remove outliers, prior to any travel time analysis (Ban et al., 2010). The outlier detector

proposed here uses the distributions produced by the probabilistic travel time estimator and does no require

additional parameters to tweak. By definition, anomalous travel times lie in regions of low probability.

Convolving the travel time probability density functions across links has the desired effect of smoothing out

the tails of the resulting posterior distributions. As a consequence, using a simple threshold method may

suffice to effectively remove most of the “unintended” travel times. Note that by “unintended”, we mean

travel times other than the target ones. The AVI data may refer to multiple classes of travellers and travel

behaviours. These may include, for instance, temporary detours from the target road. If such events are
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rare their effect on the road travel time distribution will be negligible, due the convolution operations. By

contrast, behaviours that significantly affect the link travel time distributions may have significant impact

also on the road travel time distributions. As such, it is important to cleanse the AVI data appropriately,

prior to estimating link and corridor travel times

8. Conclusion and Future Work

In this work, we have introduced a novel off-line travel time estimation mechanism that can be used for

computing travel time distributions for long roadways, from historical link-travel time data. To achieve this

aim, we have proposed a probabilistic framework which generalises the deterministic travel time progression

approach to the case of random variables. As the conventional probabilistic travel time progression method,

our method does not relies on road travel time data and is therefore expected to produce more reliable

estimates, for it effectively overcomes the AVI Data Impoverishment issue. Moreover, treating travel times

and departure times as random variables enables handling arbitrarily complex distributions that real AVI

data may exhibit. We have tested our system on real Bluetooth data, available in the Brisbane metropolitan

area. From our tests, we found that our distribution estimates are consistent with the travel times that are

actually observed for the entire road. Like any other data-driven estimator, the accuracy of our method is

linked to the amount of data that is available. Nevertheless, we have shown that the travel time distributions

estimated through probabilistic travel time progression are generally more robust to sample size changes, in

the sense of Kullback-Leibler divergence, compared to those that are learned directly from the road travel

time data. Finally, we have shown how the distributions produced through our framework can be used to

discern between normal and anomalous travel time behaviours hidden with historical AVI data.

In this paper, we have assumed that the sampling error proper to the AVI scanners can be neglected. In

our future research, will relax this assumption by incorporating the effect of the sampling error on the final

travel time distribution.
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