The

University

yo, Of
Sheffield.

This is a repository copy of Derived A(infinity)-algebras in an operadic context.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/100688/

Version: Accepted Version

Article:

Livernet, M., Roitzheim, C. and Whitehouse, S. orcid.org/0000-0002-7896-506X (2013)
Derived A(infinity)-algebras in an operadic context. Algebraic and Geometric Topology, 13
(). pp. 409-440. ISSN 1472-2739

https://doi.org/10.2140/agt.2013.13.409

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

arXiv:1110.5167v3 [math.AT] 9 Oct 2012

Derived A-infinity algebras in an operadic context

MURIEL LIVERNET
CONSTANZE ROITZHEIM
SARAH WHITEHOUSE

Derived A-infinity algebras were developed recently by Sagave. Tdwiantage over classicAtinfinity
algebras is that no projectivity assumptions are needetltly sninimal models of differential graded
algebras. We explain how derivédinfinity algebras can be viewed as algebras over an operade M
specifically, we describe how this operad arises as a résolaf the operadd.As encoding bidgas, i.e.
bicomplexes with an associative multiplication. This gaiises the established result describing the
operadA., as aresolution of the operadls encoding associative algebras. We further show that Sagave
definition of morphisms agrees with the infinity-morphisnfs dA,, -algebras arising from operadic
machinery. We also study the operadic homology of deri&ddfinity algebras.
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Introduction

Mathematical areas in which., -structures arise range from geometry, topology and reptaton theory
to mathematical physics. One important application is eéodtudy of differential graded algebras VAg, -
structures on their homology algebras. This is the theomypiofmal models established by Kadeishvili in
the 1980s Kad8(. However, the results concerning minimal models all hataer restrictive projectivity
assumptions.

To bypass these projectivity assumptions, Sagave recdatlgloped the notion of derived,-algebras
[Sagl1l(Q. Compared to classic#l,, -algebras, derived., -algebras are equipped with an additional grading.
Using this definition one can define projective resolutidmest are compatible with\.-structures. With
these, Sagave established a notion of minimal models fierdiitial graded algebras (dgas) whose homology
is not necessarily projective.

Sagave’s descriptions of derivedl,, -structures are largely formula-based. In this paper, vezige an
alternative description of these structures using oper#ds not hard to write down an operath,, that
encodes derived -structures, but we also explain the context into which dpisrad fits. The category we
are going to work in is the category BiCompf bicomplexes with no horizontal differential. We will sta
from an operadi.As in this category encoding bidgas, that is, monoids in bidengs (see Definitio.3).
Our main theorem shows that derivAd, -algebras are algebras over the operad

dA, = (d A = Q((dAS)).
This means that the operald\,. is a minimal model of a well-known structure.

We can summarize our main result and its relation to theickssase in the following table.

underlying category opera@ O-algebra
differential gradedk-modules As dga
A A.--algebra
BiCompl|, dAs bidga

dA derivedA.-algebra




We hope that this provides a useful way of thinking aboutweeriA -structures. It should allow many
operadic techniques to be applied to their study and we giweexamples. Firstly, we note a simple
conseqguence of the homotopy transfer theorem. Secondlyewatap operadic homology of derivell, -
algebras and relate this to formality of dgas.

This paper is organised as follows. We start by recalling espmevious results in Sectidh In the first
part we summarise some definitions, conventions and resdist derivedA..-algebras. The second part
is concerned with classica.-algebras. We look at the operadls encoding associative algebras and
summarise how to obtain the operAgd, as a resolution of4s.

In Section2 we generalise this to the operais. More precisely, this operad lives in the category of
bicomplexes with trivial horizontal differential. It endes bidgas and can be described as the composition
of the operad of dual numbers apts using a distributive law. The main result of this sectionasputing

its Koszul dual cooperad.

Section3 contains our main result. We describe the opetad, encoding derivedd,, -algebras and show
that it agrees with the cobar construction of the reduced#ladual cooperad ofl.As.

In Sectiord we considero-morphisms and show that they coincide with the derifggdmorphisms defined
by Sagave. We also give an immediate application of the dgeepproach, by deducing the existence of a
dA.. -algebra structure on the vertical homology of a bidga oviezld from the homotopy transfer theorem.

In Sectionb, we study the operadic homology of derivAgd, -algebras. By comparing this to the previously
defined Hochschild cohomology drfW11], we deduce a criterion for intrinsic formality of a dga.

We conclude with a short section outlining some areas faréuinvestigation.

The second author was supported by EPSRC grant EP/G051348/1

1 A review of known results

Throughout this paper l&k denote a commutative ring unless stated otherwise. Allagseconsidered are
non-symmetric.

1.1 DerivedA, -algebras

We are going to recall some basic definitions and resultgdagaderivedA,, -algebras. This is just a brief
recollection; we refer to§aglQ and RW11] for more details.

We start by consideringN| Z)-bigradedk -modules

A= P A

iEN,jeZ



The lower grading is called theorizontal degreeand the upper grading theertical degree Note that the
horizontal grading is homological whereas the verticatlgrg is conomological. A morphism of bidegree
(u, V) is then a morphism of bigraded modules that lowers the bota degree by and raises the vertical
degree by. We are observing thikoszul sign rulethat is

(f o gx@y) = (~1PFI () © gy)

if g has bidegreep;q) and x has bidegreei(j). Here we have adopted the grading conventions used
in [RW11.

We can now say what a derivedl,, -algebra is.

Definition 1.1 [SaglQ A derived A-structure (or dA, -structurefor short) on an i¥,Z)-bigradedk -
moduleA consists ok -linear maps

mj A% — A
of bidegree i; 2 — (i + j)) for eachi > 0, > 1, satisfying the equations
(1) Z (_1)rq+t+pj m (1®I’ ® Mpg @ 1®t) -0
u=i+p,v=j+q—1
j=1+4r+t

forall u> 0 andv > 1. A dA.-algebrais a bigradedk -module together with @A -structure.

Definition 1.2 [Sagl0 A map of dA,, -algebras from A&, n’*) to (B, mP) consists of a family ok -module
mapsf : A®l —; B of bidegree i(1 —i —j) with i > 0,j > 1, satisfying

) > CDMHIGAT emy 1) = > (1) Mg, @ - @ Tyg),
u=i+pv=j+g-1 u=i+pr+-+pj,
J=14rt V=01 -+
with

i—1 j
o=utd (PG +K (D Pst G-

k=1 s=k+1

Sagave does not define composition of mapsAf,-algebras directly in terms of this definition. Instead
this is done via a certain reformulation as maps on the retliteresor algebra; se&§g10 4.5]. It follows
that dA -algebras form a category.

Examples ofdA,, -algebras include classical,, -algebras, which are derivell,, -algebras concentrated in
horizontal degree 0. Other examples are bicomplexes agéhidch the sense of the following definition.

Definition 1.3 A bidgais a derivedA,, -algebra withm; = 0 for i +j > 3. A morphism of bidgass a
morphism of derived\, -algebrasfj with fj =0 fori+j > 2.

Sagave notes that this is equivalent to saying that a bidgarisnoid in the category of bicomplexes.

For derivedA,,-algebras, the analogue of a quasi-isomorphism is calld€) egguivalence. To explain this,
we need to discuss twisted chain complexes. The terminatagticomplexs also used for a twisted chain
complex.



Definition 1.4 A twisted chain complex @ an (, Z)-bigradedk -module with differentialsl® : C — C
of bidegree i( 1 — i) for i > 0 satisfying
> (-1)dfds =0
i+p=u
for u > 0. A map of twisted chain complexes-&- D is a family of mapsf; : C — D of bidegree i(, —i)
satisfying
> (-1fdS = D> dPf,.
i+p=u i+p=u

The composition of mapé: E — F andg : F — G is defined by ¢f), = Zi+p:u 0if, and the resulting
category is denoted tGh

A derived A, -algebra has an underlying twisted chain complex, spedifettie mapsn; for i > 0.

If f : C — D is amap of twisted chain complexes, thfgns ady-chain map andiY(fp) induces al; -chain
map.

Definition 1.5 A mapf : C — D of twisted chain complexes is af;-equivalencef HY(fo) is an
isomorphism for allt € Z and anE,-equivalencef HI(HY(fo)) is an isomorphism for ab € N, t € Z.

The first main advantage of derived,, -structures oveA,, -structures is that one has a reasonable notion
of a minimal model for differential graded algebras withaay projectivity assumptions on the homology.

Theorem 1.6 [Sagl(Q Let A be a dga ovek. Then there is a degreewiseprojective dA,. -algebraE
together with arE;-equivalenceE — A such that

e E isminimal (i.e.mp; = 0),
e E is unique up toE-equivalence,

¢ together with the differentiain;; and the multiplicationmy,, E is a termwisek -projective resolution
of the graded algebrei*(A).

The second and third authors then gave the analogue of Kadlgssformality criterion for dgas using
Hochschild cohomology. They describe derivAd, -structures in terms of a Lie algebra structure on
morphisms of the underlyingg-module A. Then they use this Lie algebra structure to define Hoclchil
cohomology for a large class of derivédl,,-algebras and eventually reach the following resBN\11,
Theorem 4.4]. Recall that a dga is called intrinsically fatifiany other dgad’ such thatH*(A) = H*(A')

as associative algebras is quasi-isomorphié to

Theorem 1.7 [RW11] Let A be a dga andE its minimal model withdA,, -structurem. By E, we denote
the underlying bidga oE, i.e. E = E ask-modules together witdA, -structure = my1 + moy. If
HHgE "(E,E)=0  form >3,

thenA is intrinsically formal.



1.2 The operad.As

The goal of our paper is to describe derivag -algebras as algebras over an operad, and to show that this
operad is a minimal model of a certain Koszul operad. Theawpér question is an operad callelds
(defined in Sectior?), which is a generalisation of the operats that encodes associative algebras. So let
us recall this strategy farls itself. For this subsection only, l&t be a field. We work in the category of
(cohomologically) differential gradekl-vector spaces, denotedldgs.

We will use the notatior (M) for the free (hon-symmetric) operad generated by a cadliedf! = {M(n) }n>1

of gradedk -vector spaces. It is weight graded by the numbef vertices in the planar tree representation
of elements ofF (M) and we denote byF (M) the corresponding gradedd-vector space. We denote by
P(M, R) the operad defined by generators and relatiofi®)/(R). A quadratic operads an operad such
thatR C F(2)(M).

Definition 1.8 The operadAs in dgk-vs is given by
As = P(ku, kas

where . is a binary operation concentrated in degree zero,ane o1 1 — p o2 . The differential is
trivial.

Itis easy to verify that apds-algebra structure on the differential graded/ector spacé, i.e. a morphism
of dg operads

As 2 Enda,
endowsA with the structure of an associative dga, with multiplioati

d(p) : A®2 — A

Theorem 1.9 The operadAs is a Koszul operad, i.e. the map of operads iik-gg
Q(AS) — As

is a quasi-isomorphism. Furthermore, an algebra 6)Mets') is precisely am,, -algebra.

Here, a quasi-isomorphism of operads is a quasi-isomarphisdg-k -vector spaces in each arity degree.
We do not recall the definitions of the Koszul dual cooperadi (or the cobar constructiof(—) here.
(This is going to be discussed in greater detail for our camtpans later). Let us just mention now that the
cobar construction of a cooperad is a free graded operadvedwith a differential built from the cooperad
structure, so we can think of the map above as a free resolofithe operad4s. This result can be proved
using beautiful geometric and combinatorial methods ssdie Stasheff cell complex. Unfortunately, the
derived case will not be as obviously geometric.

Our aim is to create an analogue of the above for the deriveel cBhe first step is to consider working in
a different category - instead of differential gradeerector spaces, we consider a category of graded chain
complexes over a commutative rifkg



The role of As in this case is going to be played by an operads, which encodes bidgas rather than
associative dgas.

The first goal is showing that.As is a Koszul operad, i.e. that
(dAs)s, = Q((dAg)') — dAs

is a quasi-isomorphism of operads in an appropriate categle are going to achieve this by “splitting”
dAs into two parts, namely the operad of dual numbers ddtself, via a distributive law.

Secondly, we are going to compute the generators and diffatef (d.4s)., explicitly, so we can read off
that ([d.As),-algebras give exactly derivedl,,-algebras in the sense of Sagave.

Our work will show that the operad controlling derivéd, -algebras can be seen as a free resolution of the
operad encoding bidgas, in the same sense that the classicaperad is a free resolution of the operad
encoding associative dgas.

2 The operadd.As

In the first part of this section, we recall some basic notiabsut the Koszul dual cooperad of a given
operad and we compute the Koszul dualdds. Further details can be found ifrle04, which covers
Koszul duality for operads over a general commutative giaimg. We also refer to the book of Loday and
Vallette [LV12].

We are first going to specify the category we work in. AgaihKklde a commutative ring.

2.1 \Vertical bicomplexes and operads in vertical bicompleas

Definition 2.1 The category of/ertical bicomplexediCompl, consists of bigraded#-modules as above
together with a vertical differential _ _
da: A{ — A{-H'

of bidegree (01). The morphisms are those morphisms of bigraded modulasncing with the vertical
differential. We denote by HomA( B) the set of morphisms (preserving the bigrading) frarto B.
If c,d € A have bidegreecq, c) and @, d») respectively we denote bg||d| the integercid; + cpd;.
We define a degree shift operation on BiCopgs follows. LetA € BiCompl,. ThensAis defined as

(A} = AT
with

dsa(sX) = —s(daX).

Soif c € A'is of bidegree ¢, ¢;), thensc € sAis of bidegree ¢, c, — 1).

This shift is compatible with the embedding of differentgiaded complexes into BiCompbiven by
C,=C'andC, =0, if k> 0.



The tensor product of two vertical bicomplexasandB is given by
AeB)y= P AoB]
i+p=u,j+0=v
with dagg = da®@ 1+ 1®dg : (A® B)) — (A® B))tL.

Note that BiComp) is isomorphic to the category &f-graded chain complexes &Fmodules.

There are two other sorts of morphism that we will considegrland we introduce notation for these now.
(Various alternative choices of notation are used in tleediure.) LetA andB be two vertical bicomplexes.
We write Honk for morphisms ofk -modules. We will denote by Mo#( B) the vertical bicomplex given
by
Mor(A, B)}, = | [ Homk(AZ, BL ),
a,

with vertical differential given bydyor(f) = dgf — (—1)fda for f of bidegree I( j).
We will denote byHom(A, B) the (cohomologically) graded complex given by

Hom(A, B) = ] [ Hom(AZ, B3 ™),
a7ﬁ
with the same differential as above. One has

Hom(A, B) = Mor(A, B)9 and  Hom(A, B)* = Mor(A, B);.
Definition 2.2 A collectionin BiCompl, is a collectionA(n),>1 of vertical bicomplexes. We denote by

CBiCompl, the category of collections of vertical bicomplexes. Thasegory is endowed with a monoidal
structure, the plethysm given by, for any two collectidisandN,

MoN)N = B MK &NI) - &N
K, ly+-+lg=n

The unit for the plethysm is given by the collection

|(n):{0’ if n £ 1,

k concentrated in bidegree,®@, ifn=1

Given two collectionsA and B in BiCompl,, one can consider again the three collections
e Hom(A, B)(n) := {Hom(A(n), B(n) }n>1 in the category ok-modules,
e Mor(A, B)(n) := {Mor(A(n), B(n)}n>1 in the category of vertical bicomplexes and
e Hom(A, B)(n) := {Hom(A(n), B(n) }n>1 in the category of complexes.

Definition 2.3 A (non-symmetric)operadin BiCompl, is a monoid inCBiCompl,. This is the usual
definition of operads in the symmetric monoidal categoryC@npl,, ®).

For a vertical bicompleXA, theendomorphism operaBinda is the operad in vertical bicomplexes given by
Enda(n) = Mor(A®", A), where the operad structure is given by the compositionarimisms, as usual.



2.2 The operadd.As

We now describe the operad in BiComphat encodes bidgas.

Definition 2.4 The operadl.As in BiCompl, is defined asP?(Mg.4s, Rq.4s) Where

0, ifn> 2,
Ma.4s(n) = < kmg, concentrated in bidegree,®), if n= 2,
kmy; concentrated in bidegree,@), ifn=1,

and
Ras = k(Mp2 01 Moz — Moz 02 My2) @ kMé; @ k(Mg 01 Mop — Mo 01 Myg — Mo 02 My1),

with trivial vertical differential.

This operad is clearly quadratic.

The following result is now essentially a matter of definisobut we include the details for completeness.

Proposition 2.5 The category ofi.As-algebras in BiComplis isomorphic to the category of bidgas.

Proof A d.As-algebra structure on a vertical bicompl&xs given by a morphism of operads
0 : dAs — Enda.

SinceA is a vertical bicomplex, itisN, Z)-graded and comes with a vertical differential = d of bidegree
(0,1). From the images of the operad generators we have morphism

m= 6(mgy) : A®? — A,
d"=6(my) 1 A— A,
of bidegree (00) and (10) respectively.

The operad relations tell us precisely thais associative, thad" is a differential and thad" is a derivation
with respect tom. The fact that is a morphism of operads in BiComypland that the differential on each
d.As(n) is trivial, gives us two further relations:

aMOI’(m) - 07
Aor(d") = 0.

The first of these relations tells us thditis a derivation with respect tm and the second tha'd"—d"d” = 0.
This givesA precisely the structure of a bidga (with exactly Sagavejs sonventions).

A morphism ofd.As-algebrasf : A — B is a map of vertical bicomplexes which also commutes with
andd". This is precisely a morphism of bidgas. O



Let us describe the operaii4s in a little more detail. Letm, denote any K — 1)-fold composite ofimps.
(Because of the associativity relatian, does not depend on the choice of composition.) Due to thdfiei
rule relation” every element alAs in arity k can be written as &-linear combination of the elements

me(myy, ..., m
with ¢ € Z/2. The partial composition is given by
my(mey, ..., mEL) o m(met, ... mik
k
€j— o Os+1 o) €i ¢ .
1 S;1(—1)5mk+|_1(m§11, Myt miy o miy o mi mi ), if e =1,
€ s 0 € 3 ;
Mt 1M, oo Mgt mi s, mit L mi), if =0,
| k s—1
wherea = | 3~ ¢ (Z 5r> andg = > 4.
j=i+1 r=1 r=1
We see that we have an isomorphism of bigrakeahodules,
dAS(n) = k[Xl,...,Xn]/(X%,...,sz]), |X|| = (170)

determined by assigning the monomi&l . . . X" to the elementm,(mf, ..., m).

Let D denote the operad of dual numbers in the category of vetiicamplexes, namely
D = P(kmyy, kmg,)
with trivial differential.

We can now reformulate the above descriptiomdfs in terms of plethysm and distributive laws; s€¥12,
8.6].

Lemma 2.6 The map
p:DoAs— AsoD

determined by
(1 My1 01 Moz — Mp2 01 My1 + Moz 02 M1

defines a distributive law, such that the induced operadtsirel on.Aso D coincides with the operad.As.

Proof We adopt the notation and terminology a¥[12, 8.6.3]. We define

@ - kmyg o(1y KMoz — Kmoz o(g) kKmyg

as above. This gives a rewriting rule for the quadratic aer® and As and it is clear thatdAs is
isomorphic toAs Vv, D. From the description of the operatids above, we see that the induced map
AsoD — AsV, D = dAsis an isomorphism. So, byy12, Proposition 8.6.4]y induces a distributive
law and an isomorphism of operagtso D — AsV, D. O

10



For P = P(M, R) a quadratic operad, th€szul dual cooperadi of P is given by
Pl = C%(sM, &R).

Here C°(E, R) denotes the cooperad cogeneratedebwith corelationsR. (For a description sed.Y12,
Section 7.1.4].)

There are two ways of describing the cooperddsg)', either by describing the distributive law
Dio As' — AS o Di
or by describing the elements 6f(s(kmy1 ® kmgy), Ry.4s) in the cofree cooperad(s(kmy; @ kmpy)).
The first description implies that for every (dAs)i(n) is a freek-module.
Proposition 2.7 The underlying collection of the cooperads' is isomorphic to that of
Dio As = K[pu11] 0 AS

where 11 has bidegree (1-1). Hence, as &-module, @.As)i(n) is free with basis given by elements,
of bidegree i(1 — i — n). These elements are in 1-to-1 correspondence with theeslsrs(my1)' o zin in
Dio As'.

Proof The first part of the claim follows from Lemn#a6, sinced.As = Asv,, D and by [V12, Proposition
8.6.15], there is an isomorphism of underlying collectigrs v, D)! = Di o As'.

The cooperad structures @fi and As are well-known and can be shown by induction with the methods
used in Theoren2.8. In arity n, Asi(n) is a freek-module on the generatqi,. The elementu, has
bidegree (01 — n). The cooperadDi is concentrated in arity 1. It is the free cooperad on the igeoe
smy1. This implies that ¢.As)i(n) is free on the images;, in (dAs)i(n) of the generators

(M)’ o in € (D' 0 AS)(n).
We can read off a generator’s bidegree as

[Vin| = i(jmya| +[9]) + |pnl = (i, 1 =i —n).

Notation LetC be a cooperad ande C(n). We are going to describe the cocomposition

A:C—CoC.
We write
AQ =) gia.
Is[l=n
Here,l = (iy, ...,ij) is aj-tuple with |I| =iy 4 --- +1ij, and

G =0,® - ®¢ eC.

If C = F°(V) is a cofree cooperad cogenerated by a collectiohen it has a description in terms of trees
whose vertices are labelled by elements/gfsee [V12, 5.8.7]. Moreover ifV(n) is a freek-module for
eachn, then so isC(n), and a basis as a frdemodule is given by planar trees whose vertices are labelled

11



by a basis o/ . If the root of such a tree has arikyand is labelled by we denote it by(t?, . . ., tX) where
t!, ...tk are elements of = F°(V). Remembering that

At =)t

one obtains the formula

@) AV ) =Livh )+ Y (- 1)— "‘(Z'“')(,-ll,...,,k)t.l SRt

We now compute the full structure ofl4s)i. From Propositior2.7 we already know the structure of its
underlying bigraded -modules, and we can usg) o write down the cocomposition of its basis elements.

We remark that we have chosen to work directly with the coaped.As)i, rather than with the operad
(d.As)'. This is to avoid taking linear duals, which can be badly bebizover a general ground ring.

Theorem 2.8 The cooperaddAs)' is a sub-cooperad oF¢(sMy 4s) with trivial differential. Its underlying
collection consists of freé&-modules with basigzjj,i > 0,j > 1} such thatuo; is the identity of the
cooperadyigz = SMyz and p111 = sSMi1 € FE(sMys). The othery; are defined inductively via

pir = p11(pi-1,1), fori > 1,
MOI’] = Z (_1)p(q+l)M02(M0pa NOq)a for n 2 27
p+g=n
pi = paa(piong) + > (L)l o, ), fori > 1, > 2
o)
The elementy; has bidegreei(1 —i — j). These elements satisfy
(4) Apw) = Y (@O0 @@ g,
i+p1+--Hp=u
R
where
j—1
X ((pr, ), -- - (0, ) = Z\Sﬂpqu\(z rup|q|\)+§jpk<2 q)
=1 I=k+1 k=1  I=k+1
(5)
j—l
= > o+ a0 + 1) + Z(p|+q|)).
k=1 I=k+1

Proof Firstly we are going to show that those inductively defineene#nts form a sub-cooperad of
F%(sMy4s). Then we will see that this sub-cooperad contains the aiadrelationss’Ry4s. Together
with Proposition2.7, this means that it must bel4s)i itself.

For the first part we have to prove formul§,(which is done by induction oo + v.

One has

AQma) = > pins pp
i+p=u

which is proved by induction from the definition

put = paa(fu—1,1)-

12



The case ofA(ugy) is similar to the general cas®(uyy), SO we only prove formulad] for u > 1, v > 2.

We would like to prove that
AQuw) =D 0 O,

where the sum is taken ovefj, | = ((p1, o), - - -, (9, Gj)) such that + >, pk =u, >, G = V.

By formula @) we have

6) Apn) = A <u11(uu_1,v)+ > (—1)'%“‘W'“Wuoz(urs,mw))

r+t=u,s+w=v

We will evaluate the summands on the right hand side of thealfmrmula separately using induction
together with formulag).

Assume that we have proved) for all ju with k+ | < u+ v. This implies that

A(pu—1v) = Z(—l)x(l),ui—l,j:ul-

Applying formula @) allows us to relate this ta\(1111(u—1,v)) With the result that
A(p11(pu—1v)) = pots paa(pu—1,v) + Z(—1)0(—1)X(I)Mll(ui—l,j); p -

Thus we have computed the first summand&)f (As for the second summand, the induction assumption
gives us

Aprs) =Y (1D pprsm, and Auw) =Y (=1 D puys:
with I = ((P1, Q1), - - -, (P-07)) andlz = ((Pr+1, Gr+1), - - -, (B}, Gj)) . Putting this in 8) gives
XT: ‘;U'kaIk”/JW(S‘ X(| )+X(| )
A(po2(pirs, pw)) = Z:(—l)k:1 (=12 oo pr s pys); g @ puy
+ pos fo2(frs fiw)-
We will feed these computations back in®) @nd work out the signs to obtain the desird)l (Leti > 1

andj > 2. We are interested in computing the signs in front of elesenthe typey11(ui—1;); 1 and of
the typejioa(ipr, 1ys)s 111 Where

pty =
7"1‘5 - j7
I = ((p1,q0),---, (P, )

For the first type the sign is{LY*("). For the second type the sign is of the forml)" whereY is computed
mod 2:

13



.
Y = |spurs|liw] + W+ pql 6] + X(12) + X(12)
k_

= [Spurs||puow| 4+ TW + Z |tpa |16 | + Z |Stepe( Z ltpal) + Z Px( Z a)

I=k+1 k=1 I=k+1
+ Z ‘SMPKCIK‘( Z ’NDMD‘F Z pk( Z ql)-
k=7+1 |=k+1 k=7+1 |=k+1
Let us now simplify the sigrY. Using the equalities
j T
| pw| = |ﬂ76| + Z |/‘quk|> p+ Z P =T,
k=7+1 k=1
T j
|turs| = [ppr| + Z | Z a=w,
k=1 |l=74+1

one gets

T J
Y = X(I) + [sprs| | pow| + 1w + Z |Stepe|( Z )
k=1 l=7+1

+ Z |epycl(1451) + (Z P( Z a)

1=1 =741
j

= X(1) + [8ttpr |liys| + (Sttr ] + 7ISDC D ipeal) + oW
k=141

= X(1) + [stpr || 1146 + p(6 — W) + pw
= X(I) + Istpr || 45| + pO.
Putting this together, we obtain a summand of the form
(1O ua(i—1j); u + Z (—2)ster sl 09 oo, pans)i i) = (=210 i

pty=i
T+6=]

fori > 1 andj > 2.
If j = 1, we are interested in computing the sign in front of the elehof the typeu11(ui—1,1); pu—iv if

i > 1 orin front of yuo1; puuy if | = 0. In the first case one still gets-L)*" with | = (u—i,v) as well as in
the second case.

If i = 0 andj > 1 we are interested in computing the sign in front of the elenef the typeuo2(i:or, 1105); 11
where 4+ § = j which has already been computed and coincides with theedesign. Consequently

formula @) is proved.
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Hence the collection ofij 's forms a sub-cooperad of the free coopef{sMy 4s). Furthermore it contains
PRys, since
o3 = SIp2 01 SMh2 — SMph2 ©2 SMh2,
H12 = SIM1 01 SMh2 — SITh2 01 STy — SMpp 02 SIMy g,
and pp1 = Sy o1 SMyg.
We also know that it& -module structure coincides with ttkemodule structure ofd4s)i, since thek -basis
elementsu, are in bijection with thes, of Proposition2.7.

As a consequence, the cooperad described is the coopkAm) .( O

Corollary 2.9 The infinitesimal cocomposition o 4s)' is given by

Awy(pw) = Z (— 1) AP=AHPY L 19T @ 0 @ 191,
r+q+t|:+\5).,r:Jlrjl+t:j

3 Derived A, -structures

In this section we will prove our main result, Theor8m, describing derived\,,-algebras as algebras over
the operad qA4s)»,. Again [Fre04 is our main reference for the cobar construction of a coagever

a general ground ring. We will also interpret our descriptio terms of coderivations and compare with
Sagave’s approach.

3.1 The operaddA,,

We would now like to encode derivefl,-algebras via an operad. Recall from Sectiothat a derived
A, -structure on a bigraded modukeconsists of morphisms

My (A®Y); — ATT2uY
such that fou > 0,v > 1,

Z (_1)I’q+t+pjmj (1®I’ ® My @ l®t) -0

U=i+py=j+q-1,
j=14r4t

If one considers-my; as an internal differential oA the relation reads

(—MoD) (M) — (" Y~ my (1% @ (—mop) @ 1%Y) =
r+t+1=v

(_1)u Z (_1)rq+t+pj m; (1®r ® Myg © 1®t).
u=i+p,v=j+q-1
j=14+r+4,(1,))#(0,1),(p,a)#(0,1)
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Definition 3.1 The operaddA,, in BiCompl|, is defined as the free operad
]:(krn.JV “u 2 0>V 2 17 (U,V) 7£ (07 1))7

together with the differential

Ooo(Mw) = (-1 ) (1T PImy (1%7 @ mpg @ 1%Y).
u=i+p,v=j+g-1,
J=14r+t,
(i,)),(p,0)#(0,1)
Hence it is easily verified that an algebra over the opeiad in BiCompl, is a derivedA,, -algebra in the
above sense.

For a coaugmented cooperédthecobar constructiorf)(C) of C is the operad defined a&(s1C), where
C is the cokernel of the coaugmentation, together with thiedifitial 0o = di + d»>. Here,d, is induced
by the infinitesimal cocomposition mafy;) of C andd; is induced by the internal differential of itself.
Note that in our cas€ = d.As, this internal differential is trivial.

We can now state the main result of our paper.

Theorem 3.2 The operadsdAs),, = Q((dAs))) and dA,, agree. Hence, a derivedl, -algebra is a
(d.As),-algebra.

Proof By definition, ((d.As)) is the free operad on the shift (d.As)i. Let us denote its generators by
pij =S pij, fori>0,j>1i+j#L

The elementg.; were described in Theoreth8. The elemenpy; obviously has bidegree,@ —i —j).

Recall that ifC is a coaugmented cooperad then the differential2d) is obtained fromA ;) as follows.
Assume
Ag© =) 1% ®¢g o1,

then
da(stc) = z:(—1)|sfl”°i|s‘1ci(1®r ® s g ©1%Y).

From Corollary2.9 one gets

dalpw) = — Z (=) AP-FPEHH 5 (197 @ oo @ 101
u=i+pv=j+09-1,

=141+,
(1.1):(p,0)#(0,1)
_ (_1)u Z (_1)I'q+pj+tpij (1®I’ ® ppg ® 1®t).

u=i+p,v=j+q-1,
=14,
(i.1),(p,9)#(0,1)

This is the definitior8.1 of the operaddA . O

(7)
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Recall that a quadratic operdd is Koszulif the map of operads
Poo = QP — P
is a quasi-isomorphism.

Proposition 3.3 The operaddAs is Koszul. ThusdA,, is a minimal model ofdAs.

Proof We know thatd.As = Do As by Propositior2.7. The operad® and.As are Koszul. Using Theorem
8.6.11 of LV12], dAs is Koszul. O

Remark If we do not put in the multiplication and consider just thegm D, = QD' in BiCompl,, we
obtain an operad whose algebras are precisely the twisted camplexes. This can be seen either directly
as a bigraded version dfy12, 10.3.17] or by tracing just the= 1 parts of the structure through our results.

3.2 Coderivations and Sagave’s approach

We now relate derivedA-structures to coderivations. In the classical case Aanstructure on the
differential gradedk -moduleA is equivalent to a coderivation of degred. on the reduced tensor coalgebra

d: T (sA — T°(sA such that d® = 0.
Sagave generalised this viewpoint to derivig -algebras in the following wayJaglQ Section 4]. A
derived A, -structure on the bigradekl-moduleA is equivalent to a coderivation of degred

T°sA d TsA
N N
TOsA) @ T (sA) —2H190 75 p) & TS(sA)

such that T¢(SA), d) is a twisted chain complex, see Definitiadr, [Sag1Q Lemma 4.1]. The definition of
a differential of a twisted cochain complex differs from tenditiond? = 0 by signs.

Our approach varies from this. In the setting of associatigebras in dg¢-modules, one has
AS(A) = T (sA).

However, (l.AS)i(A) is notgiven by7_‘c(sA) in the derived setting - we showed its structure in Theo2e8n

So in our setting, a deriveA,-structure on the vertical bicompleX is given by a coderivation of degree

+1
d

(dA9(A) (dA9(A)
Aq) Ag)
((dAS) o) (AAS))(A) 27208 (A o) (dAST)(A)

such thatd® = 0. Comparing those two equivalent conditions we see thewiiig. Sagave’s description
has the advantage of a much easier coalgebra structure thvbilsomplexity of the derived\-structure
is encoded in the more complicated condition that a cod@wivehas to satisfy. In our description, a
coderivation has to satisfy the relatively simple conditid? = 0 while the complexity lies in the more
complicated coalgebra structure.
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4  Infinity morphisms and an application

The main purpose of this section is to descrikemorphisms of d.As)., = dA,.-algebras, and to prove
that they coincide with the derivedl,,-morphisms defined by Sagave. At the end of the section, vesagiv
application of the homotopy transfer theorem.

4.1 Infinity morphisms

Using the language of operads, the natural notion of monpbistween twalA,. -algebrasA andB is a map

f : A — B respecting the algebra structure. This is the notion ofiet strorphism. However, in the context
of P -algebras wheré® is a Koszul operad, there is also a more general notiar ehorphism, which is
more relevant to the homotopy theory B, -algebras; see, for exampl&éM12, Section 10.2]. In the case
of A -algebras, this gives rise to the usual notiorAgf-morphism between twé., -algebrasA andB and
this can be formulated as a morphism of differential gradsgebras between the bar construction@\of
andB.

As seen at the end of the previous sectiodAg, -structurem on the vertical bicompleA is equivalent to a
square-zero coderivatidd, of degree+1 on the (.As)i -coalgebra d.As)i(A). This coalgebra corresponds
to the bar construction foh,, -algebras in our framework. This lends itself to the follogyidefinition.

Definition 4.1 Let (A, m) and B, ') be dA,.-algebras. Amo-morphism of dA, -algebrasis a morphism
F : ((dAs)'(A),Dm) — ((d.As)'(B), D)
of (d.As)i-coalgebras.

We will interpret this definition in terms of twisting morg@ms, but first, we give a recollection of some
facts based on the book of Loday and Vallette, adapted tcdtegory of vertical bicomplexes. We will need
these as a basis for our computation.

Definition 4.2 Let (C,d¢) be a cooperad andP(dp) an operad in vertical bicomplexes. Following the
notation of Sectior2.1, we consider the collection in complexétom(C,P). It is a differential graded
operad called theonvolution operad

There is an operatior on Hom(C, P) defined by

A fo
frg:C =2 ConyC 2 PoyyP 19 p,

where A1y and 1) are respectively the infinitesimal cocomposition and cositfom maps. As inl[V12,
6.4.4], this determines the structure of a differentialdgeh pre-Lie algebra o[, Hom(C,P)(n). The
associated differential graded Lie algebra is calledcthresolution Lie algebra

Definition 4.3 A twisting morphisms an elementy of degree 1 in the compleldom(C, P) satisfying the
Maurer-Cartan equation
o) +axa=0.

We denote the set of twisting morphisms by Twp).

18



By construction, the cobar constructiéhsatisfies
HomBiCompL,—op(Q(C)> P) = Tw(C, P),

where the left-hand side means morphisms of operads ircaketiicomplexes. This means thatdd. -
structurem on the vertical bicomplexA, that is, a square-zero coderivati@), of degree+1 on the
(dAs)i-coalgebra d.As)i (A) as seen at the end of the previous section, is equivalenistng morphism

©m € Tw((dAs)i, Enda).

Let A and B be vertical bicomplexes, and let Ehda collection in vertical bicomplexes, be given by
Ends(n) = Mor(A®", B).

The vertical differential is given by
n—1
O(f) = daf — (1) D _fA®¥ @ da@ 1"V
v=0

for f in arity n and bidegreei(j).
Forf € Hom((d.As)', Endg) andy € Hom((dAs)i, Enda), the mapf * ¢ is given by the composite
frp: (A9 22 (dAS) o) (dAY Y% Ench o Ench & Ench

wherep is induced by the composition of maps. Similarly, fore Hom((dAs)', Ends) andf as above,
Y ®f is given by

p®f: (dAY D ([dA9) o (dA9) s Ends o Endh 2 Endh

where \ is given by composition of maps.

Now let
omp € TW((dAs), Endy) and g € Tw((d.A9)', Ends)

be dA. -structures on the vertical bicomplexésand B respectively. By [V12, Theorem 10.2.6], an
oo-morphism
F : (dAs)'(A) — (dAs)i(B)

of dA,,-algebras is equivalent to an elemént Hom((d.As), Endg) of degree 0 such that
f o — onp @ F = O(f).

(note that the vertical bicomplexl.ds)i(n) has trivial differential). Taking this into account weiaer at the
following.

Theorem 4.4 An oco-morphismf : A — B of dA, -algebras is a morphism of deriveéd,, -algebras as
defined by Sagave, that is, a collection of maps

fow:A®Y — B

of bidegree (, 1 — u — V) satisfying equation 2) of Definition 1.2
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Proof Assume thaf : (d.As) — End; satisfies

fxom—omp®f=0(f).
We know the structure ofi(4s)i from Theoren®.8. The underlyingk-module of . As)! is free on generators
tuy Of bidegree @, 1 — u — v). Write
fuv := ()
and recall thatpa(uij) = ﬁ'ﬁ‘ and ope(ui) = I’T]IJ?’
Using the formulas given by Theore?8, Corollary2.9and because,y is of bidegree (01) we obtain
(f = Spm“)(NUV) — Z (_1)r(1—P—Q)+Pt+l+i+jfij (1®F Q nﬁq ® 1®t)

u=i+p
v=jt+g—Lj=r+t+1

_ Z (_1)rq+pj+t+Ufij (1®I’ ® n.éq ® 1®t)
v:j+qLL:1I,J+:pr+t+1

and
(e ® D) = 3 (1 MP(fpq, ® - @ fyq)
where i1 J_
X = X((Pr, G, o (B,) = D e+ GG+ K+ Y (P+a)).
Ao k=1 I=k+1

v—1
aEnd(f)(,qu) = dBfuv - (_l)1+u+v Z fuv(]-®I b2y dA & 1V_|_1)-
=0

With da = ny); anddg = mg;, this equals

v—1
Oend(f) (1uv) = Mpy(fu) — (DYDY (1% @ gy @ 1771,
=0

Putting this together, we arrive at
(_1)u Z (_1)I’C|+t+pjfij (1®r ® n.éq ® 1®t) — Z(_l)u(_l)anﬁg(fplql R ® fijIj)

u=i+p
V=j+0—1,14r+t=]

which is exactly formulaZ) of Sagave’s definition. O

4.2 The homotopy transfer theorem ford.As

As an immediate application of our operadic description,car apply the homotopy transfer theorem;
see [V12, Section 10.3]. To do so, we will need to now work over a grofieldl. Although this takes us
out of the context which motivated the introduction of dedh\A,-algebras, it nonetheless gives us a new
family of examples.

Let P be a Koszul operadyV a P, -algebra and/ a homotopy retract ofV. Recall that &P, -structure
on W is equivalent to an element € Tw(Pi,Endy). The homotopy transfer theorertM12, Theorem
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10.3.6] says that the homotopy retra¢tcan be given &, -structure by the twisting morphism given by
the following composite

Pi & FoP) T2, Fo(sEndy) ¥ End,.

(The mapA is the coproduct map defined ibnM12, 5.8.12].) Moreover there is a standard way to interpret
this formula in terms of the combinatorics of trees.

We adopt the usual notation for this setting: we have thaugichi : V — W and projectionp : W — V
such thatpi is the identity onV, and a homotopyh : W — W betweenip and the identity onw,

lw—ip = dwh + hdy.

As a special case, we consider= d.As and we letV = A be a bidga over a field. The vertical homology
W = HY(A) of A is a homotopy retract and we therefore obtain a derifgdalgebra structure on this.
Write dn, = my1 for the horizontal differential andh = my, for the multiplication. Making the transferred
structure explicit for this special case yields the follogi

Proposition 4.5 There is a derivedA,-algebra structure on the vertical homologly(A) of a bidgaA
over a field, which can be described as follows. We obtajnas a (suitably signed) sum over the maps
corresponding to planar trees witheaves, where each vertex has been assigned a weight of 2ithe3,

and the number of vertices of weight 2iisThe procedure for assigning a map to such a tree is as follows
We adorn the trees with the man the leaves, the mgpat the root and the malp on internal edges. On
vertices, we put the multiplicatiom at every vertex of weight 3 and the horizontal differentglat every
vertex of weight 2. O

This construction specializes to tiAg.-case which involves binary trees with no vertices of deg@e&hat
is, we recover the expectel, -algebra structure on the part concentrated in degre¢g fee [V12, 9.4.4,
10.3.8].

The signs can be calculated recursively from the explignsiappearing in the formuld)(for A.

5 Operadic and Hochschild cohomology

In this section, we compute the tangent complex of a derivgdalgebraA, define the Hochschild cohomol-
ogy of A and make the link with the formality theorem &\[V11]. Hochschild cohomology has previously
only been defined, irHW11], for a special class of derived, -algebras, the “orthogonal” ones.

Given a vertical bicomplex, the trigradedk -moduleC;* (A, A) is defined by
C(A, A) = Mor(A®", A);.
We will describe a graded Lie structure @H**t1(A, A), where the grading is the total grading
ciaAn =] J] clnanA),

n>1 k,jlk+j+n=N

that is, an element iﬂ:{("j (A, A) hastotal degree j{ k + n.
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5.1 Lie structures

Let us make explicit Definitiod. 2for the differential graded pre-Lie structure pfy, Hom((d.As)i, Enda)(n).

From Corollary2.9, knowing the infinitesimal cocomposition od.As)i, thex operation orHom((d.As)i, Enda)

is given by

8) (f * 9) () = > (— 2y pratpeHallile () (1°" © g(upg) @ 1),
j=14r+t,u=i+p,v=r+g+t

where|g| denotes the vertical grading.

For everyN, there is a bijection

® =[] @n: [[Hom((dAs)', Ench)(m)™ — [T [ CN""%A, A)
n n n u
where®,, : Hom((d.As)i, Endy)(n)N — JTCINT""Y(A, A) is given by evaluation:
u

On(fn) = [ ] faCirun)-

The unique preimage of a familya()n, whereG, = (GINT1""Y),, is given by the familyg = (gn)n =
(®771(Gn))n in degreeN defined via
On(tun) = GU’N+l_n_u-

We can now transport the pre-Lie structure o Hom((d.As)i, Enda)(n) to CH**1(A, A) as follows: let
F = (Fn)n>1 be of total degreeN + 1 and letG = (Gy)m>1 be of total degreéM + 1. There are unique
familiesf = (fn)n, 9 = (Om)m Of degreeN andM respectively such thd& = ®(f) andG = ®(g). Then

FxG:=d(f xg).

Note that the total degree &fx G is N + M + 1. Hence the pre-Lie product decreases the total degree by
one. That is, this pre-Lie product endo@$i*t1(A, A) with the structure of a graded pre-Lie algebra.

Naturally, this gives rise to a graded Lie algebra structur€H*T1(A, A) via
[F,G] = F«G— (—1)NMDMDG , F,

Let us now compare the pre-Lie structure above with the peestructure onCy " (A, A) built in [RW11].
Letf e CY'(A,A) andg € C™(A,A). Then
f = fa(ukn) with |fal =n+i+k—-1
and
g = Om(tum) With [gm| =m+j+1 -1
Putting this into formulag) yields

n—1

_ _ o 1]

frg= Z(_ 1)+ DDA DO+ DKM+ D191 ) o 0 18011y ¢ CELm i+
r=0

Hence we can see that the sign in this formula differs fromsiga in the other pre-Lie algebra structure
f orw g given in RW11, Definition 2.11] by the sign-{1)<m+i++1),

We can read off the following.
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Lemma5.1 Let me CH?(A, A). Thenm defines alA,, -structure onA if and only if m«m= 0. O

5.2 Hochschild cohomology

We now use this new Lie structure to define another notion afhidohild cohomology of derived.-
algebras. This definition differs from that constructedRW[11] by the different signs in the Lie structure,
as explained above. It has the advantage that it appliet dé\al-algebras rather than just the “orthogonal
ones.

Definition 5.2 Let (A, m) be adA, -algebra. Then thelochschild conomology of & defined as
HH*(A, A) := H*(CH(A, A),[m, —]).

The morphism
[m,—]: CH*(A,A) — CH"(A,A)

is indeed a differential. Since has total degree 2 and-[ —] has total degree-1, it raises degree by 1.
By [Livll, Lemma 1.10] (with respect to the pre-Lie produdt one hasin, [m, —]] = [mxm, —], and the
right-hand side vanishes because of Lenfiria

Inthe case of &, m) being an associative algebra, this definition recoversltssical definition of Hochschild
cohomology of associative algebras.

Remark Because of the bijectiod® the complex computing the Hochschild cohomologyAotoincides
with the operadic cohomology. Recall that givefPaalgebraA, its operadic cohomology with coefficients
in itself is H*(Hom(Pi(A), A), 9.) wherew depends on the twisting cochain defining the structuréon

As an example, wheA is a bidga withm = my1+ mgy, i.e. if Ais a bidga with trivial horizontal differential,
the external grading is preserved by both bracketing withandmg,. Hence we can, as ifRW11, Section
3.1], consider bigraded Hochschild cohomology

HHS (A, A) = H([ [ CX (A A), [, —]).

We denote this special case by ﬁjda(A, A). It corresponds to the operadic cohomology with respect to
the operadiAs.

When P is a Koszul operad, given &.,-algebra, one can still define its operadic cohomology as the
homology of the complex

9) (Hom(P'(A), A), Ox),
wherer represents the twisting cochain associated tghestructure onA.

If A is a derivedA..-algebra, the complex9) is exactly the complex of Definitio®.2 That is, op-
eradic cohomology for derivedl,.-algebras is Hochschild cohomology as defined at the beginoii the
subsection.

Note however, that in order to identify this cohomology thyewith the Andi-Quillen cohomology of
derived A -algebras as inljv12, Proposition 12.4.11] one needs to assume g bounded below for
the vertical grading and is free akkamodule.
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This more compact definition of Hochschild cohomology hasiesstructural advantage over i, the
Hochschild cohomology defined iRW11]]. In particular, we see that the Lie bracket,[-] on CH*(A, A)
induces a Lie bracket on

HH*(A, A) = H*(CH*(A,A),D = [m, —]).
This is the case becauge is an inner derivation with respect te-[—] due to the graded Jacobi identity.
Hence, the bracket of two cycles is again a cycle, and thekbetat a boundary and a cycle is a boundary.

Proposition 5.3 The (shifted) Hochschild cohomology of\. -algebra HHT1(A, A) has the structure of
a graded Lie algebra. O

5.3 Uniqueness and formality

Definition 5.4 Let A be a bidga withmg; = 0,9 = M1, i = M. Then
a=> a, a cC* AN, i+]>3
i
is atwisting cochainf 0 + i + a is a derivedA -structure.
One can read off the following result immediately.

Lemma 5.5 The element is a twisting cochain if and only if
—D(a) =axa

for D =10+ pu, —]. ]

The above is thdMaurer-Cartan formula

A key step in the obstruction theory leading to uniquenessiA&g, -structures is perturbing an existing
twisting cochain by an elemeitt of total degree 1. Roughly speaking, this new perturéd, -structure
satisfies the following- it equals the existim\,, -structure below a certain bidegree, is modified uding
in this bidegree andE,-equivalent to the “old"dA,. -structure. This has been shown in detail RW11,
Lemma 3.6], but we verify briefly that this also works with acwaw Lie bracket.

Lemma5.6 Let A be abidga with multiplication:, horizontal differentiab and trivial vertical differential.
Let a be a twisting cochain. Let either

(A) be 2 ™M(a A) for somek, n such thatk + n > 3, satisfying P, b] = 0

or

(B) be CrZ ™M(A A), for somek, n with k + n > 3, satisfying [1,b] = 0.

Then there is a twisting cochamsatisfying

e the dA -structuresd + p +aandm= 0 + u + a are Ex-equivalent,

e ay=ayforu<korv<n-—1or@Uu,v) =(kn—1)incasegA) andforu< k—1orv<nor
(u,v) = (k—1,n) in caseB),
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o B = an — [, b] in case(A),
e dxn = an — [0, b] in case(B).

Proof A quick check of the signs in both Lie brackets shows that
[0, blrw = [0, b] and [u, blrw = [1, b].

Hence this is identical ta(JW11, Lemma 3.6], where tha,, are constructed inductively. O

We can now proceed to our uniqueness theorem, which has beamsn the context of |, —]rw and
HH&w in [RW11, Theorem 3.7].

Theorem 5.7 LetA be abidgawith multiplication:, horizontal differentiab and trivial vertical differential.
If
HHE G A (A.A) = 0 for 1 > 3,

then everydA,, -structure orA with mp; = 0, M1 = 9 andmg, = v is Ex-equivalent to the trivial one.

Proof Let m be adA,.-structure onA as given in the statement. We want to show that it is equivadéen
the dA, -structured + p. We can writem = 0 + p + a with a a twisting cochain.

We look atayx,, k+n =t > 3. We show tham is equivalent to aA., -structurem = 9 + p + a with
axn, = 0 for fixedt by induction onk.
To start this induction we assume that
g =0fori+j<tandfori+j=tif i <k
The new equivalentl A, -structurem will also satisfy
gj=a;=0fori+j<tandfori+j=tif i <k

as well as further
5kn = 0.

So to construcm, we “kill” ay, but leave the trivial lower degres invariant.

Sincea is a twisting cochain, it satisfies the Maurer-Cartan foanul
—D(a) =axa

However, an argument similar t&R{V11, Theorem 3.7] shows that this implid3(as,) = O for degree
reasons. Hencaxy, is a cycle and gives us a class

[an] € HHHoZ (A, A)

in the Hochschild conomology @&. This cohomology group has been assumed to be zero, lagnoeust
be a boundary too. Thus, there i @f total degree 1 wittb(b) = ax,. For degree reasons, thishas to be
of the form

b=ho+by, bypeCl% " A A), bpe KA A
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with
[//H bO] =0 and B» bl] = 07

meaning that
D(b) = D(bo + b1) = [, ba] + [, bo].

Then, just as in the proof oRW11, Theorem 3.7], applying Lemm&.6 to by yields a dA,,-structure
m=0 + p+awith
an = an — [11, 1] — [0, bo] = an — D(b) = 0.

O

It was shown inRW11, Section 4] that HE (A, A) is invariant undeE;-equivalences. Since this argument
is independent of choice of signs in the Lie bracket, it alsil for our HH;4 (A, A). Hence we can now
give a criterion for intrinsic formality of a dga. (Recallaha dgaA is intrinsically formal if for any other
dgaB with H*(A) = H*(B) as associative algebra&,and B are quasi-isomorphic.)

Corollary 5.8 Let A be a dga ancE its minimal model withdA,, -structurem. By E, we denote the
underlying bidga ok, i.e. E = E ask-modules together witkd A, -structurem = my1 + mpy. If

HHE S "(E.E)=0  form> 3,

thenA is intrinsically formal. O

6 Directions for further work

In this paper we have given an operadic perspective on akAye-structures, allowing us to view derived
A.--algebras as algebras over an operad. By results of varighsra Fre09 HarlQ Murll], it follows
from our description that there is a model category strectur derivedA, -algebras such that the weak
equivalences are the; -equivalences (see Definitidn5). However, we do not expect this model structure to
be homotopically meaningful. Indeed, in order to view Sagaminimal models as some kind of cofibrant
replacement, one would need a model structure in which trekweeguivalences are the,-equivalences.
Producing such a model structure will involve a change ofeulythg category, probably to the category of
twisted chain complexes. One would then need a suitable Instrdieture on this underlying category and
also to develop the appropriate notion of cobar constroctithe apparent complication in carrying out such
a programme explains our choice to work with vertical bictares in this paper. We expect to return to this
in future work.
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