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SUMMARY

An approach is proposed to incorporate gradient-enhanaethge models in shell elements. The approach
is elaborated for a solid-like shell element, which is adagaous because of the availability of nodes at the
top and bottom shell surfaces, and the presence of a thneendional strain state. Some simple examples
are given to demonstrate the versatility and the conveehthe method. Copyrigh© 2010 John Wiley

& Sons, Ltd.
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1. INTRODUCTION

The failure behaviour of composite materials is often a domation of multiple damage
mechanisms: delamination (interlaminar damage), and ixnatacking and fibre breakage
(intralaminar damage). The complex nature of these failmechanisms requires a reliable
computational tool for the prediction of structural intiegr

Microcracks in the matrix are often the first form of damag&iminates. At a mesolevel, where
the individual plies of a composite are modelled, matrix kilag can be represented through
a continuum damage model][ After accumulation of a certain amount of damage, however
continuum damage models lead to ill-posed boundary valolel@ms, which causes a severe mesh
dependence?]. Gradient damage models have been shown to be an efficieriosoto this [3].

So far, gradient damage simulations have been restrictecbmtinua, either two or three-
dimensional. Structural applications do not seem to hawn breported. Bearing in mind that
the stresses must be computed accurately for use in infrsdamdamage models, solid-like shell
elements such as that developed in Referentes p] seem to be particularly suitable. Because of
the enhanced kinematics a fully three-dimensional staite @xists within the shell, which enables
the straightforward use of three-dimensional constitut®ations. The solid-like shell model has
another advantage, namely that it carries only translatidegrees of freedom. This not only makes
it easy to stack them, but, since the translational degréé®edom are located at the top and
bottom surfaces, the associated nodes can also be used fotdtpolation of a nonlocal equivalent
strain field. Indeed, since in a gradient damage model theoahequivalent strain is interpolated
in addition to the displacements, an assumption is reqdiinetthis additional field as well.

We propose to independently interpolate the nonlocal edgi strain field at each surface of
the shell. In the case of solid-like shell elements the ndllgisare needed for this interpolation are

*Correspondence to: René de Borst, University of Glasgohp8l of Engineering, Rankine Building, Oakfield Avenue,
Glasgow G12 8LT, UK. E-mail: Rene.DeBorst@glasgow.ac.uk

Copyright© 2010 John Wiley & Sons, Ltd.
Prepared usingimeauth.cls [Version: 2010/05/13 v3.00]



2 S. HOSSEINI ET AL.

directly available. However, the same procedure can be fasesther shell elements, by defining
auxiliary nodes that are used for the interpolation of thelocal equivalent strain field only. These
auxiliary nodes are then obtained from the mid-surface sottee local shell director, and the
thickness of the shell. With the nonlocal equivalent stedithe top and bottom surfaces at hand, its
value anywhere inside the shell can be computed by a lineznpolation between the values at the
top and the bottom surfaces, which assumption is consistiémthe assumption that straight fibres
remain straight.

For completeness we first briefly summarize the gradient dameodel and the solid-like shell
element. We next show how the gradient damage model can bgporated in a solid-like shell
element. Some simple examples are given to demonstratetbatiity and mesh independence.

2. DAMAGE MODEL

In this paper we assume an isotropic damage model which nthah®ne damage variable,
describes the damage process. Herein, the undamagedahistetiaracterized by = 0 and the
fully damaged material by = 1 (in practice a value close to 1 is used to avoid ill-conditign
of the local stiffness matrix). Assuming small strains, fokowing relation between the Second
Piola-Kirchhoff stress tens@ and the Green-Lagrange strain tensas adopted:

S=(1-w)C:«v 1)
with C the elastic stiffness matrix. In this relation the damag&abde is given as:
w=w(k) 2)

with x a history parameter which retains the most severe defosmafihe damage model is
completed by a loading functiofias a function of the nonlocal equivalent strgiy:

F(r6) =Feq(v) — K 3

The history parameter starts at a threshold valuend is updated through the Kuhn-Tucker loading-
unloading conditions:
F<0, £>20, fi=0 4)
Following [3] the nonlocal equivalent strat., follows from the solution of the partial differential
equation:
Yeq — CVQ;qu = Yeq (5)
wherev., = 7., (7) is the local equivalent strain ardsets the internal length scale.

3. VIRTUAL WORK AND LINEARIZATION

In a Total Lagrangian formulation the principle of virtualovk is expressed in the reference
configurationt):

/ (S’YT :SdQy = / (SUTthFQ (6)

Qo To

with t, the traction acting on the boundary of the initial configuration. Note that neither body
forces nor follower forces have been taken into accountrésglting system of nonlinear equations
is typically solved using the Newton-Raphson method, whécluires computation of the tangential
stiffness matrix. This quantity is obtained by linearizthg internal virtual work, the left side of the
equation 6):

D(Winy) = /Q (67" : DS + D(37") : 5)dQ @)
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GRADIENT DAMAGE MODELS IN SHELL ELEMENTS 3

Using equationX) the derivative of the stress tensor is written as:

Oow Ok ___
DS = (1*(4.})(: D’Y* %W,D’quc e (8)
eq

wheredk /07, = 1 for loading andx/07., = 0 for unloading. Defining

o
T Ok

and substituting equation 8) into equation () the linearized internal virtual work expression
becomes:

q

D(6Wint) = / (67" : (1 = w)C : Dy — qDFegdy" : C 1) dy
Qo

+ [ Dy sa0 (©)
Qo

where the last term leads to the standard geometric stiffmedrix, which will not be repeated here.
Equation b) is coupled to the equilibrium equation, equatio®), (and must be solved
concurrently. The variational form of the gradient damageagion is given by:

/ Feq(Feq — €V Feq — Yeq) A2 = 0 (10)
Qo

In line with the vast majority of the literature a natural Indary condition is assumed fo,.
Application of the divergence theorem then leads to:

/ (0%eqVeq + €V 0Feq - Veq) A — / 0YeqYeq A2 =0 (11)
Q() QO

For the derivation of the tangent stiffness matrix this esgion must be linearized, leading to:

/ (5’7&17}7&1 +cVéYeq - VD"yeq) dQg — / 0YeqDYeq d2o =0 (12)
Qg Q0
where 5

Dyeg=p'Dy , p’ =2 (13)

oy

4. SOLID-LIKE SHELL FORMULATION

Figurel shows the reference and the current configuration, and tiegriatics of the solid-like shell
element in curvilinear coordinates. The element kinematiescaptured by a linear combination
of a pair of material points at the top and at the bottom sedaaf the element. Each point is
characterized by a position vectot; and X, for the initial configuration on the top and bottom
surfaces, respectively. The variablésand n are the local curvilinear coordinates in the two
independent in-plane directions, afts the local curvilinear coordinate in the thickness dil@tt

The position of a material point in the undeformed configorats written as function of three
curvilinear coordinates

X(&1,¢) = X°(&m) +¢D(&,n) (14)

whereX°(¢,7) is the projection of the point on the mid-surface of shell &k the thickness
director in this point:

XO(&,) = 5DXel€m) +Xo(Em)] D& ) = 3Xel€,m) — XolE, )] (15)

N | =
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4 S. HOSSEINI ET AL.

top surface

Xo

mid surface

bottom
bottom surface

Undeformed Deformed

11

Figure 1. Geometry and kinematics of the shell in the unaeéal and in the deformed configurations.

The position of the material point in the deformed configiorak (¢, ) is related toX (&, n) via the
displacement fieldi(¢, 7, ¢) as:

X(&,m,¢) = X(&n,¢) +u(&,m,¢) (16)

where
u(&,m,¢) = u(&,n) +cul(&,n) + (1 = C)u*(€,n) 17)

In this relation,u® andu! are the displacements & on the shell mid-surface and the thickness
directorD, and can be written as:

W) = 506 +Ul&m)] + U'(E D) = FlulEn) — (&) (19)

The internal stretch of the element is represented in eguéti/) by the inclusion of a quadratic
term in the displacement field, so that the normal strainérttiickness direction varies linearly?
is expressed in terms of stretch degrees of freedomas:

u? = w(&n)[D(&n) +u'(&n)] (19)

see also Figuré.

In any material point a local reference triad can be estadtisThe covariant base vectors are then
obtained as the partial derivatives of the position veatatls respect to the curvilinear coordinates
6 = [¢,n,(]. In the undeformed configuration they are defined as:

oX
Ga=8@a=Ea+CD,a , a=1,2 , G3=D (20)
where(.) , denotes the partial derivative with respecét®. E,, = %, is the covariant base vector
defined on the mid-surface. Similarly, in the deformed camfigjon we have:
9o = % = Ga + U, +CUy + (1= ¢,
(21)

g; = D+u' —2¢u?

Using equations0) and @1) the component&;; andg;; of the metric tensors in the undeformed
and the deformed configuration, respectively, can be déteahas:

and finally, the representation of the Green-Lagrangerstesisor reads as:
. . . 1
v=7;G" ®G with v; = 5(91‘3‘ - Gij) (23)
Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2010)
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GRADIENT DAMAGE MODELS IN SHELL ELEMENTS 5

From equationsq1)—(23) we infer that
v =7’ ul,u?) (24)
and using equationd.8) and (L9):
¥ =7(up, u, w) =y(u,w) (25)

with u = (uy, uy) collecting the displacement degrees of freedom at the imottod top surfaces.
For future use we list the variation of the strain tensor:

_ Oy

® Ug, 0y, 0y

O ’S’eq

Figure 2. Geometry of 16 noded solid-like-shell element.

5. FINITE ELEMENT IMPLEMENTATION

In this paper we consider the sixteen-node solid-like gethent, see Figuiz Each node contains
three displacement degrees of freedain,a,, a. which gives a bi-quadratic interpolation of the
in-plane displacement field. With this interpolation foettlisplacements, the nonlocal equivalent
strain fieldy., should interpolated using bi-linear shape functions tddhescillations []. Hence,
the corner nodes of the solid-like shell element have degrielesedom for the nonlocal equivalent
strain field. It is recalled that the nodes of the top surfaeewsed for the interpolation of the
nonlocal equivalent strain field at the top surface, anddfudshe bottom surface support the nodal
parameters of the nonlocal equivalent strain field at théobosurface. The nonlocal equivalent
strain at any point in the shell is then found by an interpotain the thickness direction of the of
the values of the nonlocal equivalent strain at the top antbivosurfaces. The kinematics of the
shell are completed by a linear distribution of the intestedtch, which is supported by degrees of
freedom located at the four corners of the mid-surface oetbment. As detailed in Refg,[5, 6]
these are internal degrees of freedom and condensed atrellewel.

We discretize the displacement, the stretch and the ndréqcévalent strain as:

u=H,a, w=H,w, 3, =Hse (27)

whereH,,, H,,, H5 contain the corresponding shape functions, ad e are the vectors containing
the degrees of freedom for the displacement, the stretchtlamdhonlocal equivalent strain,
respectively. The strain and the gradient of the nonlocaivadent strain then become:

v =B,a+By,w , Veq = B"ye (28)

with B,,, B.,, B5 the matrices that contain the derivatives of the shape iomst
Substituting 27) and @8) for the variational forms in) and (L1) and requiring that the results
hold for arbitrary(da, 6w, de), the discrete equilibrium equations are obtained as:

/ BI'Sdn, = / H”t, do (29)
Q() I—‘0

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2010)
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6 S. HOSSEINI ET AL.

/ BISdQ, =0 (30)
Qo
and averaging equation for the nonlocal equivalent stiagte®mes:
/Q (HIH; + cBIB5) dQp — /Q HZ ~eq d2 =0 (31)
0 0

The left-hand sides of equation29—(31) leads to the internal force vectors, which can be
differentiated to yield the material part of the tangensiifness matrix:

K aa K aw K ae
K= |Kuys Kupw Kuye (32)
Kea Kew Kee

where
Kaa = / (1 - W)BZ,;CBu dQg Kaw = / (1 o W>BZCBW d€
Qo Qo
K, = / ¢BL CryeqH~ dQ Kuwa = / (1 - w)B,CB, dQ
Qo Qo
Kuw = / (1-w)BLCB,d2  Kye = / 4B,,CyeqH5 A (33)
Q[) QO
Ko = 7/ HZp”B, dQ Kew = —/ HIp"B., dQ
Q[) QO

Kee B / (Hz)’—'eqH’?E‘I + CB%LQ B’?EQ) dQO
Qo

A 2 x 2 Gauss integration rule has been adopted for the in-plaagration for all submatrices, and
Newton-Cotes integration has been used through the thiskihethe example a five-point Newton-
Cotes integration was sufficient.

6. EXAMPLES

We will now assess the implementation of the enhanced gradeemage model by means of two
examples.

[ =10 mm

e — E:

L =100 mm

Figure 3. Bar with an imperfection subjected to an axialims

6.1. Simulation of continuum damage

A 3mm thick bar of lengthl, = 100 mm and of 3.3 mm width (Figur8) is considered which is
subjected to a uniaxial tensile load. To trigger localizatihe cross sectional area in the centre part
of the bar has been reduced by 10% over a lehgth 0 mm. A Young’s modulus = 2000 N/mn¥,

a fracture energy;.. = 0.001 N/mm and a tensile strength = 2 N/mn* have been used, together
with a linear damage evolution law ard= 1 mn?¥ [3]. The load-displacement graph is shown in
Figure4 for various levels of mesh refinement. As in previous simoiet [3] a proper convergence
upon mesh refinement is observed.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2010)
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GRADIENT DAMAGE MODELS IN SHELL ELEMENTS 7
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Figure 4. Load-displacement graph of the bar under tension.

6.2. Panel under distributed load

The previous example assesses the convergence for indoladiegs, but not for a plate that is
subject to bending. This is subject of the next example, wiishown in Figuré. The panel has
a lengthl = 500 mm, a widthb = 250 mm, a thicknesg = 10 mm, and is clamped on both ends.
A Young’s modulusE = 4000 N/mn?, a fracture energys, = 0.05 N/mm and a tensile strength
f; = 2N/mm? have been chosen with a linear damage relationcaad mn?. As in the previous
example, the simulations have been repeated for differesghnsizes. The results are shown in
Figure6, which show a clear mesh independence. Figuaso shows the deformation of the panel
and the intensity of the damage evolution.

q = sin(nz/l)

i / 250 mm
/ I |

t=10mm | [ =500 mm ‘

Figure 5. Geometry of the panel under sinusoidal traction.

7. CONCLUDING REMARKS

An approach to incorporate gradient damage models in shathents has been proposed. The
implementation was done in a solid-like shell element, whiads advantages since a three-
dimensional stress state is available, and because of #semre of nodes at the top and bottom
surfaces. The latter enables the direct interpolation efrtbnlocal equivalent strain at the shell
surfaces, from which the nonlocal equivalent strain in thterior of the shell is obtained by a
linear interpolation. Examples show the versatility of #pgroach and the convergence upon mesh
refinement.

Copyright© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2010)
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Load [N]

0 | | | |
0 1 2 3 4

Mid-point displacement [mm]

Figure 6. Load-displacement graph of the panel under sidakwaction.

Figure 7. Deformation and damage intensity of the panel.
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