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SUMMARY

An approach is proposed to incorporate gradient-enhanced damage models in shell elements. The approach
is elaborated for a solid-like shell element, which is advantageous because of the availability of nodes at the
top and bottom shell surfaces, and the presence of a three-dimensional strain state. Some simple examples
are given to demonstrate the versatility and the convergence of the method. Copyrightc© 2010 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The failure behaviour of composite materials is often a combination of multiple damage
mechanisms: delamination (interlaminar damage), and matrix cracking and fibre breakage
(intralaminar damage). The complex nature of these failuremechanisms requires a reliable
computational tool for the prediction of structural integrity.

Microcracks in the matrix are often the first form of damage inlaminates. At a mesolevel, where
the individual plies of a composite are modelled, matrix cracking can be represented through
a continuum damage model [1]. After accumulation of a certain amount of damage, however,
continuum damage models lead to ill-posed boundary value problems, which causes a severe mesh
dependence [2]. Gradient damage models have been shown to be an efficient solution to this [3].

So far, gradient damage simulations have been restricted tocontinua, either two or three-
dimensional. Structural applications do not seem to have been reported. Bearing in mind that
the stresses must be computed accurately for use in intralaminar damage models, solid-like shell
elements such as that developed in References [4, 5, 6] seem to be particularly suitable. Because of
the enhanced kinematics a fully three-dimensional stain state exists within the shell, which enables
the straightforward use of three-dimensional constitutive relations. The solid-like shell model has
another advantage, namely that it carries only translational degrees of freedom. This not only makes
it easy to stack them, but, since the translational degrees of freedom are located at the top and
bottom surfaces, the associated nodes can also be used for the interpolation of a nonlocal equivalent
strain field. Indeed, since in a gradient damage model the nonlocal equivalent strain is interpolated
in addition to the displacements, an assumption is requiredfor this additional field as well.

We propose to independently interpolate the nonlocal equivalent strain field at each surface of
the shell. In the case of solid-like shell elements the nodesthat are needed for this interpolation are
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2 S. HOSSEINI ET AL.

directly available. However, the same procedure can be usedfor other shell elements, by defining
auxiliary nodes that are used for the interpolation of the nonlocal equivalent strain field only. These
auxiliary nodes are then obtained from the mid-surface nodes, the local shell director, and the
thickness of the shell. With the nonlocal equivalent strainat the top and bottom surfaces at hand, its
value anywhere inside the shell can be computed by a linear interpolation between the values at the
top and the bottom surfaces, which assumption is consistentwith the assumption that straight fibres
remain straight.

For completeness we first briefly summarize the gradient damage model and the solid-like shell
element. We next show how the gradient damage model can be incorporated in a solid-like shell
element. Some simple examples are given to demonstrate the versatility and mesh independence.

2. DAMAGE MODEL

In this paper we assume an isotropic damage model which meansthat one damage variable,ω,
describes the damage process. Herein, the undamaged material is characterized byω = 0 and the
fully damaged material byω = 1 (in practice a value close to 1 is used to avoid ill-conditioning
of the local stiffness matrix). Assuming small strains, thefollowing relation between the Second
Piola-Kirchhoff stress tensorS and the Green-Lagrange strain tensorγ is adopted:

S = (1− ω)C : γ (1)

with C the elastic stiffness matrix. In this relation the damage variable is given as:

ω = ω(κ) (2)

with κ a history parameter which retains the most severe deformation. The damage model is
completed by a loading functionf as a function of the nonlocal equivalent strainγ̄eq:

f(γ, κ) = γ̄eq(γ)− κ (3)

The history parameter starts at a threshold valueκi and is updated through the Kuhn-Tucker loading-
unloading conditions:

f ≤ 0 , κ̇ ≥ 0 , f κ̇ = 0 (4)

Following [3] the nonlocal equivalent strain̄γeq follows from the solution of the partial differential
equation:

γ̄eq − c∇2γ̄eq = γeq (5)

whereγeq = γeq(γγγ) is the local equivalent strain andc sets the internal length scale.

3. VIRTUAL WORK AND LINEARIZATION

In a Total Lagrangian formulation the principle of virtual work is expressed in the reference
configurationΩ0:

∫

Ω0

δγT : S dΩ0 =

∫

Γ0

δuT t0dΓ0 (6)

with t0 the traction acting on the boundaryΓ0 of the initial configuration. Note that neither body
forces nor follower forces have been taken into account. Theresulting system of nonlinear equations
is typically solved using the Newton-Raphson method, whichrequires computation of the tangential
stiffness matrix. This quantity is obtained by linearizingthe internal virtual work, the left side of the
equation (6):

D(δWint) =

∫

Ω0

(

δγT : DS + D(δγT ) : S
)

dΩ0 (7)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
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GRADIENT DAMAGE MODELS IN SHELL ELEMENTS 3

Using equation (1) the derivative of the stress tensor is written as:

DS = (1− ω)C : Dγ −
∂ω

∂κ

∂κ

∂γ̄eq
Dγ̄eqC : γ (8)

where∂κ/∂γ̄eq ≡ 1 for loading and∂κ/∂γ̄eq ≡ 0 for unloading. Defining

q =
∂ω

∂κ

and substituting equation (8) into equation (7) the linearized internal virtual work expression
becomes:

D(δWint) =

∫

Ω0

(

δγT : (1− ω)C : Dγ − qDγ̄eqδγ
T : C : γ

)

dΩ0

+

∫

Ω0

D(δγT ) : SdΩ0 (9)

where the last term leads to the standard geometric stiffness matrix, which will not be repeated here.
Equation (5) is coupled to the equilibrium equation, equation (6), and must be solved

concurrently. The variational form of the gradient damage equation is given by:
∫

Ω0

δγ̄eq(γ̄eq − c∇2γ̄eq − γeq) dΩ0 = 0 (10)

In line with the vast majority of the literature a natural boundary condition is assumed for̄γeq.
Application of the divergence theorem then leads to:

∫

Ω0

(δγ̄eq γ̄eq + c∇δγ̄eq · ∇γ̄eq) dΩ0 −

∫

Ω0

δγ̄eqγeq dΩ0 = 0 (11)

For the derivation of the tangent stiffness matrix this expression must be linearized, leading to:
∫

Ω0

(δγ̄eqDγ̄eq + c∇δγ̄eq · ∇Dγ̄eq) dΩ0 −

∫

Ω0

δγ̄eqDγeq dΩ0 = 0 (12)

where

Dγeq = pTDγ , pT =
∂γeq
∂γ

(13)

4. SOLID-LIKE SHELL FORMULATION

Figure1 shows the reference and the current configuration, and the kinematics of the solid-like shell
element in curvilinear coordinates. The element kinematicsare captured by a linear combination
of a pair of material points at the top and at the bottom surfaces of the element. Each point is
characterized by a position vector,Xt andXb for the initial configuration on the top and bottom
surfaces, respectively. The variablesξ and η are the local curvilinear coordinates in the two
independent in-plane directions, andζ is the local curvilinear coordinate in the thickness direction.

The position of a material point in the undeformed configuration is written as function of three
curvilinear coordinates

X(ξ, η, ζ) = X0(ξ, η) + ζD(ξ, η) (14)

whereX0(ξ, η) is the projection of the point on the mid-surface of shell andD is the thickness
director in this point:

X0(ξ, η) =
1

2
[Xt(ξ, η) + Xb(ξ, η)] , D(ξ, η) =

1

2
[Xt(ξ, η)− Xb(ξ, η)] (15)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
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Figure 1. Geometry and kinematics of the shell in the undeformed and in the deformed configurations.

The position of the material point in the deformed configuration x(ξ, η) is related toX(ξ, η) via the
displacement fieldu(ξ, η, ζ) as:

x(ξ, η, ζ) = X(ξ, η, ζ) + u(ξ, η, ζ) (16)

where
u(ξ, η, ζ) = u0(ξ, η) + ζu1(ξ, η) + (1− ζ2)u2(ξ, η) (17)

In this relation,u0 andu1 are the displacements ofX0 on the shell mid-surface and the thickness
directorD, and can be written as:

u0(ξ, η) =
1

2
[ut(ξ, η) + ub(ξ, η)] , u1(ξ, η) =

1

2
[ut(ξ, η) − ub(ξ, η)] (18)

The internal stretch of the element is represented in equation (17) by the inclusion of a quadratic
term in the displacement field, so that the normal strain in the thickness direction varies linearly.u2

is expressed in terms of stretch degrees of freedom,w, as:

u2 = w(ξ, η)[D(ξ, η) + u1(ξ, η)] (19)

see also Figure1.
In any material point a local reference triad can be established. The covariant base vectors are then

obtained as the partial derivatives of the position vectorswith respect to the curvilinear coordinates
ΘΘΘ = [ξ, η, ζ]. In the undeformed configuration they are defined as:

Gα =
∂X
∂Θα

= Eα + ζD,α , α = 1, 2 , G3 = D (20)

where(.),α denotes the partial derivative with respect toΘα. Eα = ∂X0

∂Θα , is the covariant base vector
defined on the mid-surface. Similarly, in the deformed configuration we have:

gα =
∂x
∂Θα

= Gα + u0

,α + ζu1

,α + (1− ζ2)u2

,α

g
3
= D + u1 − 2ζu2

(21)

Using equations (20) and (21) the componentsGij andgij of the metric tensors in the undeformed
and the deformed configuration, respectively, can be determined as:

Gij = Gi · Gj , gij = gi · gj , i = 1, 2, 3 (22)

and finally, the representation of the Green-Lagrange strain tensor reads as:

γ = γijGi
⊗ Gj with γij =

1

2
(gij −Gij) (23)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
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GRADIENT DAMAGE MODELS IN SHELL ELEMENTS 5

From equations (21)–(23) we infer that

γγγ = γγγ(u0,u1,u2) (24)

and using equations (18) and (19):

γγγ = γγγ(ub,ut, w) = γγγ(u, w) (25)

with u = (ub,ut) collecting the displacement degrees of freedom at the bottom and top surfaces.
For future use we list the variation of the strain tensor:

δγγγ =
∂γγγ

∂u
δu+

∂γγγ

∂w
δw (26)

ζ

ξ
η

w

γ̄eq

ax, ay, az

Figure 2. Geometry of 16 noded solid-like-shell element.

5. FINITE ELEMENT IMPLEMENTATION

In this paper we consider the sixteen-node solid-like shellelement, see Figure2. Each node contains
three displacement degrees of freedom,ax, ay, az which gives a bi-quadratic interpolation of the
in-plane displacement field. With this interpolation for the displacements, the nonlocal equivalent
strain fieldγ̄eq should interpolated using bi-linear shape functions to avoid oscillations [7]. Hence,
the corner nodes of the solid-like shell element have degreesof freedom for the nonlocal equivalent
strain field. It is recalled that the nodes of the top surface are used for the interpolation of the
nonlocal equivalent strain field at the top surface, and those of the bottom surface support the nodal
parameters of the nonlocal equivalent strain field at the bottom surface. The nonlocal equivalent
strain at any point in the shell is then found by an interpolation in the thickness direction of the of
the values of the nonlocal equivalent strain at the top and bottom surfaces. The kinematics of the
shell are completed by a linear distribution of the internalstretch, which is supported by degrees of
freedom located at the four corners of the mid-surface of theelement. As detailed in Refs [4, 5, 6]
these are internal degrees of freedom and condensed at element level.

We discretize the displacement, the stretch and the nonlocal equivalent strain as:

u = Hua , w = Hww , γ̄eq = Hγ̄e (27)

whereHu,Hw,Hγ̄ contain the corresponding shape functions, anda,w, e are the vectors containing
the degrees of freedom for the displacement, the stretch andthe nonlocal equivalent strain,
respectively. The strain and the gradient of the nonlocal equivalent strain then become:

γ = Bua + Bww , ∇γ̄eq = Bγ̄e (28)

with Bu,Bw,Bγ̄ the matrices that contain the derivatives of the shape functions.
Substituting (27) and (28) for the variational forms in (6) and (11) and requiring that the results

hold for arbitrary(δa, δw, δe), the discrete equilibrium equations are obtained as:
∫

Ω0

BT
u S dΩ0 =

∫

Γ0

HT
u t0 dΓ0 (29)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
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6 S. HOSSEINI ET AL.

∫

Ω0

BT
wS dΩ0 = 0 (30)

and averaging equation for the nonlocal equivalent strainsbecomes:
∫

Ω0

(

HT
γ̄ Hγ̄ + cBT

γ̄ Bγ̄

)

dΩ0 −

∫

Ω0

HT
γ̄eq

γeq dΩ0 = 0 (31)

The left-hand sides of equations (29)–(31) leads to the internal force vectors, which can be
differentiated to yield the material part of the tangentialstiffness matrix:

K =





Kaa Kaw Kae

Kwa Kww Kwe

Kea Kew Kee



 (32)

where

Kaa =

∫

Ω0

(1− ω)BT
u CBu dΩ0 Kaw =

∫

Ω0

(1 − ω)BT
u CBw dΩ0

Kae =

∫

Ω0

qBT
u CγeqHγ̄ dΩ0 Kwa =

∫

Ω0

(1 − ω)BT
wCBu dΩ0

Kww =

∫

Ω0

(1− ω)BT
wCBw dΩ0 Kwe =

∫

Ω0

qBT
wCγeqHγ̄ dΩ0 (33)

Kea = −

∫

Ω0

HT
γ̄ pT Bu dΩ0 Kew = −

∫

Ω0

HT
γ̄ pT Bw dΩ0

Kee =

∫

Ω0

(

HT
γ̄eq

Hγ̄eq
+ cBT

γ̄eq
Bγ̄eq

)

dΩ0

A 2× 2 Gauss integration rule has been adopted for the in-plane integration for all submatrices, and
Newton-Cotes integration has been used through the thickness. In the example a five-point Newton-
Cotes integration was sufficient.

6. EXAMPLES

We will now assess the implementation of the enhanced gradient damage model by means of two
examples.

L = 100 mm

l = 10 mm

Figure 3. Bar with an imperfection subjected to an axial tension.

6.1. Simulation of continuum damage

A 3mm thick bar of lengthL = 100mm and of 3.3 mm width (Figure3) is considered which is
subjected to a uniaxial tensile load. To trigger localization the cross sectional area in the centre part
of the bar has been reduced by 10% over a lengthl = 10mm. A Young’s modulusE = 2000N/mm2,
a fracture energyGc = 0.001N/mm and a tensile strengthft = 2N/mm2 have been used, together
with a linear damage evolution law andc = 1mm2 [3]. The load-displacement graph is shown in
Figure4 for various levels of mesh refinement. As in previous simulations [3] a proper convergence
upon mesh refinement is observed.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng(2010)
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Figure 4. Load-displacement graph of the bar under tension.

6.2. Panel under distributed load

The previous example assesses the convergence for in-planeloadings, but not for a plate that is
subject to bending. This is subject of the next example, which is shown in Figure5. The panel has
a lengthl = 500 mm, a widthb = 250 mm, a thicknesst = 10 mm, and is clamped on both ends.
A Young’s modulusE = 4000N/mm2, a fracture energyGc = 0.05N/mm and a tensile strength
ft = 2N/mm2 have been chosen with a linear damage relation andc = 1mm2. As in the previous
example, the simulations have been repeated for different mesh sizes. The results are shown in
Figure6, which show a clear mesh independence. Figure7 also shows the deformation of the panel
and the intensity of the damage evolution.

l = 500 mm

b = 250 mm

t = 10 mm

q = sin(πx/l)

Figure 5. Geometry of the panel under sinusoidal traction.

7. CONCLUDING REMARKS

An approach to incorporate gradient damage models in shell elements has been proposed. The
implementation was done in a solid-like shell element, whichhas advantages since a three-
dimensional stress state is available, and because of the presence of nodes at the top and bottom
surfaces. The latter enables the direct interpolation of the nonlocal equivalent strain at the shell
surfaces, from which the nonlocal equivalent strain in the interior of the shell is obtained by a
linear interpolation. Examples show the versatility of theapproach and the convergence upon mesh
refinement.
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Figure 7. Deformation and damage intensity of the panel.
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