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On the numerical integration of isogeometric interfacensnts

Julien Vignollet, Stefan May and René de Béfst

School of Engineering, University of Glasgow, Glasgow GI'P, 8 K

SUMMARY

Zero-thickness interface elements are commonly used inpatational mechanics to model material
interfaces or to introduce discontinuities. The lattessleequires the existence of a non-compliant interface
prior to the onset of fracture initiation. This is accompésl by assigned a high dummy stiffness to the
interface prior to cracking. This dummy stiffness is knowriritroduce oscillations in the traction profile
when using Gauss quadrature for the interface elementt)dsg oscillations are removed when resorting to
a Newton-Cotes integration schenig. [The traction oscillations are aggravated for interfaleenents that
use B-splines or NURBS as basis functions (isogeometrigfante elements), and worse, do not disappear
when using Newton-Cotes quadrature. An analysis is predesftthis phenomenon, including eigenvalue
analysis, and it appears that the use of lumped integradiihg control points) is the only way to avoid the
oscillations in isogeometric interface elements. New figdihave also been obtained for standard interface
elements, for example that oscillations occur in the nedadiisplacements at the interface irrespective of the
value of the dummy stiffness. Copyrig{® 2014 John Wiley & Sons, Ltd.

Received ...
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1. INTRODUCTION

Zero-thickness interface elements are ubiquitous in figiéenent analysis. They have been used
frequently to characterise material interfaces and t@éhice discontinuities in bodies, e.g. cracks,
shear bands, or faults since the early 197)slpterface elements have proven to be useful in the
analysis of concrete fractur@][ of delamination in composite materials and debondingibiesive
layers 4, 5, 6, 7], and for analysing dynamic rupture using plastic slip megig. They are currently
available in most commercial finite element packages. Inkination with their ease of use and
general robustness this has made interface elements pémudawide range of applications.
Interface elements are well suited to describe stationagodtinuities, or situations where the
evolution of the discontinuity is known a priori, for exarepbecause the crack path is known
from experimental evidencea]| or because the evolution of the discontinuity is knowmfrthe
location of material interfaces, as in lamellar structurs important step towards describing
arbitrary crack propagation was made #j, [where interface elements were inserted between all
continuum elements. Although powerful, it is an expenspleition, and moreover, it can add too
much compliance to the structure. Indeed, when interfagmenhts are used to describe fracture,
they must be equipped with a high stiffness prior to the on$etracking in order to minimise
unphysical deformations in the interface. This is avoiddtemwinterface elements are generated
during crack propagation as id(], but this can require elaborate remeshing procedurescht ea
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loading step. Another way to introduce interfaces is to eipte discontinuous Galerkin approach,
as was done inlfl, 12], see also13].

Exploiting the possibility to lower the order of spline fuimns Verhooselet al. [14] have
introduced discontinuities in isogeometric analydiS|[ This idea was further elaborated ihf],
where an interface element was developed that is suitabl¢héo analysis of mechanical and
poromechanical fracture problems, andif,[18] in the context of delamination. Unlike the original
paper, the formulation inlf] exploits Bézier extraction, which makes it easy to impésrnin
standard finite element software, as it is then cast in a fothwedtis compatible with standard
finite element datastructuresd, 20].

It was noticed in 1 6] that prior to crack initiation, oscillations appearedlie traction profiles in
the interface elements. In principle, this is nothing nemd & has been known for long that such
oscillations emerge when using a high value of the dumminsst in combination with a Gauss
numerical integration scheme for the interfadg [The observation that the remedy commonly
applied in standard finite element analysis, namely to oeplaauss quadrature by Newton-Cotes
integration, did not remove the traction oscillationshisywever, disturbing.

Herein, we carry out an in-depth investigation of the appeee of oscillations in the traction
profiles of non-compliant, isogeometric interface elerselnt passing, we revisit some conclusions
regarding traction oscillations in standard interfaceralsts [L]. To provide a proper setting, we
start with a concise summary of standard interface elemen&ection2, and recall evidence
on oscillations in traction profiles from the literature.Xtlein Section3, we succinctly review
some basic concepts of isogeometric analysis, includiegtimcept of Bézier extraction. Sectidn
constitutes the core of the paper and presents two-dimessand three-dimensional analyses
of isogeometric interface elements, confirming that isogetnic interface elements inherit the
traction oscillations from standard interface elements], dn fact, aggravate the situation. To
further investigate the issue, analyses have also beeiedamt for elements that are equipped
with splines as basis functions, but have conventiatfatontinuity at element boundaries,
and for isogeometric interface elements where the centnéraopoint has been shifted. The
computations are augmented by eigenvalue analyses. Thef iseped integration turns out to
be a rigorous solution for isogeometric interface elemestswill be demonstrated in two and in
three dimensions. Furthermore, an investigation will beiedrout to oscillations that occur in the
relative displacements at the interface, an issue thatdtaseen paid attention to so far.

2. REVISITING INTERFACE ELEMENTS

2.1. Formulation

We consider a bodf shown in Figurel, with Dirichlet boundary conditions at, and Neumann
boundary conditions af’;. An interfacel'; divides the domain into two part§)* and Q-,
respectively, such th&t = QT U Q~, and is equipped with a local coordinate systeins, t), where

n is normal vector to the interface, asdndt define the directions tangential to the interface. For
future reference we make distinction betwéehn the side ofl'; that borders2*, andI';, the side

of I'; that borders$)—.

Figure 1. Schematic representation of a bédgrossed by a discontinuity;
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Without loss of generality we can restrict the present tnesit to static loading conditions, so
that the balance of linear momentum reads:

V-o(x)=0 x € Q, 1)

whereo denotes the Cauchy stress at a material poiat(2. The problem is closed by imposing
boundary conditions at the external boundafigandTl';, and on the discontinuity,:

ux)=1u x €Dy, (2a)
n(x) - o(x) = t(x) x €Ty, (2b)
n(x) - o(x) = th([u](x)) x ely. (2¢c)

According to EquationZc), the tractiont!,, defined in the local coordinate system of the interface
T’y is a function of the displacement junfp] at the interface. The latter can be decomposed in the
normal jump|u,], and the sliding§u;] and[u.], respectively:

[u] = [un]n + [us]s + [uwdt, ©)

where, for clarity of the notation, the explicit dependen€guantities on the spatial coordinate
has been omitted, and the conventjefi= (e)™ — (o)~ was adopted to denote a jump in a field
quantity,(e)* and(e)~ being evaluated dat} andI';, respectively. Employing the rotation matrix
R = [n',s",t7], the interface tractiom, referred to the global coordinate system can be derived
as:

ta([u]) = R"tg([u]). (4)
The interface tractiok), is generally a (strongly) nonlinear function of the disglaent jump[u],
tq([u]) = to. )

When considering material interfaces there is usually asiglayly non-zero compliance from the
onset of deformation and the undeformed state is charsetebyt),(0) = 0.

When interface elements are used to model cracks that niedtea hitherto intact medium, the
interface compliance is zero till the onset of cracking. Aodaterface compliance corresponds to an
infinite interface stiffness and this is usually approxiethlby assigning high values to the 'dummy’
stiffnessed:,, ks andk; in the normal and the sliding directions. It is noted that\yhkies of the
dummy stiffnesses are problem and length-scale depertiémust be chosen as high as possible.
Prior to the onset of cracking the interface stiffness mdij in the local coordinate system then
attains the format:

ke 0 O
D;i=|0 k& O (6)
0 0 K
and
ty = D;[u]. 7
Inserting Equation?) into Equation §) results in:
ta([u]) = RTD;[u]. 8

The weak formulation is obtained in a standard fashion bytiplying Equation () by a virtual
displacement fieldu. Application of the divergence theorem and exploiting tkiemal boundary
conditions g(a))-@(b)) then leads to:

/ ‘E-(Sudf‘t—i—/ td-éudfj—i—/
I, rr r
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tg-oudl'; — / o: V(éu)dQ = 0. (9)
Q
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Since we have traction continuity, i.e. the same interfaaetiont, acts onl"; and onl't, we can
rewrite Equation9) as:

/ o: dedQ —l—/ tq - [ou]dly = / t - dudly, (10)
Q rr Iy

with [ou] the virtual displacement jump, ad the virtual strain tensor, which is derived adopting
the usual assumption of small displacement gradients.
We subsequently discretise the domain iBtoelements for the bulk an#, interface elements,

Eh Ed
a=Jo, r.=ry, (11)
e=1 e=1
and interpolate the displacement within each element &s\fsi

u = Nu®, (12)

with u® a vector that contains the element nodal displacement®Natie: matrix that contains the
corresponding shape functions, which can either deriva facstandard Lagrange interpolation, or
from an isogeometric approach, utilising B-splines forrapée. Exploiting the usual formalism
the B-matrix can be derived which contains the derivatives ofsth@pe functions, and the relation
between the strainsand the nodal displacemenis reads:

e = Bu®. (13)

Next, the operatoM is constructed, which evaluates the jump at the interfaagpdrates on the
nodal displacemenis; at each side of the interface:

[u] = Mu¢. (14)

As an example we take the one-dimensional quadratic imedement of Figur@. The array that
contains the displacements of the interface element taleefotmu$ = {{NS;}, {NS;}, {NS;} },
where for each of the three node-sgi#S;} = {u; ,u;", v, , v}, so that:

PRIt ARt I 1

_|=N1 M 0 0 —Ny N 0 0 —Ns3 Ns 0 0
M= 0 0 -Ni M 0 0 —Ny N 0 0 —Ns3 Ns3|° (15)

........... bbb dnterface T

Figure 2. A quadratic one-dimensional interface elemerite Tines {17,2%,3%} and {17,27,37}
coincide, but are shifted for visualisation purposes.

We finally introduce the discretisation of Equatidrl), Equation 8), and the operators defined
in Equations {2)—(15). The internal force vector can then be evaluated as follows

E, Ed
f"=3" | Blod2+) [ M'Rty([u])dly (16a)
e=1 Y Q° e=17T}
E, Ed
= Z B'D,Bu®dQ + Z M'R'D;Mu¢dl'y, (16b)
e= Q° e=1 Fji
Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
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whereD, is the material stiffness matrix of the bulk material. Théfreg¢ss matrix is obtained in a
standard manner, i.e. by linearisation of the internaldarector:

Ey

fint Ei
K= aa =Y/ B'D,Bd+» [ M'R'D,RMdT. (17)
u
= Q° e=1 FZ

2.2. Spurious traction oscillations at the interface

As discussed in the preceding, traction profiles along fiates will exhibit spurious oscillations
for high values of the dummy stiffness. As analysed in detaiReference 1] this occurs in
particular when Gauss integration is used for evaluatiegrttegrals that arise when formulating the
interface elements. A classical example is the notched Isedected to three-point bending shown
in Figure3a[1, 16]. The simply supported beam is divided by an interface altngentreline,
and is loaded by a concentrated load at the centre. The bedd® isim thick, and the material is
characterised by a Young's modulis= 2 GPa and a Poisson’s ratio= 0.2. The traction profiles
are shown in Figuré&b for values of the dummy stiffness in the normal directiont thery from

k, = 10° N/mm? to k,, = 10°> N/mm?Z. Spurious oscillations occur in the traction profile neartip

of the notch fork,, > 103> N/mm?. When the dummy stiffness is further increased the osiciliat
become more pronounced and tend to propagate upwards.

F 80 . .
= k,=10" N/mm"
ETT k= 10" Nimm ===
interface E | K, =10 Nimm® -----o
2
-; 50 |-
100mm 5
£
notch 5 Wt
=
¢ 20mm % 30 -
a
20 e
0 0.5 1 L5 2
101 Traction (N/mmz)
125mm 125mm ol

(@ (b)

Figure 3. (a) Geometry and boundary conditions for the restdbeam subject to three-point bending. (b)
Traction profiles along the interface for different valuésl®e dummy stiffness:,, using standard linear
four-noded elements and Gauss integration.

It has been shown inl] for two-dimensional and three-dimensional configurasiéhence for
one-dimensional and two-dimensional interfaces) thasdgheaction oscillations disappear when
using a Newton-Cotes integration scheme instead of théitradl Gauss quadrature. A possible
explanation was suggested by inspecting the structureatitiness matrix of the interface element,
the second term in Equatiod®). For instance, for a Gauss integration scheme, the paitteof t
stiffness matrix of a quadratic one-dimensional interfatements of lengtli that relates to the
normal displacements™ andu~ takes the following form (in the local coordinate system):

4k, -4k, 2k, -2k,  —kn kn,
-4k, 4k, 2k, 2k, kn, —kn

l 2k, —2k, 16k —16k 2k —2k
FEM __ * n n n n n n
KGgauss= 15 | -2k, 2k, —16k, 16k, —2k, 2k, (18)
—kn, kn 2k, -2k, 4k, —4dk,
kn —kn =2k, 2k, —4k, 4k,
Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
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On the other hand, for a Newton-Cotes scheme, we obtain:

kn, —kn 0 0 0 0
—kn  kn O 0o 0 0
l 0 0 4k, —4k, 0 0
Kﬁlgwton-(:otes: 310 0 _4]<;Ln 4k,,LL 0 0 (19)
0 0 0 0 kn _k’n
0 0 0 0 —kn  kn

Direct inspection of Equationd. ) and (L9) reveals that the Newton-Cotes integration scheme
fully decouples the contributions of each node-set. Thagash degree of freedom is coupled to
the other five degrees of freedom when using the Gauss integstheme, while it is only coupled
to that on the other side of the discontinuity for the New@utes scheme. This decoupling is also
observed when investigating the eigenmodes of the inedéaments. Figuréb shows that for the
Newton-Cotes integration scheme, the eigenmodes exhdbézat uncoupled structure, where each
of the six non-zero eigenmodes consists of an elementagyrdation of the individual node-sets,
either an opening (modes 1-3) or a sliding (modes 4-6), wiheraoted that the eigenvalue analyses
have been carried out for the full stiffness matrix, i.e. inihg the stiffness terms belonging to the
vt andv~ displacements. The modes resulting from the Gauss integratheme are shown in
Figure 4a We observe that each of the three normal modes and each dlirdee shear modes
triggers deformations at more than one node-setl])rife emergence of traction oscillations for
Gauss integration was attributed to this property.

mode 1 mode 2 mode 3 mode 1 mode 2 mode 3
o~
— S
mode 4 mode 5 mode 6 mode 4 mode 5 mode 6
(a) Gauss integration (b) Newton-Cotes integration

Figure 4. Eigenmodes of one-dimensional quadratic interidements

3. EXTENSION TOC!-CONTINUOUS INTERFACE ELEMENTS

3.1. Isogeometric interface elements: B-splines and én&dB operator

We will first give a succinct recapitulation of isogeometriterface elements, se&4, 16] for more
details. The idea of isogeometric analysis (IGA) is to usesttiape functions used for describing the
geometry in Computer Aided Design (CAD) packages, e.gplBwss, NURBS or T-splines, also as
basis functions for the ensuing finite element analysiseinainder we limit ourselves to B-splines
for simplicity, but similar results are anticipated wheingsNURBS or T-splines.

A univariate B-splines,, of orderp, parametrised using is defined as a linear combinationof
basis functions:

Sp(€) = _Z N;p(€)P; = N, (6P, (20)

with vV; , andP;, i € [1,n], then shape functions and control points, respectively, whiclinde
the B-splineN,, andP are the matrices that gather the shape functions and theotpoints. In

this study, the location of the control points is evaluatsthg the Greville’s abscissagl], which
ensures a constant Jacobian in each element. The basijhswt ,(¢) are evaluated with the
Cox-de Boor recursion formul2p, 23]. B-splines are piecewise polynomials parametrised over a
knot vector= = [&1,&2, - - -, &ntpt+1]). Knot valuess; are ordered in a non-decreasing manner in a
knot vector, and each knot interval of strictly positivedémrepresents an element. Knots can be

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
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repeated in order to decrease the continuity along a Besgirsplines arg — m; times continuous,
wherem; is the multiplicity of knoti. Accordingly, a quadratic(= 2) B-spline isC!-continuous

if the knot vector does not contain repeated knot values=£ 1). When a knot value is repeated
twice, m; = 2, and the B-spline becomé$-continuous. Finally, for a multiplicityn; = p + 1 = 3,

a discontinuity is introduced between elements. For exantipé quadratic B-spline shape functions
associated with the knot vectr= [0,0,0, &, 3,---,3,3,4,---,1,1,1] contain a discontinuity
at¢ = 0.5, see Figuré.

Element: @ @ @ @ @ @@ @ @ @@

Ny NgllNg iNig
038 N3 N4 N5 N6 Nll N12 N13
No N7 [1\N1o
06}
)
g 04}
02 \
00 1/12 2/12 3/12 4/12 5/12 6/12 7/12 8/12 9/12 10/12 1]‘/]2 12
3
Figure 5. Quadratic shape functions for knot ve@ot [0,0,0, 15, &, , 3.5, 3.+, 1, 1,1].

Figure 5 shows that, unlike the Lagrange shape functions in stanfiisitd element analysis,
B-splines usually extend over more than one element. Itissgroperty which allows for higher
continuity across element boundaries, but makes isogemnagtalysis not directly amenable to
standard finite element datastructures, where shape dmscfand many other properties) are
stored per element. Use of the Bézier extraction operda®r0] solves this issue. The procedure
exploits the fact that B-splines, and hence also NURBS asgplifies, can be expressed as a linear
combination of Bernstein polynomials of the same order. Bamstein polynomials span a single
element and have the same value within each element, cfré=&g) and therefore need to be
evaluated only once. ConsequentlyBfcontains the set of Bernstein basis functions, the shape
function matrix for each element can be expressed using #zéeBextraction operatar®, which
is constant per element, as follows:

Ng(©) = C°B(£(9)), (21)

whereé (¢) denotes the mapping to the parent domain. For example, theem shape functions in
element 3 of the B-spline mesh shown in Figb@re N3, N, andN5. The Bézier operator therefore
reads:

Ns(€) 05 0 o] [P f(f) 5 3
N3O =N p = [05 1 05| Ba(é9) b, €[] @
N5(€) 0005 Bsa(€(8)

From EquationZ?2) it is observed that the shape functions can be expresselih@aacombination
of the Bernstein polynomials:

Nu(§) = 05812 (£(©)) + Baz (£9)) +0.5B5.2(€9) ). (23)

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2014)
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1 1
BL2 B3’2 N4 = 0.5B172 + BQ_]Q + 0‘53372
o Bj o
Q
0 0
-1 0.5 1 2 3
é’ 12 f 12
(@ (b)

Figure 6. a) Quadratic Bernstein polynomials in the paremhain¢ e [—1, 1] - (b) Shape functionVy,
in element 4 (parametric domathe [2/12, 3/12]), expressed as a linear combination of the Bernstein
polynomials.

3.2. Isogeometric analysis with interfaces in two and tldgeensions

To create meshes in higher-dimensional spaces, paraatiems in they and thez-directions
are introduced using the knot vectors = [11,m2, - , Mm+tq+1] @NAd Z = [C1,Coy -+ 5 Cotrti],
respectively. These knot vectors are associated withasis functions of the ordeyr, which are
contained inM; 4(j € {1, m}), ando basis functions of the ordet contained ir0y . (k € {1,0}),
respectively. The bivariate B-splines then follow from tlemsor product of two knot vectors,
resulting in a parametrisatiqd, ) € E ® H:

- ZZNi’P(g)Mj,q(n)Pi,j- (24)

i=1 j=1

Similarly, the trivariate B-spline results from the pardrsation(£,7,{) €EEQ H ® Z:

5777, ZZZsz )Okr(c> i,k - (25)

i=1 j=1 k=1

As for the univariate case, a Bézier operator can be definebi and three dimensions as the tensor
product of the univariate operators.

Edges of Bézier mesh Interface
Clin x and y C~lin x

Clin y
L] L] .\* L] * L]

T T T

B Repeated control points interface element y
o Single control point s —+ 3 ]_.l

Figure 7. Quadratic two-dimensional mesh Witw]ainterface depicted in the physical space. The knot
vectors areE = [0,0,0, 15, 5. s 55,350+ » 1,1, 1] andH = [0,0,0, 4,2, 2,2, 2.1,1,1]

As an example we consider a8 quadratic two-dimensional mesh, Figutewhich can be
used to model the notched beam introduced in Figard he knot vectoE in the z-direction is the

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2014)
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same as that used in Figusgi.e. with a discontinuity af = 0.5. In they-direction, the knot vector
H =1[0,0,0,%,2,2,2,2,1,1,1] is used in order to obtaifi' -continuity both in the bulk and along
the interface. Figuré also shows that at the discontinuity, only one shape fundéimon-zero on
either side in th&-direction: Ng(£ = 0.57) = No(¢ = 0.57) = 1 in elements 6 and 7. This implies
that the discontinuity can be described on each side as fhariate B-spline:

m

S(€=05,m) = M,mPi;,  i€l[l,n]. (26)

j=1

Consequently, thdI-operator has the same structure as that for standard fieiteeats defined in
Equation (5). The shape function along the interface becomes the uaieaB-spline functions
M; , for the two-dimensional case, and for the three-dimensicaae the bivariate B-spline
functions)M; ,Oy. - serve this purpose. Accordingly, the derivation of therinéand external force
vectors and of the stiffness matrix, cf. Equatioh6)(@nd (L7) also remains the same.

4. TRACTION OSCILLATIONS IN ISOGEOMETRIC INTERFACE ELEMENRNS

4.1. Results with higher continuity along the interface

We revisit the notched beam of FiguBato assess the behaviour of the isogeometric interface
elements, and considér-continuous quadratic anc?-continuous cubic isogeometric interface
elements. Figur@ shows the results for a two-dimensional analysis (and hesree-dimensional
interface elements). Quadratic B-splines with a threevpimitegration and cubic B-splines with
a four-point integration scheme have been used for thefamerelements. Results are shown
both for Gauss quadrature and for Newton-Cotes integra@ompared to the standard finite
element analysis, cf. Figurgb, the results of the isogeometric analyses tend to aggrdkate
traction oscillations, especially near the tip of the notghich is probably caused by the increased
continuity. More importantly, and in contrast to standartéiface elements, use of Newton-Cotes
integration does not improve this unphysical behaviour[1d]. Figure 9 shows that very similar
results are obtained in three dimensions.

100

80

n- grmmnnen teg s
30 80 30
25 25
60 60
20

20

-0.5 0 0.5 1 40 -0.5 0 0.5 1

40

Ordinate (mm)
Ordinate (mm)

0 0
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
Traction (MPa) Traction (MPa)
(a) quadratic B-spline (b) cubic B-spline

Figure 8. Results for two-dimensional analysis of the netcheam. Traction profile for (a)! and (b)

C2-continuous interface elements using Gauss and NewtoesQuatiegration withk,, = 10°N/mm?. Three-

point integration was used for the quadratic spline intlrjian and a four-point rule was used for the cubic
spline interpolation.
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traction (MPa) traction (MPa) traction (MPa)
(®) Gauss integration (b) Gauss integration (c) Newton-Cotes integration
kn=10*MPa/mm kn=10°MPa/mm kn=10°MPa/mm

Figure 9. Traction profiles along the interface @dkcontinuous interface elements using Gauss and Newton-
Cotes integration in three dimensions

4.2. Results for &°-continuous interface

A key advantage of isogeometric analysis over standarcefelgment analysis is that the degree
of continuity across element boundaries is easy to conswiguknot insertion I5]. This feature
allows lowering the degree of continuity across elementnaries toC in the y-direction. By
changing the knot vectak defined before inté{ = [0,0,0,1,%,2 2 3 3 4 4 /33 7 1 1] (see
the mesh in Figuré0), a discretisation is obtained thatd8-continuous at the element boundaries
— like standard finite elements — but uses B-splines for therpolation instead of the Lagrange

polynomials used in standard finite elements.

Ed%es of Bézier mesh Interface
C'in x “tinazx
Cliny C%iny

0 IO I4) RGN DO IPA 220 RPN IO DO RO

m Repeated control points interface element L
e Single control point —— x

Figure 10.Quadratic mesh wittt®-continuous interface elements. The knot vectors afe=
1 2 111 112233 4455
[070707ﬁ7ﬁ7'”7575757"'717171]andH:[0707076767676767676767676717171]

Figures11 and 12 show that a reduction of the continuity 8 along the interface makes the
results of the isogeometric analysis resemble those of tdoedard finite element model. This
observation holds for quadratic and for cubic shape funstias well as for two-dimensional and
three-dimensional analyses. As expected, Gauss inteqgrstiil gives rise to traction oscillations
along the interface, but, interestingly, the amplitudeledsie oscillations is lower, and is in the
same order of magnitude as that when using Lagrange polaisrof. Figure3b. The most striking
observation is that the traction oscillations disappeamiiewton-Cotes integration is used, similar
to standard finite elements. Hence, the higher-order ilgi@@nt continuity of isogeometric analysis
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seems to play an unfavourable role regarding the emergehtaabion oscillations along the
interface.
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80 20 80
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Ordinate (mm)
o
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—

0 0
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
Traction (MPa) Traction (MPa)
(a) quadratic B-spline (b) cubic B-spline

Figure 11. Traction profiles along the interface fdt-continuous interface elements using Gauss and
Newton-Cotes integration schemes. Results in two dimessior (a) quadratic, and (b) cubic B-splines

with k, = 10°N/mm?.

traction traction traction (Mpa)
(a) Gauss integration (b) Gauss integration (c) Newton-Cotes integration
k,=10PMPa/mm k,=10°MPa/mm k,=10°MPa/mm

Figure 12. Traction profiles along the interface tl-continuous spline-based interface elements using
Gauss and Newton-Cotes integration schemes in three diomsns

{ode 1 mode 2 mode 3
— @ =_=

mode 4 mode 5 mode 6

Figure 13. Eigenmodes of quadrati€-continuous interface elements with a B-spline interpotaand
using Newton-Cotes integration.
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The traction profiles of Figuretl and12 indicate that interface elements formulated within an
isogeometric analysis framework and standard interfaemehts behave in a similar manner as
when the interelement continuity is of the same order. Hendhere is a noteworthy difference as
for the isogeometric interface elements, Newton-Cotesgjitattion now does not result in node-set
decoupling, yet results in smooth traction profiles. Theptiog of the node-sets is clearly observed
from the structure of the stiffness matrix:

5k, —bk, 2k, 2k, kn —kn,
—5k, bk, —2k, 2k, —kn kn
IGA-C° _ L 2kn _an 4kn _4kn 2kn _an
KNewton-Cotes* 12 | — an an _4kn 4k?n _ an an ) (27)
kn —kn, 2k, —2k, bk, —bk,

—kn kn -2k, 2k, —bk, 5k,

which closely resembles that of EquatialB). As in Equation {8) only the stiffness terms that
correspond to the degrees of freedom have been printed for ease of readalilitiso shows up

in Figure13, where the eigenmodes BICAC’ __ have been plotted in the physical space, so that
points depict the displacements at the vertices and at thgooints rather than at the control points.
Similar as for the stiffness matrix that arises when usingi€gantegration in conjunction with
standard interface elementfEM, the eigenmodes are coupled, cf. Figdesand Equation18).
Nonetheless, no traction oscillations are observed. Ehaniimportant result as it demonstrates
that the oscillatory behaviour of the traction along theeiifdce is not related to the node-set
coupling [L]. It indicates that node-set decoupling is a sufficienteathan a necessary condition for
removing oscillations in traction profiles for interfacelents, either formulated using Lagrange
polynomials, or using B-splines or NURBS.

Figure 14 reviews the relative locations of the integration pointd @ime nodes/control points
in the physical space for the cases considered in this studppears that for the two situations
without traction oscillations, i.e. when using Newton-&pintegration in conjunction with standard
interface elements (FEM) and for tlié-continuous interface elements with a B-spline interpotat
(IGA-CY), the integration points coincide with the nodes/contaihgs (second row, first and third
column, respectively). This coincidence could be a requéet for traction oscillations not to
emerge, and the flexibility of isogeometric analysis alldavgest this hypothesis. For this purpose
the mid-control point is shifted in the model wif-interelement continuity. This results in a shift
of the mid-integration points as well, but by a different amb This is because when the mid-
control point is shifted, the Greville abscissae is no longed. As a consequence, the Jacobian of
the interface elements is no longer constant and the lotafithe centre of the element changes in
the physical space. Consequently, the mid-control pointsthe mid-integration points no longer
coincide. This is shown in the last row of Figuté. The results for this case with Newton-Cotes
integration do not exhibit traction oscillations, thussfling the hypothesis that the coinciding of
integration points and nodes/control points is a necessamgition for traction oscillations not to
appear.

element in physical space
. node/control-point set
O integration point

FEM IGA-C" IGA-C? IGA-C?
centered offset
mid-control point mid-control point
Gauss o He—Feo |o e e oo oo

Newton-Cotes o—fo—f0| | o[1—fo—1]o [e—{or—T0 [o—e——0

Figure 14. Relative location of integration points and rsddentrol points. The cases without traction
oscillations are shaded
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The literature invariably shows only traction oscillatiprbut not relative displacements, and
notes that, when integrating interface elements with Ggussirature, the oscillations ameliorate
when the dummy stiffness,, is reduced. Figurd5 shows results for the relative displacement,
or displacement jump, at the interface, using quadratigagsmetric interface elements, for Gauss
integration as well as for Newton-Cotes integration. Itliserved that, although the amplitude of
the traction oscillations decreases for lower values ofitmamy stiffness:,,, the oscillations in the
jump field do not decrease, on the contrary. This observétadds irrespective of the integration
scheme. The observation that oscillatory behaviour in #tative displacements also occurs for
low values of the dummy stiffness is novel, and has been ndasixdar because in the plots of the
traction oscillations they have been multiplied by thefisti§s, and a lower stiffness then damps the
oscillations in the tractions. The implication is that tifa¢ oscillatory nature is not driven by the
magnitude of the dummy stiffness, but seems to be an inhehamécteristic of interface elements.

100 50 100 50
40 40
80 80
30 30
g Bl
é 60 20 é 60 20
2 0 0.0025 @ 0 0.0025
< <
(=} =
S 40 S 40
o o
20 [ k=1e3 20 | k=Te3
k=1e4 k=1e4
=5 — k=15 —
0 =le6 0 k=1e6
-0.05 0 0.05 0.1 0.15 -0.05 0 0.05 0.1 0.15
Jump (mm) Jump (mm)
(@) ¢ - Gauss (b) c° - Newton-Cotes
100 50 100 50
40 40
80 80
30 30
g Bl
é 60 20 é 60 20
2 0 0.0025 @ 0 0.0025
< <
(=} =
S 40 S 40
o o
20 [ k=1e3 20 | k=Te3
k=1e4 k=1e4
=5 — k=15 —
0 =le6 0 k=1e6
-0.05 0 0.05 0.1 0.15 -0.05 0 0.05 0.1 0.15
Jump (mm) Jump (mm)
(c)c! - Gauss (d) ¢! - Newton-Cotes

Figure 15.Jump profile along the interface f6f-continuous B-spline interfaces (a-b), and fot-
continuous B-spline interfaces (c-d)

It is finally noted that the condition number of the globaffess matrixiK, see Equationl(7),
defined as the quotient of the largest and the smallest edfjgsndoes not appear to be of relevance
regarding the occurrence of traction oscillations. Thigliserved from Figuré6, which gives the
condition number as a function of the dummy stiffnefss, for standard interface elements and
isogeometric interface elements with-interelement continuity, and different integration stiess.
Moreover, tests with direct solvers as well as iterativee like conjugate gradients did not reveal
any differences in the results.

Copyright© 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
Prepared usingmeauth.cls DOI: 10.1002/nme



14

le+07 C1 - Gauss
C1 - Newton-Cotes
C1 - Lumped
T 1e+06 CO - Gauss
5 [ CO - Newton-Cotes
—g CO - Lumped
2
= le+05
S
=
=
S le+04
1e+03 : :
1le+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

Dummy stiffness (MPa)

Figure 16. Condition number of the global stiffness matsxagdunction of the dummy stiffnegs,. Results
are also shown for lumped integration, which is discussekkiction4. 3.

4.3. Lumped integration

In [1] lumped integration has been investigated as an altematitegration scheme. The
fundamental difference between lumped integration on @arelhand quadrature rules as Gauss
or Newton-Cotes on the other hand, lies in the evaluatiorhefimtegral along the discontinuity
that appears in the weak form, Equatidd) In Section2 the discretisation was introduced into
the weak form of Equationl(l), together with interpolations of Equations?j and (L3), in order

to obtain the internal force vector and the stiffness maifithe interface elements. In the lumped
integration scheme, rather than performing integraticer @ements, these integrals are evaluated
in a discrete sense for each discrete set of control-pSigisFigurel?.

/Set of control-points Scp

1- 2- Sqf nCPsets™
e e e o o .0 ‘06 o o o o
. . interface

1+ 2+ Scp* ! nCPsets™

Figure 17. In the lumped integration scheme, interface etemare replaced by discrete sets of control
points. For visualisation purposes the control points hiftesl, but in reality coincide.

The element displacement vector at the interfacg,is replaced by a vector which contains
the displacements at a given set of control poisits: ug,, = {u=,ut, v, v }se,. Hence, the
displacement jump becomes a discrete quantity evaluatedddt set of control pointScp, thus
redefining théM; operator, which now operates on single node-sets:

u
-1 1 0 O ut
[[u]]scp: |:0 0 —1 1:| v :MluSCp. (28)
+
v Secp
The internal force vector then reads:
_ nCPsets R
filrrl]tterface: Z MlTDiMlueScpAScm (29)
Scp=1

where 'nCPsets’ stands for the number of sets of control tpoamd A5, is a weighting
factor accounting for the geometry of the interface attdchie the node-setScp (i.e.
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nCPsets ¥ ; : .
Zscpzl ASC[) = Ainterfacé. It IS deflned as:

Agep = /F Nj,, dla. (30)
d

In Equation 80) NZ denotes the shape function of either control point from #teSsp (on the
— side or on thet siaue). This integral is evaluated using Gaussian integmati order to obtain the
exact surface contribution. In essence, the lumped intiegracheme replaces interfaeiements
by point-setsat the interface, which can be interpreted as discreteggrin

It is observed from Figur&8 (two-dimensional configuration) and Figut8 (three-dimensional
configuration) that the traction oscillations disappeaewlhsing the lumped integration scheme.
This holds forall cases considered, isogeometric interface elements wétirgtic and cubic basis
functions and’®-interelement continuity, quadratic basis functions witkinterelement continuity,
and cubic basis functions witi?-interelement continuity. It is noted that the magnitudetraf
traction singularity at the notch decreases for the lumpbedmse.
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() Quadratiaz®-continuous interface (b) Quadratiac!-continuous interface
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B
g 15
'-;"5 40 -0.5 0 0.5 1
S
20 S
0

-1 0 1 2 3 4 5
Traction (MPa)

(c) Cubicc?-continuous interface

Figure 18. Traction profiles along the interfaced8r ¢! andc2-continuous interface elements, using Gauss,
Newton-Cotes and lumped integration schemes in two diroaaswithk,, = 10°N/mm?.
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traction (Mpa) traction (Mpa)
(a) cY-continuous interface (b) ¢*-continuous interface

Figure 19. Traction profile along the interface for (&} and (b)C!-continuous interface using lumped
integration in three dimensions fér,=10°MPa/mm

5. CONCLUSIONS

The numerical integration of isogeometric interface eletmeiith a zero initial compliance has been
investigated. In standard finite element analysis sucheisrare widely used to simulate cracking
when the crack path is known in advance, e.g. in lamelladspbr from experimental evidence. It
turns out that, in line with an earlier, preliminary invegstiion [L6], isogeometric interface elements
share the oscillations in the tractions along interfaces abserved for standard interface elements.
In fact, the higher continuity of isogeometric interfacerabnts seems to aggravate the oscillations,
and it is disturbing that a solution commonly adopted fondtad interface elements, namely
to adopt Newton-Cotes quadrature instead of Gauss quaglratoes not work for isogeometric
finite elements. This paper demonstrates that the use ofddrimpegration is the only solution in
the latter case, as this scheme has shown to be robust faditnensional and three-dimensional
configurations, and for quadratic and cubic B-spline imtéatons.

The investigations have revealed a number of interestipgas about interface elements in
general. First, node-set decoupling is not a necessanytamtb remove traction oscillations along
the interface, but rather seems to be a sufficient condiblaxt, it has been shown by inspection
of the relative displacements rather than the traction lpfit the interface, that the oscillatory
response is not simply driven by high values of the dummyn&tifs as it has been assumed so far,
but seems to be inherent in the formulation of interface elets) either formulated in a standard
manner, or within the framework of isogeometric analysis.
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