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On the numerical integration of isogeometric interfacensnts

Julien Vignollet, Stefan May and René de Bdrst

School of Engineering, University of Glasgow, Glasgow GI'?, 8 K

SUMMARY

Zero-thickness interface elements are commonly used inpatational mechanics to model material
interfaces or to introduce discontinuities. The lattessleequires the existence of a non-compliant interface
prior to the onset of fracture initiation. This is accompésl by assigned a high dummy stiffness to the
interface prior to cracking. This dummy stiffness is knowriritroduce oscillations in the traction pro le
when using Gauss quadrature for the interface elementt)dsg oscillations are removed when resorting to
a Newton-Cotes integration schenig. [The traction oscillations are aggravated for interfaleenents that
use B-splines or NURBS as basis functions (isogeometrégfaite elements), and worse, do not disappear
when using Newton-Cotes quadrature. An analysis is predesftthis phenomenon, including eigenvalue
analysis, and it appears that the use of lumped integraditing control points) is the only way to avoid the
oscillations in isogeometric interface elements. New ngh have also been obtained for standard interface
elements, for example that oscillations occur in the redadiisplacements at the interface irrespective of the
value of the dummy stiffness. Copyrigtat 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Zero-thickness interface elements are ubiquitous in miiement analysis. They have been used
frequently to characterise material interfaces and toéhice discontinuities in bodies, e.g. cracks,
shear bands, or faults since the early 197)slpterface elements have proven to be useful in the
analysis of concrete fractur@][ of delamination in composite materials and debondingibfessive
layers 4, 5, 6, 7], and for analysing dynamic rupture using plastic slip mMegig. They are currently
available in most commercial nite element packages. In boration with their ease of use and
general robustness this has made interface elements pémudawide range of applications.
Interface elements are well suited to describe stationagodtinuities, or situations where the
evolution of the discontinuity is known a priori, for exarepbecause the crack path is known
from experimental evidencea], or because the evolution of the discontinuity is knowmfrthe
location of material interfaces, as in lamellar structuss important step towards describing
arbitrary crack propagation was made #j, [where interface elements were inserted between all
continuum elements. Although powerful, it is an expenspleition, and moreover, it can add too
much compliance to the structure. Indeed, when interfagments are used to describe fracture,
they must be equipped with a high stiffness prior to the on$efracking in order to minimise
unphysical deformations in the interface. This is avoiddtewinterface elements are generated
during crack propagation as ii(], but this can require elaborate remeshing procedurescht ea
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loading step. Another way to introduce interfaces is to eipthe discontinuous Galerkin approach,
as was done inlfl, 12], see also13].

Exploiting the possibility to lower the order of spline fuimns Verhooselet al. [14] have
introduced discontinuities in isogeometric analydiS|[ This idea was further elaborated ihf],
where an interface element was developed that is suitabl¢héo analysis of mechanical and
poromechanical fracture problems, andif,[18] in the context of delamination. Unlike the original
paper, the formulation inlf] exploits Bézier extraction, which makes it easy to impésrnin
standard nite element software, as it is then cast in a forthat is compatible with standard
nite element datastructure4 9, 20Q].

It was noticed in 16] that prior to crack initiation, oscillations appearediie traction pro les in
the interface elements. In principle, this is nothing nemgd & has been known for long that such
oscillations emerge when using a high value of the dumminsgt in combination with a Gauss
numerical integration scheme for the interfadg [The observation that the remedy commonly
applied in standard nite element analysis, namely to repl&auss quadrature by Newton-Cotes
integration, did not remove the traction oscillationshisywever, disturbing.

Herein, we carry out an in-depth investigation of the appeee of oscillations in the traction
pro les of non-compliant, isogeometric interface elengerh passing, we revisit some conclusions
regarding traction oscillations in standard interfaceralsts [L]. To provide a proper setting, we
start with a concise summary of standard interface elemen&ection2, and recall evidence
on oscillations in traction pro les from the literature. e in Section3, we succinctly review
some basic concepts of isogeometric analysis, includiegtimcept of Bézier extraction. Sectibn
constitutes the core of the paper and presents two-dimeadsand three-dimensional analyses
of isogeometric interface elements, con rming that isagetric interface elements inherit the
traction oscillations from standard interface elements], dan fact, aggravate the situation. To
further investigate the issue, analyses have also beeiedamt for elements that are equipped
with splines as basis functions, but have conventicatontinuity at element boundaries,
and for isogeometric interface elements where the centnéraopoint has been shifted. The
computations are augmented by eigenvalue analyses. Thef iseped integration turns out to
be a rigorous solution for isogeometric interface elemessswill be demonstrated in two and in
three dimensions. Furthermore, an investigation will beiedrout to oscillations that occur in the
relative displacements at the interface, an issue thatdtaseen paid attention to so far.

2. REVISITING INTERFACE ELEMENTS

2.1. Formulation

We consider a body shown in Figurel, with Dirichlet boundary conditions at, and Neumann
boundary conditions at;. An interface 4 divides the domain into two parts,” and ,
respectively, suchthat  * [ , and is equipped with a local coordinate systens;t), where

n is normal vector to the interface, aséndt de ne the directions tangential to the interface. For
future reference we make distinction betweén the side of 4 that borders *, and , the side

of 4 that borders

Figure 1. Schematic representation of a bodgrossed by a discontinuityy
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Without loss of generality we can restrict the present tnesit to static loading conditions, so
that the balance of linear momentum reads:

r x)=0 X2 @)

where denotes the Cauchy stress at a material poiat . The problem is closed by imposing
boundary conditions at the external boundariggand ¢, and on the discontinuityq:

u(x) = u X2 (2a)
nx) (x)=t(x) X2 4 (2b)
nx) ()= ty([ul(x) X2 g (2c)

According to EquationZc), the tractiort!,, de ned in the local coordinate system of the interface
4 is a function of the displacement junjjip] at the interface. The latter can be decomposed in the
normal jump[u, ], and the sliding§us] and[u.], respectively:

[ul = [unln + [us]s + [ue]t; @)

where, for clarity of the notation, the explicit dependepn€guantities on the spatial coordinate
has been omitted, and the conventoif=( )* () was adopted to denote a jump in a eld
quantity,( )* and( ) being evaluated atj and , respectively. Employing the rotation matrix
R = nT;s";tT , the interface tractiony referred to the global coordinate system can be derived
as:

ta([ul) = R Tty([ul): “4)
The interface traction), is generally a (strongly) nonlinear function of the disglaent jumgul,
ty(ul) = ty: (5)

When considering material interfaces there is usually ssiglayly non-zero compliance from the
onset of deformation and the undeformed state is charaetehy:t!,(0) = 0.

When interface elements are used to model cracks that niediea hitherto intact medium, the
interface compliance is zero till the onset of cracking. Aodaterface compliance corresponds to an
in nite interface stiffness and this is usually approxiredtby assigning high values to the 'dummy’
stiffnessesk,, ks andk; in the normal and the sliding directions. It is noted thatyhkies of the
dummy stiffnesses are problem and length-scale depertdémhust be chosen as high as possible.
Prior to the onset of cracking the interface stiffness mdij in the local coordinate system then
attains the format:

2 3
ky 0 O
D;i=40 ks 05 (6)
0 0 k
and
ty= Di[ul: )

Inserting Equation?) into Equation §) results in:
ta([ul) = R™D;[u]: (8)

The weak formulation is obtained in a standard fashion bytiplying Equation () by a virtual
displacement eld u. Application of the divergence theorem and exploiting tkiemal boundary
conditions g(a))-@(b)) then leads to:

Z Z Z A

t ud ¢+ tg ud j+ tg ud 4 r(uwd =0 : 9)
t d d
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Since we have traction continuity, i.e. the same interfemetiont4 acts on 4 and on , we can
rewrite Equation9) as:
4 4 4
"d + tg [uld 4= t ud (20)

d t

with [ u] the virtual displacement jump, and the virtual strain tensor, which is derived adopting
the usual assumption of small displacement gradients.
We subsequently discretise the domain iBtoelements for the bulk any interface elements,

-t % d=F d; (11)

e=1 e=1

and interpolate the displacement within each element &s\fsi
u=Nu® (12)

with u® a vector that contains the element nodal displacement®atie: matrix that contains the
corresponding shape functions, which can either deriva facstandard Lagrange interpolation, or
from an isogeometric approach, utilising B-splines forrapée. Exploiting the usual formalism
theB-matrix can be derived which contains the derivatives ofstha@pe functions, and the relation
between the strainsand the nodal displacement8 reads:

"= Bu®: (13)

Next, the operatoM is constructed, which evaluates the jump at the interfdaepérates on the
nodal displacements® at each side of the interface:

[ul = Mu }: (14)

As an example we take the one-dimensional quadratic imedéement of Figur@. The array that
contains the displacements of the interface element tdleeotmuf = fNS;g;fNS,0;fNS;g
where for each of the three node-sES g= fu, ;u’;v, ;v g, so that:

N1 N3 0 0 N2> N» 0 0 N3 N3 0 0

M= 69 0 N, N, O O Ny N, 0 0 Nz Ns

(15)

........... bbb dnterface T

Figure 2. A quadratic one-dimensional interface elemerte Tinesf1*;2* ;3 g andf1 ;2 ;3 g
coincide, but are shifted for visualisation purposes.

We nally introduce the discretisation of Equatiohl), Equation 8), and the operators de ned
in Equations {2)—(15). The internal force vector can then be evaluated as follows

g Z ¢ Z
fint = BT d+ M TR Ttg([ud 4 (16a)
e=1 _ ° el  a
0 Z i Z
= B'DyBu®d + MTRTD;Mu &d g; (16b)
e=1  °© e=1 4
Copyright ¢ 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
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whereD y, is the material stiffness matrix of the bulk material. Théfreéss matrix is obtained in a
standard manner, i.e. by linearisation of the internaldarector:

@int ¥b z MEi z
=@ - B'D,Bd + MTRTD;RM d g: (17)

e=1 e=1 g

K

2.2. Spurious traction oscillations at the interface

As discussed in the preceding, traction pro les along ifaegs will exhibit spurious oscillations
for high values of the dummy stiffness. As analysed in detaiReference 1] this occurs in
particular when Gauss integration is used for evaluatiegrttegrals that arise when formulating the
interface elements. A classical example is the notched lsadected to three-point bending shown
in Figure3a[1, 16]. The simply supported beam is divided by an interface altngentreline,
and is loaded by a concentrated load at the centre. The bebd® isim thick, and the material is
characterised by a Young's modulis= 2 GPa and a Poisson’s ratio= 0.2. The traction pro les
are shown in Figuré&b for values of the dummy stiffness in the normal directiont thery from

kn =102 N/mn? tok, = 10% N/mn?. Spurious oscillations occur in the traction pro le neag tip

of the notch fork, > 10° N/mm?. When the dummy stiffness is further increased the ositiliat
become more pronounced and tend to propagate upwards.

F _ 8 -
£ k=10 N/mm
é 70 1 Kk, = 104 N/mm® -~
. £ Ky=10 N/mnf ------
interface Seo| n =20 Nimm
8
I 50 |-
100mm g
notch g 40r
=4
©
¢ 20mm 2 sor
20 e
0 0.5 1 15 2
101 Traction (N/mn?)
125mm 125mm ol

(@ (b)

Figure 3. (a) Geometry and boundary conditions for the restdbeam subject to three-point bending. (b)
Traction pro les along the interface for different valuestbhe dummy stiffneskn using standard linear
four-noded elements and Gauss integration.

It has been shown inl] for two-dimensional and three-dimensional con gurasofmence for
one-dimensional and two-dimensional interfaces) thasdheaction oscillations disappear when
using a Newton-Cotes integration scheme instead of théitradl Gauss quadrature. A possible
explanation was suggested by inspecting the structureatitiness matrix of the interface element,
the second term in Equatiod®). For instance, for a Gauss integration scheme, the paitteof t
stiffness matrix of a quadratic one-dimensional interfatements of length that relates to the
normal displacements’ andu takes the following form (in the local coordinate system):

2 4k, 4k, 2Kkn, 2Kn, Kn kn 3
ak, 4k, 2Kk, 2Kn, Kn Kn
crem _ 1 82k 2k 16k 16y  2ke 2k (18)
Gauss™ 156 2k, 2K 16k, 16k, 2k, 2kn
kn Kn 2Kkn, 2Kn, 4k, 4k,
kn kn 2Kkn, 2Kn, 4k, 4k,
Copyright ¢ 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2014)
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On the other hand, for a Newton-Cotes scheme, we obtain:

ki kn O 0 0 0°3
kn  kn 0 0 0 0
lg 0O 0 4K 4k 0 0
K Klgwton-cmes: 38 0 0 4£n 4k|ﬂn 0 0 (19)
0 0 0 0 Kn Kn
0 0 0 0 Kn  kn

Direct inspection of Equationd. §) and (L9) reveals that the Newton-Cotes integration scheme
fully decouples the contributions of each node-set. Thaeash degree of freedom is coupled to
the other ve degrees of freedom when using the Gauss infegratheme, while it is only coupled
to that on the other side of the discontinuity for the New@uotes scheme. This decoupling is also
observed when investigating the eigenmodes of the inedéaments. Figuréb shows that for the
Newton-Cotes integration scheme, the eigenmodes exhdbézat uncoupled structure, where each
of the six non-zero eigenmodes consists of an elementaoyrdation of the individual node-sets,
either an opening (modes 1-3) or a sliding (modes 4-6), wiheraoted that the eigenvalue analyses
have been carried out for the full stiffness matrix, i.e. inihg the stiffness terms belonging to the
v* andv displacements. The modes resulting from the Gauss integratheme are shown in
Figure 4a We observe that each of the three normal modes and each dirde shear modes
triggers deformations at more than one node-setl])rilfe emergence of traction oscillations for
Gauss integration was attributed to this property.

mode 1 mode 2 mode 3 mode 1 mode 2 mode 3
— S
mode 4 mode 5 mode 6 mode 4 mode 5 mode 6
(a) Gauss integration (b) Newton-Cotes integration

Figure 4. Eigenmodes of one-dimensional quadratic interidements

3. EXTENSION TOC!-CONTINUOUS INTERFACE ELEMENTS

3.1. Isogeometric interface elements: B-splines and é&dB operator

We will rst give a succinct recapitulation of isogeometiiterface elements, se&4, 16] for more
details. The idea of isogeometric analysis (IGA) is to usestiape functions used for describing the
geometry in Computer Aided Design (CAD) packages, e.gplBwss, NURBS or T-splines, also as
basis functions for the ensuing nite element analysisdmainder we limit ourselves to B-splines
for simplicity, but similar results are anticipated wheingsNURBS or T-splines.

A univariate B-splineS, of orderp, parametrised using is de ned as a linear combination of

basis functions:
X

Sp()= Nip()Pi= Np()P; (20)
i=1

with Njp andP;, i 2 [1;n], then shape functions and control points, respectively, whicimele
the B-splineN, andP are the matrices that gather the shape functions and theotpoints. In
this study, the location of the control points is evaluatsthg the Greville's abscissag], which
ensures a constant Jacobian in each element. The basiohst, ( ) are evaluated with the
Cox-de Boor recursion formul2p, 23]. B-splines are piecewise polynomials parametrised over a
knot vector =[ 1; 2; ; n+p+1]- Knot values; are ordered in a non-decreasing manner in a
knot vector, and each knot interval of strictly positivedémrepresents an element. Knots can be

Copyright ¢ 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn¢2014)
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repeated in order to decrease the continuity along a Besgirsplines are  m; times continuous,
wherem; is the multiplicity of knoti. Accordingly, a quadraticp(= 2) B-spline isC'-continuous

if the knot vector does not contain repeated knot valags<1). When a knot value is repeated
twice,m; = 2, and the B-spline becomé&8-continuous. Finally, for a multiplicityn; = p+1 =3,

a discontinuity is introduced between elements. For exantipé quadratic B-spline shape functions
associated with the knot vector [0 ;0;0; &;5; ;%;%;3; ;1,1 1] contain a discontinuity
at =0:5, see Figuré.

Element: @ @ @ @ @ @@ @ @ @@

Ny NgllNg iNig
038 N3 N4 N5 N6 Nll N12 N13
No N7 [1\N1o
06}
©
g 04
02 \
00 1/12 2/12 3/12 4/12 5/12 6/12 7712 8/12 9/12 10/12 1]‘/]2 12
¢
Figure 5. Quadratic shape functions for knot vecteff0 ;0;0; 4; %; ;%;3:3;  ;L1L1]

Figure 5 shows that, unlike the Lagrange shape functions in standdtel element analysis,
B-splines usually extend over more than one element. Iltissgroperty which allows for higher
continuity across element boundaries, but makes isogemnagtalysis not directly amenable to
standard nite element datastructures, where shape fumgt{(and many other properties) are
stored per element. Use of the Bézier extraction operda®rZ0] solves this issue. The procedure
exploits the fact that B-splines, and hence also NURBS asgpliftes, can be expressed as a linear
combination of Bernstein polynomials of the same order. Bamstein polynomials span a single
element and have the same value within each element, cfré=&g) and therefore need to be
evaluated only once. ConsequentlyBifcontains the set of Bernstein basis functions, the shape
function matrix for each element can be expressed using #zéeBextraction operat@®, which
is constant per element, as follows:

NS()=C®B ) ; (21)

where ) denotes the mapping to the parent domain. For example, threero shape functionsin
element 3 of the B-spline mesh shown in Figb@eN 3, N4, andNs. The Bézier operator therefore
reads:

8 9
8§ 9 2 3
<Ns()= ‘05 0 o 2buz ()% hy o
NS()=. Na(), =405 1 055 Bap () & 2 35iq5° (22)
" Ns( )’ 0 0 05 533.21)?

From EquationZ?) it is observed that the shape functions can be expresselin@aacombination
of the Bernstein polynomials:

Ng( )=0:5Bg2 () +Ba2 T) +0:15Bs2 ) : (23)

Copyright ¢ 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn2014)
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1 1
BL2 B3’2 N4 = 0.5B172 + BQ_]Q + 0‘53372
o Bj o
Q
0 0
-1 0.5 1 2 3
é’ 12 é' 12
(@ (b)

Figure 6. a) Quadratic Bernstein polynomials in the paremhain ~2 [ 1;1] - (b) Shape functiorN4,
in element 4 (parametric domain2 [2=12; 3=12]), expressed as a linear combination of the Bernstein
polynomials.

3.2. Isogeometric analysis with interfaces in two and thdgeensions

To create meshes in higher-dimensional spaces, paraatiems in they and thez-directions
are introduced using the knot vectors=1[ 1; 2; ; meguul @ndZ =[ 1; 27 ; orr+1l,
respectively. These knot vectors are associated mithasis functions of the ordey, which are
contained iMM ;4 (j 2 f 1, mg), ando basis functions of the ordet contained irOy; (k 2 f 1; og),
respectively. The bivariate B-splines then follow from tlemsor product of two knot vectors,
resulting in a parametrisatidn, )2 H :

XX
S(; )= Nipp ( )Mijq ( )Py (24)
i=1 j=1
Similarly, the trivariate B-spline results from the pardrisation(; ; )2 H Z
XX X
S(; )= Nip ( )Mjq ( )Okr ( )Pijk : (25)
i=1 j=1 k=1

As for the univariate case, a Bézier operator can be de nédo and three dimensions as the tensor
product of the univariate operators.

Edges of Bézier mesh Interface
Clin x and y C~lin x

Clin y
L] L] L] &* L] * L]

T T T

i
{
{
!
i

B Repeated control points interface element y
o Single control point s —+ 3 ]_.l

Figure 7. Quadratic two-dimensional mesh witlChinterface depicted in the physical space. The knot
vectorsare:= [0 ;0;0; & &: 3 5% sLL1landH =[0;0,0; % 2:3: 43,1, 11)

As an example we consider a 18 quadratic two-dimensional mesh, Figutewhich can be
used to model the notched beam introduced in Fiard he knot vector in thex-direction is the
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same as that used in Figusgi.e. with a discontinuity at = 0:5. In they-direction, the knot vector
H =1[0;0;0;%;%;2;4;2;1;1; 1]is used in order to obtai*-continuity both in the bulk and along
the interface. Figuré also shows that at the discontinuity, only one shape fundimon-zero on
either side in the-direction:Ng( =0:5 )= Ng( =0:5") =1 inelements 6 and 7. This implies
that the discontinuity can be described on each side as iariate B-spline:

X
S( =05 )= Miq ( )P ; i 2 [1;n]: (26)
j=1

Consequently, th# -operator has the same structure as that for standard H&teents de ned in
Equation (5). The shape function along the interface becomes the uaieaB-spline functions
M;q for the two-dimensional case, and for the three-dimensicnae the bivariate B-spline
functionsM 4 Ok;r serve this purpose. Accordingly, the derivation of therinéand external force
vectors and of the stiffness matrix, cf. Equatioh6)(@nd (L7) also remains the same.

4. TRACTION OSCILLATIONS IN ISOGEOMETRIC INTERFACE ELEMENRNS

4.1. Results with higher continuity along the interface

We revisit the notched beam of FiguBa to assess the behaviour of the isogeometric interface
elements, and consid&'-continuous quadratic an@-continuous cubic isogeometric interface
elements. Figur@ shows the results for a two-dimensional analysis (and hesree-dimensional
interface elements). Quadratic B-splines with a threevpimitegration and cubic B-splines with
a four-point integration scheme have been used for thefamerelements. Results are shown
both for Gauss quadrature and for Newton-Cotes integra@mmpared to the standard nite
element analysis, cf. Figurgb, the results of the isogeometric analyses tend to aggrdkate
traction oscillations, especially near the tip of the notehich is probably caused by the increased
continuity. More importantly, and in contrast to standartéiface elements, use of Newton-Cotes
integration does not improve this unphysical behaviour[1d]. Figure 9 shows that very similar
results are obtained in three dimensions.

100

80

30 80 30
25 E

60
20

15
40 -0.5 0 0.5 1

25
60

20

40 -0.5 0 0.5 1

Ordinate (mm)
Ordinate (mm)

0 0
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
Traction (MPa) Traction (MPa)
(a) quadratic B-spline (b) cubic B-spline

Figure 8. Results for two-dimensional analysis of the netcheam. Traction pro le for (af! and (b)

C?-continuous interface elements using Gauss and NewtoesQuategration withk, = 10°N/mm?. Three-

point integration was used for the quadratic spline intlrjian and a four-point rule was used for the cubic
spline interpolation.
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traction (MPa) traction (MPa) traction (MPa)
() Gauss integration (b) Gauss integration (c) Newton-Cotes integration
kn =10*MPa/mm kn=1CPMPa/mm kn=1CPMPa/mm

Figure 9. Traction pro les along the interface f6t-continuous interface elements using Gauss and Newton-
Cotes integration in three dimensions

4.2. Results for &°-continuous interface

A key advantage of isogeometric analysis over standarce element analysis is that the degree
of continuity across element boundaries is easy to conswiguknot insertion I5]. This feature
allows lowering the degree of continuity across elementnidanies toC® in the y-direction. By
changing the knot vectdd de ned before intoH =[0;0;0; £; £;2;2;3; 3,4, 4,3, 5:1:1:1] (see
the mesh in Figuré0), a discretisation is obtained thatG8-continuous at the element boundaries
— like standard nite elements — but uses B-splines for therpolation instead of the Lagrange

polynomials used in standard nite elements.

Ed%es of Bézier mesh Interface
C'in x “tinazx
Cliny C%iny

0 IO I4) RGN DO IPA 220 RPN IO DO RO

m Repeated control points interface element L
e Single control point —— x

Figure 10.Quadratic mesh withic’-continuous interface elements. The knot vectors are:
00,0, 5: % %333 sLLlandH =[0;005 5858 s 8 aLL1]

Figures11 and 12 show that a reduction of the continuity @ along the interface makes the
results of the isogeometric analysis resemble those of tdonedard nite element model. This
observation holds for quadratic and for cubic shape funstias well as for two-dimensional and
three-dimensional analyses. As expected, Gauss inteqgrstiil gives rise to traction oscillations
along the interface, but, interestingly, the amplitude ledsie oscillations is lower, and is in the
same order of magnitude as that when using Lagrange polaisrof. Figure3b. The most striking
observation is that the traction oscillations disappeamiiewton-Cotes integration is used, similar
to standard nite elements. Hence, the higher-order iméenent continuity of isogeometric analysis
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seems to play an unfavourable role regarding the emergehtaabion oscillations along the
interface.

100

100 r Gauss
80 20 80
— 25 —
£ 60 £ 60 ®
E 20 E
2 2
£ 150 5 0 05 1 £ 20
T 40 - : B 40
O o 0
20 20 |_
0 0
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
Traction (MPa) Traction (MPa)
(a) quadratic B-spline (b) cubic B-spline

Figure 11. Traction pro les along the interface f@P-continuous interface elements using Gauss and
Newton-Cotes integration schemes. Results in two dimessior (a) quadratic, and (b) cubic B-splines

with kn = 10°N/mnm?.

traction (MPa)
() Gauss integration (b) Gauss integration (c) Newton-Cotes integration
kn =1FMPa/mm kn=10°MPa/mm kn=10°MPa/mm

Figure 12. Traction pro les along the interface f6P-continuous spline-based interface elements using
Gauss and Newton-Cotes integration schemes in three diomsns

Qde 1 mode 2 mode 3
- =_=

mode 4 mode 5 mode 6

Figure 13. Eigenmodes of quadratif-continuous interface elements with a B-spline interpotaand
using Newton-Cotes integration.
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The traction pro les of Figured1 and12 indicate that interface elements formulated within an
isogeometric analysis framework and standard interfaemehts behave in a similar manner as
when the interelement continuity is of the same order. Hendhere is a noteworthy difference as
for the isogeometric interface elements, Newton-Cotesgiiattion now does not result in node-set
decoupling, yet results in smooth traction pro les. The gling of the node-sets is clearly observed
from the structure of the stiffness matrix:

2 5kn 5kn 2Ky 2k, kn Kn 3
5k,  5kp 2k, 2kq kn Kn
coae a2 K sk ko 2o KD, (27)
Newton-Cotes™ 758 2k 2k, Ak, 4k, 2kn 2k, 7’
Kn kn  2kp 2k,  5kn 5kn

kn kn 2kn 2kn 5kn 5kn

which closely resembles that of EquatialtB). As in Equation {8) only the stiffness terms that
correspond to the degrees of freedom have been printed for ease of readalilitiso shows up

in Figure13, where the eigenmodes KSAC’ . have been plotted in the physical space, so that
points depict the displacements at the vertices and at theoints rather than at the control points.
Similar as for the stiffness matrix that arises when usingi€gantegration in conjunction with
standard interface elements EM, the eigenmodes are coupled, cf. Figdesand Equation18).
Nonetheless, no traction oscillations are observed. Ehaniimportant result as it demonstrates
that the oscillatory behaviour of the traction along theeifdce is not related to the node-set
coupling [1]. It indicates that node-set decoupling is a suf cient etthan a necessary condition for
removing oscillations in traction pro les for interfaceeshents, either formulated using Lagrange
polynomials, or using B-splines or NURBS.

Figure 14 reviews the relative locations of the integration pointd @ime nodes/control points
in the physical space for the cases considered in this studppears that for the two situations
without traction oscillations, i.e. when using Newton-&ointegration in conjunction with standard
interface elements (FEM) and for the-continuous interface elements with a B-spline interpotat
(IGA-C), the integration points coincide with the nodes/contmihps (second row, rst and third
column, respectively). This coincidence could be a requéet for traction oscillations not to
emerge, and the exibility of isogeometric analysis allotegest this hypothesis. For this purpose
the mid-control point is shifted in the model wi@-interelement continuity. This results in a shift
of the mid-integration points as well, but by a different amb This is because when the mid-
control point is shifted, the Greville abscissae is no longed. As a consequence, the Jacobian of
the interface elements is no longer constant and the lotafithe centre of the element changes in
the physical space. Consequently, the mid-control pointésthe mid-integration points no longer
coincide. This is shown in the last row of Figuté. The results for this case with Newton-Cotes
integration do not exhibit traction oscillations, thussfling the hypothesis that the coinciding of
integration points and nodes/control points is a necessamgition for traction oscillations not to
appear.

element in physical space
. node/control-point set
O integration point

FEM IGA-C" IGA-C? IGA-C?
centered offset
mid-control point mid-control point
Gauss o He—Feo |o e e oo oo

Newton-Cotes o—fo—f0| | o[1—fo—1]o [e—{or—T0 [o—e——0

Figure 14. Relative location of integration points and reddentrol points. The cases without traction
oscillations are shaded
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The literature invariably shows only traction oscillatiprbut not relative displacements, and
notes that, when integrating interface elements with Gqussirature, the oscillations ameliorate
when the dummy stiffnesk, is reduced. Figurd5 shows results for the relative displacement,
or displacement jump, at the interface, using quadratigagsmetric interface elements, for Gauss
integration as well as for Newton-Cotes integration. Itliserved that, although the amplitude of
the traction oscillations decreases for lower values ofitimamy stiffness,, the oscillations in the
jump eld do not decrease, on the contrary. This observatiolus irrespective of the integration
scheme. The observation that oscillatory behaviour in #tative displacements also occurs for
low values of the dummy stiffness is novel, and has been ndesixdar because in the plots of the
traction oscillations they have been multiplied by thefisti§s, and a lower stiffness then damps the
oscillations in the tractions. The implication is that tifa¢ oscillatory nature is not driven by the
magnitude of the dummy stiffness, but seems to be an inhehamécteristic of interface elements.

100 50 100 50
40 40
80 80
= 30 . 30
S £
E 60 20 E 60 20
2 0 0.0025 & 0 0.0025
© ©
c c
S 40 S 40
(@] (@]
20| k=163 — 20 [ =163 —
=1le4 =1ed
=165 m— =1€5 m—
0 =1e6_=—— 0 =1e6 =
-0.05 0 0.05 0.1 0.15 -0.05 0 0.05 0.1 0.15
Jump (mm) Jump (mm)
(@) - Gauss (b) C° - Newton-Cotes
100 50 100 50
40 40
80 80
= 30 . 30
S £
E 60 20 E 60 20
i) 0 0.0025 & 0 0.0025
© ©
= c
S 40 S 40
(@] (@]
20| =163 — 20 [ =163 —
=1le4 =1ed
=165 m— =1€5 m—
0 =1e6_=—— 0 =1e6 =
-0.05 0 0.05 0.1 0.15 -0.05 0 0.05 0.1 0.15
Jump (mm) Jump (mm)
(c) C! - Gauss (d) C! - Newton-Cotes

Figure 15.Jump prole along the interface f@®-continuous B-spline interfaces (a-b), and fot-
continuous B-spline interfaces (c-d)

Itis nally noted that the condition number of the globalfstess matrix , see Equation(7),
de ned as the quotient of the largest and the smallest egjarydoes not appear to be of relevance
regarding the occurrence of traction oscillations. Thigliserved from Figuré6, which gives the
condition number as a function of the dummy stiffndss, for standard interface elements and
isogeometric interface elements with-interelement continuity, and different integration scies.
Moreover, tests with direct solvers as well as iterativeexd like conjugate gradients did not reveal
any differences in the results.
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+
le+07 C1 - Gauss
C1 - Newton-Cotes

— C1 - Lumped
T~ 1e+06 CO - Gauss
8 " CO - Newton-Cotes
c \ CO - Lumped
>
c
c le+05
jel
2
c
8 1e+04

1le+03 ‘

le+00 1e+01 l1le+02 1le+03 1le+04 le+05 1le+06
Dummy stiffness (MPa)

Figure 16. Condition number of the global stiffness matgxagdunction of the dummy stiffness . Results
are also shown for lumped integration, which is discusse®kiction4. 3.

4.3. Lumped integration

In [1] lumped integration has been investigated as an altematitegration scheme. The
fundamental difference between lumped integration on aralhand quadrature rules as Gauss
or Newton-Cotes on the other hand, lies in the evaluatiorhefimtegral along the discontinuity
that appears in the weak form, Equatidd) In Section2 the discretisation was introduced into
the weak form of Equationl(l), together with interpolations of Equations?j and (L3), in order

to obtain the internal force vector and the stiffness maifithe interface elements. In the lumped
integration scheme, rather than performing integraticer @eements, these integrals are evaluated
in a discrete sense for each discrete set of control-p8icpsFigurel7.

/Set of control-points Scp

1- 2- Sqf nCPsets™
e e e o o. .0 06 o o o o

b interface

e e e o o o. 0 06 o o o o

1+ 2+ Scp* ! nCPsets™

Figure 17. In the lumped integration scheme, interface efgmare replaced by discrete sets of control
points. For visualisation purposes the control points hikesl, but in reality coincide.

The element displacement vector at the interfagg,is replaced by a vector which contains
the displacements at a given set of control potBiea ug,, = fu ;u*;v ;v gsep. Hence, the
displacement jump becomes a discrete quantity evaluatedddt set of control pointScp thus
rede ning theM | operator, which now operates on single node-sets:

8 9
24 2
11 0 0 u
[ls= o o 1 15y s = Milse: (28)
T
Scp
The internal force vector then reads:
) n§@sets
finterface= M DM IugcpA'Scp; (29)
Scp=1

where 'nCPsets' stands for the number of sets of control tsoand Ascp, is a weighting
factor accounting for the geometry of the interface attdche the node-setScp (i.e.
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P nCPsetsA. _
Scp —

Scp=1 Ainterfacé. It |S de ned as.:

d g (30)

In Equation 80) N, denotes the shape function of either control point from #teSsp (on the

side or on the- side). This integral is evaluated using Gaussian integmati order to obtain the
exact surface contribution. In essence, the lumped intiegracheme replaces interfaesiements
by point-setsat the interface, which can be interpreted as discreteggrin

It is observed from Figur&8 (two-dimensional con guration) and Figuf® (three-dimensional
con guration) that the traction oscillations disappearemtusing the lumped integration scheme.
This holds forall cases considered, isogeometric interface elements wittirgtic and cubic basis
functions and’-interelement continuity, quadratic basis functions v@thinterelement continuity,
and cubic basis functions wit@?-interelement continuity. It is noted that the magnitudethuf
traction singularity at the notch decreases for the lumgbedse.

100 Gauss 100
Newton-Cotegss=-
Lumped
80 30 80
—~ 25 —
£ 60 \a. g 60
E 20 E
2 2
‘E 150 5 0 0.5 1 ‘E
B 40 - - T 40
o o
20  — 20
0 0
-1 0 1 2 3 4 5 -1 0 1 2 3 4 5
Traction (MPa) Traction (MPa)
(@) Quadraticc®-continuous interface (b) QuadratiaC! -continuous interface

100

80 30
25
60

20

15
-0.5 0 0.5 1

40

Ordinate (mm)

20

-1 0 1 2 3 4 5
Traction (MPa)

(c) CubicC?-continuous interface

Figure 18. Traction pro les along the interface fdt, Ct andC?-continuous interface elements, using Gauss,
Newton-Cotes and lumped integration schemes in two diresswithkn = 10°N/mm.
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(a) C°-continuous interface (b) Ct-continuous interface

Figure 19. Traction pro le along the interface for (&§- and (b)C!-continuous interface using lumped
integration in three dimensions fes =10°MPa/mm

5. CONCLUSIONS

The numerical integration of isogeometric interface eletaiith a zero initial compliance has been
investigated. In standard nite element analysis such el@mare widely used to simulate cracking
when the crack path is known in advance, e.g. in lamelladspbr from experimental evidence. It
turns out that, in line with an earlier, preliminary invegstiion [L6], isogeometric interface elements
share the oscillations in the tractions along interfaces abserved for standard interface elements.
In fact, the higher continuity of isogeometric interfacerakbnts seems to aggravate the oscillations,
and it is disturbing that a solution commonly adopted fondtad interface elements, namely
to adopt Newton-Cotes quadrature instead of Gauss quagelratoes not work for isogeometric
nite elements. This paper demonstrates that the use of &dmptegration is the only solution in
the latter case, as this scheme has shown to be robust faditnensional and three-dimensional
con gurations, and for quadratic and cubic B-spline intdgtions.

The investigations have revealed a number of interestipgas about interface elements in
general. First, node-set decoupling is not a necessanytammtb remove traction oscillations along
the interface, but rather seems to be a suf cient conditidext, it has been shown by inspection
of the relative displacements rather than the traction lpat the interface, that the oscillatory
response is not simply driven by high values of the dummyn&tifs as it has been assumed so far,
but seems to be inherent in the formulation of interface elets) either formulated in a standard
manner, or within the framework of isogeometric analysis.
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