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A new arc-length control method based on the rates of the

internal and the dissipated energy

Abstract

Purpose:

The purpose of this paper is to introduce a new arc-length control method for physi-

cally non-linear problems based on the rates of the internal and the dissipated energy.

Design/methodology/approach:

In this paper, the authors derive from the second law of thermodynamics the arc-length

method based on the rate of the dissipated energy and from the time derivative of the

energy density the arc-length method based on the rate of the internal energy.

Findings:

The method requires only two parameters and can automatically trace equilibrium

paths which display multiple snap-back phenomena.

Originality/value:

A fully energy-based control procedure is developed, which facilitates switching be-

tween dissipative and non-dissipative arc-length control equations in a natural way.

The method is applied to a plate with an eccentric hole using the phase field model for

brittle fracture and to a perforated beam using interface elements with decohesion.

Keywords: arc-length control, path following technique, internal energy, dissipation

1. Introduction

Tracing an equilibrium path often requires an arc-length method due to the occur-

rence of (multiple) snap-through and snap-back phenomena. The arc-length method,

developed originally in [1, 2] and cast in a format that is suitable for large-scale com-

putations in [3, 4], works well for geometrically non-linear problems, but may fail to

converge in case of physically non-linear problems due to strain localisation [5, 6]. To

overcome this, an indirect displacement method was developed [6]. In this approach

only degrees of freedom are considered that relate to the failure zone, and therefore

requires an a priori knowledge of the expected failure zone.

The fact that physically non-linear problems can involve a monotonically increas-

ing dissipation has been exploited in [7] and has been applied to damage models. The

idea was further pursued and enhanced in [8] to plasticity models, and geometrically

non-linear problems with damage. This class of arc-length methods switches from

force control to arc-length control that is based on the dissipated energy when the in-

crement of the dissipated energy reaches a critical value. A criterion for switching back

from arc-length control to force control has been introduced in [8]. In this paper, a new
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formulation is proposed which switches between the internal energy and the dissipated

energy and hence, is completely based on energy. During the entire loading process the

increment of the internal energy is computed and in the elastic regime an internal en-

ergy based arc-length control is used. The present path-following method requires only

two parameters for tracing an entire equilibrium path and is especially robust when the

equilibrium path exhibits several several snap-through and/or snap-back phenomena.

2. Arc-length control based on the rates of the internal and the dissipated energy

This section introduces a novel arc-length control method which is based on the

rates of the internal and the dissipated energy.

2.1. Necessity of arc-length control

The state of a solid is governed by the equilibrium of external and internal forces

f int(u) = f ext (1)

where the external force vector can be represented by a normalised load vector f̂ and

the loading parameter λ, as follows

f ext = λ f̂ . (2)

Neither force control, nor displacement control is in general suitable for tracing the

entire equilibrium path. During force control, the loading parameter λ is prescribed,

while for a displacement control, the displacement u is prescribed for some points of

the solid, see Fig. 1 for a typical force-displacement curve.

A

u

f

0

λ1 f̂

λ2 f̂

λn f̂ A′

(a)

B

u

f

0 u1 u2 un

B′

(b)

Figure 1: (a) Force control is not able to capture the dashed equilibrium path between the points A and A′

(snap-through). (b) Displacement control is unable to trace the dashed equilibrium path between the points

B and B′ (snap-back).

Up to point A in Fig. 1(a) force control, which is then monotonically increasing,

can be employed

λ1 < λ2 < . . . < λn, (3)
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whereas up to point B in Fig. 1(b) displacement control can be used,

u1 < u2 < . . . < un. (4)

However, force control is not able to capture the snap-through after the peak load

at point A, while displacement control is unable to capture the snap-back behaviour

at point B. Therefore, an arc-length control is necessary in order to properly trace the

equilibrium path during loading. An arc-length control adds an additional constraint

equation to Eq. (1), ϕ = ϕ(u, λ), which ensures that the equilibrium path can be fol-

lowed. By adding the additional constraint equation, the following system of equations

must be solved

H(u, λ) =

[

f int(u) − λ f̂

ϕ(u, λ)

]

=

[

0

0

]

. (5)

Assuming that the solution in the n+1-th increment and i-th iteration is known, ui
n+1

and λi
n+1

, Eq. (5) can be linearised using a Taylor series around ui
n+1

, λi
n+1

, as follows

H(u, λ) ≈ H(ui
n+1
, λi

n+1) +KT (ui
n+1
, λi

n+1) ·

[

u − ui
n+1

λ − λi
n+1

]

= 0 (6)

with

KT (u, λ) =





∂ f int(u)

∂u
− f̂

∂ϕ(u, λ)

∂u

∂ϕ(u, λ)

∂λ





=





K − f̂

vT w



 . (7)

The solution for ui+1
n+1

, λi+1
n+1

in the n+1-th increment in the i+1-th iteration in Eq. (6),

H(ui+1
n+1
, λi+1

n+1
) = 0, then follows from

[

u

λ

]i+1

n+1

=

[

u

λ

]i

n+1

−K−1

T

∣
∣
∣
∣
∣

i

n+1

·

[

f int(u) − λ f̂

ϕ(u, λ)

]i

n+1

. (8)

To increase efficiency, the inverse of the matrix KT can be evaluated exploiting the

Sherman-Morrison formula, see Appendix A.

2.2. Arc-length control based on the rate of dissipated energy

An arc-length function based on the rate of dissipated energy has been introduced

in [7]. The procedure uses a force control at the beginning of the loading, and when

the dissipated energy reaches a certain limit switches to dissipation-based arc-length

control. The dissipation-based arc-length control is motivated by the fact that during

loading the amount of dissipated energy can only increase monotonically. Therefore,

by prescribing the amount of energy which should be dissipated in each loading step,

the equilibrium path can be traced automatically.

The first law of thermodynamics gives a statement about the conservation of energy

– energy can neither be destroyed nor created. However, the first law of thermodynam-

ics does not give a statement about the dissipative nature of a process. The dissipative
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behaviour of a process can be described by the second law of thermodynamics. In a

local form for a constant temperature [9], the second law of thermodynamics reads

Ḋ = σi jε̇i j − ψ̇ ≥ 0 (9)

where Ḋ is the dissipation and ψ the energy density. We now assume that for the

constitutive behaviour between the stress σi j and the strain εi j a damage law of the

form

σi j(εi j, d) = g(d)Ci jklεkl (10)

is used with the damage parameter d ∈ [0, 1] (0: undamaged state, 1: fully broken

state), the degradation function g(d) and the elasticity tensor equipped with the usual

major and minor symmetries: Ci jkl = C jikl, Ci jkl = Ci jlk, Ci jkl = Ckli j. The energy

density ψ then reads

ψ(εi j, d) =
1

2
σi j(εi j, d)εi j (11)

so that

∂ψ

∂εkl

=
1

2

∂σi j

∂εkl

εi j +
1

2
σi j

∂εi j

∂εkl

=
1

2
g(d)Ci jklεi j +

1

2
g(d)Ci jklεklδikδ jl

= g(d)Ci jklεi j = g(d)Ckli jεi j = σkl. (12)

There are two ways to elaborate the time derivative of the energy density ψ in Eq. (9).

The first option is to use the chain rule with Eq. (12)

ψ̇ =
∂ψ

∂εi j

ε̇i j +
∂ψ

∂d
ḋ = σi jε̇i j +

∂ψ

∂d
ḋ (13)

which yields

Ḋ = −
∂ψ

∂d
ḋ ≥ 0. (14)

The second option is to apply the product rule

ψ̇ =
1

2
σ̇i jεi j +

1

2
σi jε̇i j (15)

which results in

Ḋ =
1

2
σi jε̇i j −

1

2
σ̇i jεi j ≥ 0. (16)

Assuming that there are no discontinuities in the solid, the global forms of Eq. (14) and

Eq. (16) can be written as

ĖD =

∫

Ḋ dV =

∫

Ω

1

2
σi jε̇i j −

1

2
σ̇i jεi j dV =

∫

Ω

−
∂ψ

∂d
ḋ dV (17)

where ĖD is the rate of dissipated energy. It can be observed from Eq. (17) that

ĖD directly follows from the evolution of the damage variable d. It is noted that the

dissipated energy ED increases monotonically, since ĖD ≥ 0 follows from ḋ ≥ 0 and
∂ψ

∂d
≤ 0 in Eq. (17).
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The second integral in Eq. (17) can be expressed in matrix-vector format using

ε = B u, (18)

Eq. (1), and Eq. (2) as

ĖD =

∫

Ω

1

2
u̇T BT

σ dV −

∫

Ω

1

2
uT BT

σ̇ dV

=
1

2
u̇ f int(u) −

1

2
u ḟ int(u) =

1

2
u̇λ f̂ −

1

2
uλ̇ f̂ . (19)

Replacing ĖD in Eq. (19) with the rate of the path parameter τ̇D yields

1

2
(λu̇T − λ̇uT ) f̂ − τ̇D = 0. (20)

Any time discretisation scheme would result in

1

2

(

λnuT
n+1 − λn+1uT

n

)

f̂ − ∆τD = 0, (21)

see Appendix B.2. It is noted that the time discretisation of the last term in Eq. (17) is

in general not equal to Eq. (21), although the second and the third integrals in Eq. (21)

are equal from a continuity perspective. Eq. (21) can now be used as the constraint

equation in Eq. (5) and attains the following form

ϕD(u, λ) =
1

2

(

λnuT − λuT
n

)

f̂ − ∆τD. (22)

The parameter ∆τD in Eq. (22) can be interpreted as the prescribed step size for each

increment – it prescribes the amount of energy which needs to be dissipated in one

increment.

2.3. Arc-length control based on the rate of the internal energy

Now, a new arc-length function will be introduced for the regime when the rate of

dissipated energy ĖD due to the evolution of the damage variable d is very small, e.g.,

at the onset of loading. Again assuming that there are no discontinuities in the solid,

and using Eq. (1), Eq. (2) and Eq. (18), we can write Eq. (15) in the global form to

yield the rate of the internal energy U̇ in matrix-vector form

U̇ =

∫

Ω

ψ̇ dV =

∫

Ω

1

2
u̇T BT

σ +
1

2
uT BT

σ̇ dV

=
1

2
u̇T f int(u) + uT ḟ int(u) =

1

2

(

u̇Tλ + uT λ̇
)

f̂ . (23)

Replacing U̇ with the path parameter τ̇U in Eq. (16) and applying the midpoint rule

(see Appendix B.1) results in

1

2

(

λn+1uT
n+1 − λnuT

n

)

f̂ − ∆τU = 0 (24)
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which can be used as a constraint equation in Eq. (5), as follows

ϕU(u, λ) =
1

2

(

λuT − λnuT
n

)

f̂ − ∆τU . (25)

The parameter ∆τU in Eq. (25) can be interpreted as the prescribed step size for an

increment – it prescribes the amount of internal energy which needs to be introduced

into the system in one increment.

In the first iteration (i=1) of the first increment (n=1)

∂ϕU(u, λ)

∂λ

∣
∣
∣
∣
∣

i=1

n=1

=
1

2
uT f̂

∣
∣
∣
∣
∣

i=1

n=1

=
1

2
u1

1

T
f̂ = 0, (26)

and Eq. (7) would result in a singular matrix with u1
1
= u

0
= 0. Hence, in the first

increment n=1 the following arc-length expression is used

ϕF
1 (λ) = λ − ∆τF

1 ,
∂ϕF

1
(λ)

∂λ

∣
∣
∣
∣
∣
n=1

= 1 (27)

which is equivalent to force control. After the first increment, the solution for u
1

and

λ1 is known. From the solution for u
1

and λ1 the rate of the internal energy for the first

increment ∆τU
1

can be evaluated using Eq. (25),

∆τU
1 =

1

2

(

λ1uT
1 − λ0uT

0

)

f̂ =
1

2
λ1uT

1 f̂ . (28)

∆τU
1

from Eq. (28) can then be used in the following increments as the prescribed

step size. An adaptive step size scheme could be applied as in [7]. However, for the

examples in Section 3 no adaptive step size scheme has been used.

Next to ∆τF
1

a ratio a needs to be defined. This parameter specifies when the load

control has to switch from internal energy based arc-length control to dissipation based

arc-length control and is defined as

a =
∆τD

∆τU
. (29)

When the force-displacement curve exhibits a more brittle behaviour – i. e. little dam-

age occurs before the maximum peak force – the parameter a typically must be as-

signed a smaller value. If a is chosen too large the simulation cannot switch to the

dissipation based arc-length control and will not find an equilibrium at a snap-through

/ snap-back. For a too small a, we switch too early to the dissipation based arc-length

control. In order to determine a, one can start a simulation with a large a. Then, we

can assign a value to a that is smaller than the term ∆τD

∆τU from the last increment where

an equilibrium could be found. The algorithm is summarised in Algorithm 1.

A simulation starts with a prescribed step size for the force ∆τF
1

, which gives a

step size ∆τU
1

for the rate of internal energy at point C, cf. Fig. 2. ∆τU
1

is then used

as the prescribed step size for the arc-length control ϕU based on the rate of internal

energy from point C to D, ∆τU = ∆τU
1

. If, at the end of an increment, the incremental

dissipated energy times the ratio factor a is larger than the prescribed increment for the

6



n = 0;

InternalEnergyArclength=1;

Prescribe ∆τF
1

and ratio a;

while n < nmax do

n = n + 1; i = 0; error = 1;

while error > errormax do

i = i + 1;

if n = 1 then

ϕF
1
= λ1 − ∆τ

F
1

;

else

if InternalEnergyArclength = 1 then

ϕU = 1
2

(

λi
n+1

ui T

n+1
− λnuT

n

)

f̂ − ∆τU ;

else

ϕD = 1
2

(

λnui T

n+1
− λi

n+1
uT

n

)

f̂ − ∆τD;

end

end

// Solve for ui+1
n+1

and λi+1
n+1

using Eq. (8) and evaluate the error

error = error(ui+1
n+1

, λi+1
n+1

);

end

// Define the arc-length function for the next increment;

if n = 1 then

∆τU
1
= 1

2
λ1uT

1
f̂ ;

∆τU = ∆τU
1

;

else

if InternalEnergyArclength = 1 then

∆τD = 1
2

(

λnuT
n+1
− λn+1uT

n

)

f̂ ;

if ∆τD > a∆τU
1

then

// use now arc-length based on rate of dissipated energy;

InternalEnergyArclength = 0;

InternalEnergyNegative = 0;

∆τD = a∆τU
1

;

end

else

∆τU = 1
2

(

λn+1uT
n+1
− λnuT

n

)

f̂ ;

if ∆τU < 0 and InternalEnergyNegative = 0 then

InternalEnergyNegative = 1;

else if ∆τU > ∆τU
1

and InternalEnergyNegative = 1 then

// use now arc-length based on rate of internal energy;

InternalEnergyArclength = 1;

∆τU = ∆τU
1

;

end

end

end

end

Algorithm 1: Algorithm for the loading process for arc-length control based on

the rate of internal energy U̇ and the rate of the dissipated energy ĖD

internal energy ∆τD > a∆τU = a∆τU
1

(point D in Fig. 2), the loading process switches

from internal energy based (ϕU) to dissipation based (ϕD) arc-length control with a pre-
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C

u

f

0

prescribed ∆τU = ∆τU
1

from C→ D

∆τD > a∆τU
1

D

∆τU > 0

prescribed

∆τU = ∆τU
1

after G

F

prescribed ∆τD = a∆τU
1

from D→ F;

∆τU < 0
from E→ FE

∆τF
1 prescribed ∆τF

1

gives ∆τU
1

G
∆τU > ∆τU

1

Figure 2: Path following technique using an arc-length control which is based on the rate of internal energy

U̇ and the rate of dissipated energy ĖD. Switch from rate of internal energy based arc-length control ϕU to

dissipation based arc-length control ϕD at point D; switch from dissipation based arc-length control ϕD to

internal energy based arc-length control ϕU at point G.

scribed step size ∆τD = a∆τU
1

. The increment in the internal energy becomes negative,

∆τU < 0, between point E and F Fig. 2. When the incremental internal energy ∆τU

becomes again larger than ∆τU
1

(point G in Fig. 2), the loading process switches back to

an internal energy based arc-length control ϕU with a prescribed step size ∆τU = ∆τU
1

.

It is emphasised that the arc-length method requires just two parameters: ∆τF
1

and a.

3. Numerical examples

In this section two numerical examples are considered.

3.1. Phase field model for brittle fracture

We consider the phase field problem for brittle fracture governed by the equations

σi j,i = 0, (30)

Gc

2ℓ
[d − 4ℓ2∆d] +

∂g

∂d
H = 0 (31)

and subject to the boundary conditions

σi jn j = hi on ∂Ωh, (32)

ui = ūi on ∂Ωu, (33)

d,ini = 0 on ∂Ω (34)
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the boundary ∂Ω decomposed into the parts ∂Ωh and ∂Ωu (∂Ωh∩∂Ωu = ∅, ∂Ωh∪∂Ωu =

∂Ω), the prescribed surface traction h and prescribed displacement ū. H denotes the

history field

H = maxψ (35)

which was introduced in [10] in order to ensure irreversibility of the phase field vari-

able d. It is noted that ψ is the energy density for the damaged solid

ψ = g(d)ψel (36)

where ψel corresponds to the energy density for the undamaged solid

ψel =
1

2
λεiiε j j + µεi jεi j. (37)

The following degradation function g(d) is used

g(d) = (1 − d)2. (38)

The dissipated energy is given by

ĖD =

∫

Ω

Gcγ̇ℓ dV (39)

with the crack surface density function

γℓ =
1

4ℓ

(

d2 + 4ℓ2d,id,i
)

. (40)

Recalling Eq. (17) gives

ĖD =

∫

Ω

−
∂ψ

∂d
ḋ dV =

∫

Ω

Gcγ̇ℓ dV, (41)

i. e. the energy which is dissipated in the bulk is equal to the energy dissipated upon

propagation of the smeared crack surface.

The material parameters are E = 210 N/mm2, ν = 0.3, Gc = 2.7 × 10−3 N/mm,

and the length scale parameter is ℓ = 0.02 mm. Plane strain is assumed. The two

parameters for the arc-length control are ∆τF
1
= 0.2 N and a = 0.25. The phase field

problem for brittle fracture is applied to the plate with the eccentric hole in Fig. 3

which has been considered with different dimensions in [11]. The mesh consists of

9494 linear quads which gives the mesh size h ≈ 0.01 mm. The force displacement

curve and the development of the phase field variable d are shown in Fig. 4 and Fig. 5.

For the phase field for brittle fracture, nucleation can occur in the absence of stress

singularities. However, the nucleation stress is related to the length scale parameter ℓ.

This has been addressed in [12, 13]. Furthermore, [14] showed that Γ-convergence is

not attained numerically for the phase field model for brittle fracture.
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Figure 3: Plate under tension with an eccentric hole.
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Figure 4: Force-displacement curve for the plate under tension with an eccentric hole with mesh size

h ≈ 0.01 mm and length scale parameter ℓ = 0.02 mm. Circles denote the switch from internal energy

to dissipation based arc-length control, the triangle denotes the switch from dissipation to internal energy

based arc-length control. Squares correspond to the phase field distributions for d in Fig. 5.

3.2. Perforated beam with interface elements

As a second numerical example, we consider the perforated beam depicted in

Fig. 6(a). We take the same material parameters as in [8], E = 100 N/mm2, ν = 0.3,

Gc = 2.5 × 10−3 N/mm. For the cohesive interface, a bi-linear cohesive law with ul-

timate traction tult = 1 N/mm2 and the dummy stiffness k = 104 N/mm3 is applied
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(a) (b) (c) (d)

Figure 5: Propagation of the phase field variable d for the plate with an eccentric hole under tension; plots

correspond to the squares in Fig. 4

y

x

λ f̂

λ f̂

1 mm

3 mm

Interface elements0.375 mm

2 mm

(a)

vd

td

tult

Gc

0

k

(b)

Figure 6: (a) Set-up for the perforated beam. (b) Bi-linear cohesive law for the interface elements. The

shaded grey area is equivalent to the fracture toughness Gc.

to the interface elements, cf. Fig. 6(b). 15354 linear triangular elements are used and

along the interface a two-point Newton-Cotes integration scheme is used in order to

avoid stress oscillations along the interface [15], see also [16] for a discussion on the

integration of interface elements in an isogeometric context. The two parameters for

the arc-length control are ∆τF
1
= 0.025 N and a = 0.1.

The bulk is assumed to be linear elastic; no damage law is used. Energy is only

dissipated in the interface elements, so that the dissipated energy in Eq. (17) becomes

ĖD =

∫

Ω

1

2
σi jε̇i j −

1

2
σ̇i jεi j dV =

∫

Γ

1

2
tiv̇i −

1

2
ṫivi dA. (42)

The ensuing force-displacement curve is given in Fig. 7.

4. Concluding remarks

A proper control of the non-linear process is crucial in computational solid me-

chanics. During the past thirty years the Riks-Wempner arc-length or path-following
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Figure 7: Force-displacement curve for the perforated beam; circles denote the switch from internal energy

to dissipation based arc-length control, triangles denote the switch from dissipation to internal energy based

arc-length control.

method [1, 2] has become the standard, as it is able to overcome snap-back and snap-

through behaviour which can be inherent in equilibrium paths under quasi-static load-

ings. Originally applied predominantly to geometrically non-linear behaviour of slen-

der structures, it is nowadays applied in any situation where severe non-linearities play

a role, including plasticity and damage, and concomitant strain localisation phenom-

ena. The latter type of non-linearities are very demanding on the non-linear solver,

and constraint equations originally used in arc-length methods proved not sufficiently

robust [5, 6, 17].

For problems involving damage and plasticity the dissipation-based arc-length method

[7, 8] seems to be the most robust method currently available. Yet, it suffers from the

need to switch (back) to a force control when there is no energy dissipation. This defi-

ciency has been solved in the approach presented here, where the method automatically

switches between a control by the rate of the dissipated energy and the rate of the inter-

nal energy. The method requires only two parameters, making it simple to use, and has

been applied to two examples involving fracture without any need for user intervention.

Appendix A. Sherman-Morrison formula

The inverse of the matrix in Eq. (7)

KT =





K − f̂

vT w



 (A.1)
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can be obtained as follows. Rewriting Eq. (A.1) gives

KT =





K 0

0T 1



 − x1yT
1 − x2yT

2 = A − A1

︸  ︷︷  ︸

B

−A2 (A.2)

with

x1 =

[

f̂

0

]

, yT
1 =
[

0T 1
]

→ x1yT
1 =





0 f̂

0T 0



 , (A.3)

x2 =

[

0

−1

]

, yT
2 =
[

vT w − 1
]

→ x2yT
2 =





0 0

−vT 1 − w



 . (A.4)

Application of the Sherman-Morrison formula yields the following expressions

KT
−1 =

(

B − A2

)−1

=

(

B − x2yT
2

)−1

= B−1 +
B−1x

2
yT

2
B−1

1 − yT
2

B−1x2

, (A.5)

B−1 =

(

A − A1

)−1

=

(

A − x1yT
1

)−1

= A−1 +
A−1x1yT

1
A−1

1 − yT
1

A−1x1

, (A.6)

while the terms in Eq. (A.6) can be expressed as

A−1 =





K−1 0

0T 1



 , A−1x1 =

[

K−1 f̂

0

]

, yT
1 A−1 =

[

0T 1
]

, (A.7)

A−1x1yT
1 A−1 =





0 K−1 f̂

0T 0



 , yT
1 A−1x1 = 0, (A.8)

B−1 =





K−1 0

0T 1



 +





0 K−1 f̂

0T 0



 (A.9)

and in Eq. (A.5) as

B−1x2 =

[

−K−1 f̂

−1

]

, yT

2
B−1 =

[

vT K−1 vT K−1 f̂ + w − 1
]

, (A.10)

B−1x2yT
2 B−1 =





−K−1 f̂ vT K−1 −K−1 f̂ vT K−1 f̂ − wK−1 f̂ +K−1 f̂

−vT K−1 −vT K−1 f̂ − w + 1




, (A.11)

yT
2 B−1x2 = −vT K−1 f̂ − w + 1. (A.12)

With

q = K−1 f̂ and q =
q(vT q + w)

vT q + w
=

qvT q + wq

vT q + w
(A.13)
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Eq. (A.1) becomes

KT
−1 =





K−1 0

0T 1



 +





0 q

0T 0



 +





−qvT K−1 −qvT q − wq + q

−vT K−1 −vT q − w + 1





vT q + w
(A.14)

=





K−1 0

0T 1



 +





0 qvT q + wq

0T 0



 +





−qvT K−1 −qvT q − wq + q

−vT K−1 −vT q − w + 1





vT q + w
(A.15)

=





K−1 0

0T 1



 +
1

vT q + w





−qvT K−1 q

−vT K−1 −vT q − w + 1



 . (A.16)

Appendix B. Time discretisation scheme for the arc-length control

For the initial-value problem with t ∈ [0,T ]

ẋ(t) = f
(

x(t)
)

(B.1)

x(0) = xn (B.2)

the generalised midpoint rule is defined as follows [18]

f (xn+θ) =
xn+1 − xn

∆t
, xn+θ = θxn+1 + (1 − θ)xn, θ ∈ [0, 1] (B.3)

with θ = 0 for forward Euler, θ = 1
2

for midpoint rule and θ = 1 for backward Euler.

xn+1 and xn denote in Eq. (B.3) the solution for the variable x at time increment n+1

and n, respectively.

Appendix B.1. Time discretisation for the rate of internal energy

Applying the time discretisation scheme in Eq. (B.3) to Eq. (23)

1

2

(

u̇Tλ + uT λ̇
)

f̂ − τ̇U = 0 (B.4)

gives

1

2

(
(

θλn+1 + (1 − θ)λn

)u
T
n+1
− uT

n

∆t

+
λn+1 − λn

∆t

(

θuT
n+1
+ (1 − θ)uT

n

)
)

f̂ −
τU

n+1
− τU

n

∆t

=
1

2

(

2θ
λn+1uT

n+1

∆t
+ (1 − 2θ)

λn+1uT
n

∆t

+ (1 − 2θ)
λnuT

n+1

∆t
+ (2θ − 2)

λnuT
n

∆t

)

f̂ −
∆τU

∆t
= 0. (B.5)

Using the midpoint rule with θ = 1
2

in Eq. (B.5) yields the arc-length function ϕU

ϕU(u
n+1
, λn+1) =

1

2

(

λn+1uT
n+1
− λnuT

n

)

f̂ − ∆τU . (B.6)
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Appendix B.2. Time discretisation for the rate of dissipated energy

Starting with the constraint equation from Eq. (20)

1

2
(λu̇T − λ̇uT ) f̂ − τ̇D = 0 (B.7)

and application of Eq. (B.3) gives

1

2

(
(

θλn+1 + (1 − θ)λn

)u
T
n+1
− uT

n

∆t

−
λn+1 − λn

∆t

(

θuT
n+1
+ (1 − θ)uT

n

)
)

f̂ −
τD

n+1
− τD

n

∆t

=
1

2





λnuT
n+1

∆t
−
λn+1uT

n

∆t



 f̂ −
∆τD

∆t
= 0. (B.8)

Therefore, the arc-length function ϕD for any time discretisation scheme can be written

as

ϕD(u
n+1
, λn+1) =

1

2

(

λnuT
n+1
− λn+1uT

n

)

f̂ − ∆τD. (B.9)
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