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Abstract � Cloud computing systems face the substantial 

challenge of the Long Tail problem: a small subset of 

straggling tasks significantly impede parallel jobs completion. 

This behavior results in longer service response times and 

degraded system utilization. Speculative execution, which 

create task replicas at runtime, is a typical method deployed 

in large-scale distributed systems to tolerate stragglers. This 

approach defines stragglers by specifying a static threshold 

value, which calculates the temporal difference between an 

individual task and the average task progression for a job. 

However, specifying static threshold debilitates speculation 

effectiveness as it fails to consider the intrinsic diversity of 

job timing constraints within modern day Cloud computing 

systems. Capturing such heterogeneity enables the ability to 

impose different levels of strictness for replica creation while 

achieving specified levels of QoS for different application 

types. Furthermore, a static threshold also fails to consider 

system environmental constraints in terms of replication 

overheads and optimal system resource usage. In this paper 

we present an algorithm for dynamically calculating a 

threshold value to identify task stragglers, considering key 

parameters including job QoS timing constraints, task 

execution characteristics, and optimal system resource 

utilization.  We study and demonstrate the effectiveness of 

our algorithm through simulating a number of different 

operational scenarios based on real production cluster data 

against state-of-the-art solutions. Results demonstrate that 

our approach is capable of creating 58.62% less replicas 

under high resource utilization while reducing response time 

up to 17.86% for idle periods compared to a static threshold. 

Keywords-  Long Tail Problem; Stragglers; Speculative 

Execution; Service QoS; Resource Utilization 

I.  INTRODUCTION  

Modern day distributed systems are composed of 
thousands of heterogeneous servers in order to provide 
computing services globally. With the rapid growth of data 
volume and exploitation, parallel computing has become 
an increasingly common technique for running 
applications effectively within clusters. Technologies such 
as MapReduce and Spark achieve this by decomposing a 
job into multiple tasks which perform a subset of 
computation and data processing, significantly speeding up 
job completion time.  

In such parallel processing systems, task characteristics 
are driven by diverse consumer requirements, enforced 
through a Service Level Agreement (SLA) [2] detailing the 
level of acceptable service. One element provisioned and 
enforced by the SLA is the Quality of Service (QoS) that 
may be composed by numerous parameters including 
performance, real-time and security constraints of the 

service. Parameters of interest are dependent on business 
objectives; for example, soft real-time applications 
typically emphasize a boundary on acceptable response 
time, with violations resulting in timing failures [3]. 
However, given the increasing scale and complexity, there 
have arisen challenges in tolerating emergent system 
phenomena that significantly impacts the fulfillment of 
service QoS [4]. One such challenge is the Long Tail 
problem, defined as a small proportion of task stragglers 
experience abnormally long execution in comparison to 
other sibling tasks, thus incur significant delays to job 
completion as well as decreased system availability due to 
committed computing resources wasted on waiting tasks 
[5]. It has been identified that stragglers are caused by 
several factors including contention of shared resources, 
node disk failures, and imbalanced task workloads [17].  

Stragglers are detected within systems by measuring or 
predicting when an individual task completion time is 
proportionally greater than the average task execution 
duration within a job, and is expressed as a threshold. In 
order to tolerate the impact of Long Tail problem, methods 
such as speculative execution creates replicas of task 
stragglers to shorten job completion by using whichever 
result completes first. Current research and industrial 
practice adopts this threshold as a pre-defined value of task 
execution 50% larger than the average task execution 
duration [5][11-13]. However, this static approach comes 
with a significant limitation: as the threshold value does 
not reflect optimal straggler detection and mitigation 
strategies in accordance to job diversity and system 
operation. Capturing these two characteristics allows for 
stricter or more relaxed time thresholds for straggler 
detection and task replication while adhering to job QoS. 
For example, if the system is exhibiting high utilization, 
the overhead brought by additional replicas will further 
burden the system, leading to increased straggler 
occurrence.  In contrast, low system utilization allows for 
more leniencies towards replica generation to improve 
parallel job completion, and benefit those jobs that 
emphasize timing constraints for successful execution. 

This paper proposes an algorithm that enables dynamic 
threshold calculation for straggler tolerance in distributed 
systems to augment state-of-the-art Long Tail 
identification and mitigation techniques. Specifically, our 
approach factors service QoS (specifically timing 
constraints), task execution progress, and the cluster 
resource usage to calculate the optimal time threshold for 
defining straggler tasks for replication in parallel jobs. Our 
approach is validated through simulation of a Cloud 
datacenter under diverse consumer and operational 
scenarios, which uses empirical findings to represent real 
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Figure 1. Task completion time for jobs exhibiting (a) Typical behavior, 

(b) Long Tail phenomena.  

system behavior. Results show that our technique can 
further improve job completion and reduce timing failure 
probabilities, as well as reduce replica generation under 
high resource utilization environment. 

The paper is structured as follows: Section 2 presents 
the background; Section 3 surveys the related work; 
Section 4 analyzes the problem formulation; Section 5 
details the algorithm design; Section 6 presents the 
experiment set up as well as the evaluation results. Finally, 
Section 7 discusses conclusions and future work. 

II. BACKGROUD 

A. Long Tail Behavior in Distributed Parallel Systems  

Service response time is an important factor in pay-by-
the-hour environments such as Amazon EC2, and systems 
which require rapid response to users. However, such a 
requirement becomes increasingly challenging in large-
scale systems due to Long Tail. In distributed systems, the 
Long Tail problem is defined as a phenomena that occurs 
when a distributed job - composed of multiple smaller 
tasks executing in parallel - incurs significant delays in 
completion due to a small subset of impeded parallelized 
tasks [5]. These delayed tasks that perform much slower 
compared to their sibling tasks are defined as stragglers.  

To demonstrate such a problem, we have characterized 
two parallel jobs from the operational tracelog of a Google 
cluster [6, 7] composed of over 12,500 servers applying 
the filtering technique described in [8]. Figure 1(a) shows 
an example of typical job completion, where it can be 
observed that most tasks complete at approximately 100s 
with the longest task execution being merely 30% greater 
compared to the average job completion. On the other 
hand, Figure 1(b) depicts task completion of a job from 
Google cluster that exhibits Long Tail phenomena, 
characterized by a pronounced tailing shape with the 
longest task taking approximately 300% longer compared 
to average task completion. There are a number of related 
works that study the influence of the Long Tail problem. 
For example, [8] demonstrates that even rare performance 
abnormalities can affect a significant portion of all requests 
in distributed systems after analyzing two production 
system logs, while [9] further shows how Long Tail is an 
increasingly common phenomenon in the face of increased 
growth of system scale. 

There are two ways to address the Long Tail problem: 
avoidance and tolerance. Avoidance typically occurs 
within the task scheduling phase. For example, a 
MapReduce scheduler will typically assign Map tasks to a 
node that stores the input data in order to reduce 
unnecessary network transmission overhead [1]. The 
scheduler may also attempt to avoid scheduling tasks onto 
known faulty nodes by adopting blacklist techniques [16]. 
However, blacklisting may be insufficient when stragglers 
are not restricted to a small set of machines [11]. As a 
result, straggler tolerance, which is typically performed at 
application run-time, is the most commonly applied 
method for speculative execution. 

B. Speculative Execution 

First proposed by Dean [1], speculative execution 
observes the progress of each individual task within the 
same job. Once a task straggler has been identified, the 
system automatically creates a replica (or a backup copy 

that performs identical work) without killing the original 
task, and uses whichever result that completes first. Once a 
task finishes (either the original straggler or the newly 
created replica), the scheduler discards the other unfinished 
task and releases the computing resources back to use. 
This method is commonly deployed in many production 
clusters such as Facebook, Google, Bing, and Yahoo.  

In Hadoop�s default speculative mechanism, stragglers 
are identified by monitoring the matrix of ProgressScore 
(ranging from 0 to 1) defined in equation (1) to measure 
the execution progress of a task. 

           ܲܵሾ݅ሿ ൌ ൜ ܯ ܰΤ ͳ    ݇ݏܽݐ ݌ܽ݉ ݎ݋ܨ                          ͵Τ כ ሺܭ ൅ ܯ ܰΤ ሻ  ݇ݏܽݐ ݁ܿݑ݀݁ݎ ݎ݋ܨ            ሺͳሻ 

where ܲܵሾ݅ሿ  represents the progress score of the ݅௧௛ 
task. The number of key/value pairs need to be processed 
in a task is denoted by ܰ, while ܯ stands for the number 
of key/value pairs that have already been processed in a 
specific task. The finished phases for a reduce task is 
represented by ܭ . For a Map, the progress score is the 
fraction of input data read, while for a Reduce the 
execution is divided into three phases (copy, sort and 
reduce) with each account to one third of the final progress 
score. Such weighting can be modified through changing 
scheduler settings. 

III. RELATED WORK 

In order to address the Long Tail problem influence in 
distributed parallel systems, a straggler-tolerate system is 
proposed composed by three main components shown in 
Fig.2: straggler identifier, speculation executor and 
decentralized agents responsible for recording task 
progress and reporting. The threshold calculation is a 
critical component of the straggler identifier in such 
systems. Threshold is used to identify when a task is 
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Figure 3.  Relation between time threshold setting and tailing jobs.  

defined as a straggler, and is expressed as a ratio 
calculating the time difference between an individual task 
and the average progresses of all tasks within a job (i.e. If 
the average task completion is speculated to be 100s, a 
threshold value of 200% would indicate any tasks that 
require 200s+ to complete are identified as stragglers). 

 The direct impact of changing the threshold value is 
the number of stragglers identified, followed with the 
resource spent on creating their replicas. Figure 3 shows 
how the proportion of tailing jobs (ranging from 0-1) 
within two production Cloud datacenters analyzed in [8] 
are affected by different time threshold settings ranging 
from 130% to 200%. Currently, there exist three categories 
of threshold: 

Progress score based threshold identifies a straggler 
and subsequently launches a speculative replica based on  
progress score of task execution as shown in equation (2) 
and (3).  

                                ܲܵ௔௩௚ ൌ ෍ ܲܵሾ݅ሿ ݊Τ௡
௜ୀଵ                                         ሺʹሻ 

          For task           ܶܽ݇ݏ௜ǣ ܲܵሾ݅ሿ ൏ ܲܵ௔௩௚ כ ͺͲΨ                  ሺ͵ሻ  

where ܲܵ௔௩௚  is the average progress score of a job and ݊ represents the number of tasks that are being executed. 
This threshold calculation is adopted by the Hadoop 
default scheduler [1] configured with a default threshold 
value of 80%. This threshold has an unavoidable 
limitation where tasks that have completed more than 80% 
progress can never be speculatively executed.  

Progress rate based threshold. Progress rate is a metric 
used to measure the task progress rate (PR), and is 
calculated by equation 4:  

                                         ܴܲሾ݅ሿ ൌ ܲܵሾ݅ሿȀܶ                                    ሺͶሻ 

where ܶ  is the amount of time ܶܽ݇ݏ௜  has been 

executing. Dolly [11] adopts this type of threshold in their 
straggler-tolerant system, and classifies a task as a 
straggler if its progress rate is less than 50% of the average 
progress rate compared to its siblings.  

Although this type of threshold addresses the 
limitations of progress score based methods, it still comes 
with its own limitations. Taking the following scenario as 
an example, if task A is three times slower than the 
average task execution yet has a progress score of 0.9, 
while task B is two times slower but is only at 10% of its 
execution lifecycle, a progress rate based threshold would 
detect task A as a straggler due to its slower progress than 
B. However, in reality, it is task B that will significantly 
impede total job completion time. 

Estimated finish time based threshold (or time 
threshold) calculates the estimated time to completion 
given by LATE [5].                             ܶܶܥሾ݅ሿ ൌ ሺͳ െ ܲܵሾ݅ሿሻȀܴܲሾ݅ሿ                            ሺͷሻ 

If a task�s estimated finish time is longer than a certain 
percentage compared to the average value within the same 
job, it will be flagged as a straggler. The current state-of-
the-art predominantly use this time threshold [5][11-13]. 
By focusing on the estimated time remaining rather than 
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progress rate, this type of threshold only speculatively 
executes task replicas that will improve job response time. 
Within this paper, time threshold is the primary type of 
threshold that we focus on enhancing.  

Work in [5][11][12][13] specify the value of time 
threshold as a pre-defined value, typically 50% greater 
than average task execution. However, such a static 
threshold can debilitate the effectiveness of speculative 
replica generation. Specifically, it fails to consider the 
intrinsic diversity of job timing constraints within modern 
day systems. An effective time threshold calculation 
method should have the ability to impose different levels 
of strictness for replica creation to coordinate with 
specified levels of QoS. Furthermore, a static time 
threshold value ignores the resource cost of launching a 
speculative replica and its negative impact within the 
system. 

IV. PROBLEM FORMULATION 

While the state-of-the-art defines the time threshold as 
a static value measured by the time proportion between an 
individual task and average job execution duration, a more 
refined strategy is to capture intrinsic system operational 
conditions and job diversity. To achieve this, it is 
important to determine key factors that can be leveraged in 
order to improving job performance and current system 
resource usage. The key three factors identified are as 
follows. 

QoS timing constraints: This parameter encompasses 
acceptable levels of QoS response time. Jobs which fail to 
complete prior to the specified deadline result in timing 
failures and degraded application performance. 
Applications within modern day distributed systems 
typically pursue different objectives and express different 
levels of acceptable QoS. Such a characteristic allows for 
different degrees of strictness for generating replicas when 
attempting to tolerate the impact of task stragglers. 
Therefore, it is intuitive to consider the QoS response time 
as an important factor when calculating the time threshold. 

Task Lifecycle Progress: It is important to consider 
the current execution progress completed for a task for 
effective replica generation. Specifically, a replica should 
ideally be spawned when it is likely to complete prior to 
the task straggler, otherwise the replica will result in 
unnecessary resource consumption with no improvement 
towards job completion time. For example, when a task 
experiences slow down at its late phase, it still has a 
probability to complete prior to its newly generated replica. 
As a result, it is reasonable to increment the time threshold 
slightly in response to this late task progress to avoid 
needless speculation for replica creation. On the other 
hand, if a straggler is identified at an early phase, the 
replica should have a higher probability to outpace the 
original task. This allows the system to lower the 
threshold value at this point within the task lifecycle to 
encourage replica generation. Based on above reasoning, 
it is important to consider current task execution phase for 
launching speculative replicas.  

System Resource Usage: An important consideration 
for straggler tolerant systems is the impact of replica 
generation on resource consumption under different 
operational conditions. Creating replicas at high resource 
utilization poses a greater threat to system stability and 

can further increase the likelihood of straggler occurrence, 
while low system utilization allows for additional replica 
generation. Furthermore, replicas themselves can 
potentially become task stragglers too. Observations 
proposed in [10] state that 3% of replicas still take ten 
times longer than normal task execution in Bing�s 
production cluster. Since the speculative replicas will 
execute with data identical to the original task straggler 
and configured with same resource requests, the expense 
of tasks should also be considered. If the resource 
requirement of the original task is high, then generated 
replicas can result in a high resource cost with no 
substantial improvement towards overall job completion 
time. Based on this reasoning, the time threshold 
calculation should consider current levels of system 
resource utilization. 

V. ALGORITHM DESIGN 

Our proposed algorithm defines a dynamic time 
threshold which indicates when a task replica should be 
created for tolerating task stragglers by considering three 
key factors: QoS timing constraints, task progress and 
system resource usage. As described in previous sections, 
time threshold  ܶ ௝݄  is a ratio that expresses the difference 

between the average progress of all tasks within a job 
against an individual task. In the occurrence of an 
individual task i exhibiting a time to completion (TTC) 
value greater than  ܶ ௝݄ ȉ ௔௩௚ܥܶܶ  at time ݐ௝ , the 

identification component (defined in Fig. 2) identifies the 
task as a straggler. As a result, a replica is created and will 
commence execution.  ܶ ௝݄  is periodically updated at time 

interval ݐ௝  in order to allow the algorithm adapt to the 

current system environment. Equation 6 depicts the time 
threshold calculator at a high level:                                ܶ ௝݄ ൌ ܳ௝ ൅ ߙ כ ௝ܲ ൅ ߚ כ ௝ܵ                               ሺ͸ሻ 

where Q denotes differences in task progress with 
respect to job QoS, P represents optimal replica creation 
based on task lifecycle, and S indicates the current resource 
utilization levels of the distributed system. Progress weight 
parameters ߙ and utilization weight ߚ can be specified by 
the system administrator to emphasize a particular factor 
for optimizing the trade-off for replica creation based on 
specific system operation goals. The sum of Q, P and S 
produce the threshold for detecting task stragglers. A 
greater value for  ܶ ௝݄  indicates a stricter time threshold 

enforced at that particular time, resulting in  fewer tasks 
being defined as stragglers, while a lower  ܶ ௝݄  value 

allows a more relaxed condition for generating speculated 
replicas. These three parameters are respectively composed 
of lower levels of calculation to derive their values.  

A. Calculation of the QoS influence  

QoS timing constraint is an important factor to be 
considered when deciding how rigorous the time threshold 
should be based on the nature of the application. For 
example, a real-time service might emphasize a 
compulsory response time frame in their QoS, and 
prioritizes the rapidness of task execution over reduced 
resource usage for speculation. ܳ௝  calculates the difference 

between a task�s estimated completion time with respect to 
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Algorithm 1 DynamicThresholdSetting 

INPUTS: 

• QoS – QoS timing constrains 

• Phi – ߮, CPU threshold 
• Omega – ߱, Memory threshold 
• Mu – ߤ, Progress threshold 
• Alpha, Beta – ߚ ,ߙ, weightings  
WHILE TaskRunningNumber > 0 

FOR EACH task i 

TTC[i] = (1 – PS[i]) / PR[i] (Eqn.5) 

END FOR 

IF QoS != null 

SORT TTC  

Q = (TTC > QoS).First 

IF Q != null 

Q = Q / AVERAGE(TTC) 

ELSE 

Q = QoS / AVERAGE(TTC) 

END IF 

ELSE 

Q = 1.5 

END IF                                (Eqn.7) 

P = AVERAGE(PS) – mu           (Eqn.8) 

CPUdiff = AVERAGE(CPUreq) – phi 

MEMdiff = AVERAGE(MEMreq) - omega 

S = MAX(CPUdiff, MEMdiff)      (Eqn.9) 

Th = Q + alpha*P + beta*S      (Eqn.6) 

FOR EACH task i 

IF TTC[i] > ( Th*AVERAGE(TTC) ) 

i.copy 

TaskEunningNumber ++ 

END IF 

END FOR 

END WHILE 

specified job QoS timing requirement at time interval ݐ௝ 

following equation (7).    

         ܳ௝ ൌ ۔ۖەۖ
ۓ ௜ሻܥሺܶܶ݉ݑ݅݀݁݉ܵ݋ܳ ܵ݋ܳ ݂݅        ൒ ௜ܥ௜ሻ݉݅݊ሺܶܶܥሺܶܶ ݔܽ݉ ௜ሻܥሺܶܶ݉ݑ݅݀݁݉ ሻܵ݋ܳ ݄݊ܽݐ ݎ݁݃ݎ݈ܽ ݐ݄ܽݐ  ݁ݏ݈݁             ሺ͹ሻ 

where ܶܶܥ௜  represents the estimated time to 

completion for the ݅௧௛  task within the cluster, and ܳܵ݋ 
stands for the request time requirement defined as a QoS 
parameter. As an example, assume that the estimated 
completion times at time interval ݐ௝ for five tasks in a job 

with QoS timing constraint of 300 milliseconds are 290ms, 
290ms, 300ms, 380ms and 400ms. The minimal ܶܶܥ௜   
larger than ܳܵ݋ under this case is 380ms, meaning that the 
value for ܳ௝  is 127% (380 ÷ 300). For cases when all tasks 

are estimated to complete before the specified QoS, for 
instance, if we change ܳܵ݋ to 450ms instead of 300ms in 
last example, then all ܶܶܥ௜  values will be smaller than ܳܵ݋, meaning that the value for ܳ௝  is 150% (450 ÷ 300), 

and no tasks will be flagged as stragglers.  
It is worth highlighting that this algorithm will function 

for applications which do not contain an explicit QoS time 
request parameter specified. In such an event, a static time 
proportion value used in current literatures described in 
Section 3 is applicable, with the dynamic change for ܶ ௝݄  

dependent on ௝ܲ and ௝ܵ. 

B. Calculation of Progress Adjustor 

The calculation of progress adjustor at time interval ݐ௝ 

is given as equation 8. 

                                       ௝ܲ ൌ σ ܲܵሾ݅ሿ௡௜ୀଵ݊ െ  ሺͺሻ                                   ߤ

where ܲܵሾ݅ሿ  is defined in equation 1 with value  
bounded between 0 to 1, representing the start and the end 
of ݇ݏܽݐ௜  respectively. Progress standard parameter ߤ 
represents the specified maximum point within a task�s 
lifecycle suitable for generating a replica. For example, 
assigning 0.5 = ߤ represents that any task with a progress 
score smaller or equal to 0.5 will still be considered as 
early stage, and will lead to a smaller ݄ܶ by generating a 
negative ௝ܲ  value, increasing the likelihood of replica 

generation. While any progress score larger than 0.5 we be 
treated as late stage, resulting in higher threshold to limit 
replica generation.    

C. Calculation of System Environment Adjustor 

Parameter ௝ܵ affects the value of ܶ ௝݄  dependent on the 

system utilization at ݐ௝. This calculation is given as 

       ௝ܵ ൌ ሺσ ݔܽ݉ ௜௡௜ୀ଴ݍ݁ݎܷܲܥ ݊ െ ߮ǡ σ ௜௡௜ୀ଴ݍ݁ݎܯܧܯ ݊ െ ߱ሻ        ሺͻሻ 

where n denotes the number of servers within the 
cluster system, while ݍ݁ݎܷܲܥ௜  and ݍ݁ݎܯܧܯ௜  represent 
the CPU and memory requirement of ݇ݏܽݐ௜  respectively 
and the sum represents the utilization of the entire system. 
If either one of these two parameters hits the optimal usage 

specified by admin (CPU standard threshold ߮  and 
memory standard threshold ߱), it will increase the time 
threshold by generating a positive ௝ܵ  value, resulting in 

stricter requirements for replica generation.  
To conclude, the pseudo code for the dynamic 

threshold setting algorithm is given in algorithm 1. At each 
time interval, the system will collect the progress score for 
every active task within the target job and calculate the 
estimated completion time for each task. The time 
threshold for time ݐ௝ is generated by calculating the QoS 

influence, progress adjustor and system environment 
adjustor (Q, P and S, respectively). This will identify the 
stragglers according to the calculated time threshold and 
create corresponding replicas. During the next time frame, 
the scheduler of such a straggler-tolerant system would 
launch these speculative tasks to tolerate the tailing effect. 

VI. PERFORMANCE EVALUATION 

In order to evaluate the performance of the dynamic 
time threshold calculation algorithm in straggler-tolerant 
systems, a series of simulation experiments have been 
conducted using distributed system simulator [14]. This 
section will introduce the simulation and experiment cases 
set up followed by the performance evaluation.  
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TABLE 1.  System environmental factor experiments results 

Environment Threshold Performance 

Server 
Number 

Total Required 
Memory (%) 

Total Required 
CPU (%) 

Calculation 
Method 

Response Time (time interval 100ms) Replica Number 

Worst Case Best Case Average Worst Case Best Case Average 

20 135 135 Static(1.5) 1200 900 1080 7 5 5.8 
20 135 135 Dynamic 1100 900 980 3 2 2.4 

40 67.5 67.5 Static(1.5) 1200 1000 1120 6 5 5.4 

40 67.5 67.5 Dynamic 1100 800 920 4 2 2.8 

60 45 45 Static(1.5) 1100 800 900 4 3 3.4 
60 45 45 Dynamic 1000 600 740 4 5 4.2 

80 33.75 33.75 Static(1.5) 1000 700 820 4 3 3.4 

80 33.75 33.75 Dynamic 900 700 740 5 4 4.6 

100 27 27 Static(1.5) 1000 700 800 4 2 3 
100 27 27 Dynamic 800 600 680 5 5 5 

 

TABLE 2.  Task attribute experiments results 

Task Threshold Performance 

Task 

Number 

CPU 

requirement 

Memory 

requirement 

Calculation 

Method 

Response Time (time interval 100ms) Replica Number 

Worst Case Best Case Average Worst Case Best Case Average 

10 0.7 0.7 Static(1.5) 900 700 780 1 0 0.6 

10 0.7 0.7 Dynamic 800 600 660 2 1 1.2 

50 0.3 0.3 Static(1.5) 1000 700 820 2 1 1.4 

50 0.3 0.3 Dynamic 800 700 740 3 2 2.4 

50 0.5 0.5 Static(1.5) 1000 700 800 2 1 1.8 

50 0.5 0.5 Dynamic 900 700 780 3 2 2.4 

50 0.7 0.7 Static(1.5) 1100 800 940 2 2 2 

50 0.7 0.7 Dynamic 1100 800 920 2 1 1.8 

90 0.3 0.3 Static(1.5) 1100 900 980 4 3 3.8 
90 0.3 0.3 Dynamic 1000 800 860 4 3 3.6 

90 0.5 0.5 Static(1.5) 1100 900 1000 5 3 4.4 

90 0.5 0.5 Dynamic 1100 800 880 4 2 3.4 

90 0.7 0.7 Static(1.5) 1200 1000 1080 6 5 5.2 
90 0.7 0.7 Dynamic 1100 900 1000 3 1 2.8 

 

A. Simulation and Experiment Setup 

The simulator SEED [14] can generate jobs with 
various numbers of tasks running in parallel and simulate 
Long Tail behavior by assigning task execution times 
follow the tailing distribution derived from real production 
data. In our experiment, we use the characteristics 
concluded in previous research such as [8, 10]. Empirical 
analysis of a production cluster from Microsoft Bing [10] 
claims that 80% of task stragglers have a uniform 
probability of being delayed by between 120% to 250% 
compared to the average task duration, while 10% of tasks 
are 10 times average duration.  And [8] summarize that 
task level stragglers have an occurrence rate of 5%. User 
submission rate models and server configuration are 
determined from pattern derived from Google production 
cluster described in [15].  

The simulator simulates task behavior based on 
following five assumptions: 1) All speculative replicas 
created by the straggler-tolerant system should be allocated 
with identical CPU and memory requirements, and starts 
execution from the beginning of the task�s phase. 2) The 
scheduler will create replicas immediately after a task has 
been defined as a straggler, and will re-schedule the 
replica as a normal task. 3) The maximum resource 
capacity of the cluster does not change (i.e. 
addition/removal of servers) during threshold calculation.  
4) Replicas themselves can potentially become task 
stragglers [10]; this is possible by assigning speculative 
replicas the same probability of becoming a straggler 
identical to normal tasks. 5) Higher resource utilization 
environment leads to a higher probability of straggler 
occurrence. 

We altered system environment parameters, task 
attribute parameters and algorithm parameters to study 
their influence in terms of job response time and resource 
cost of replica generation. All together 17 experiment case 
pairs were conducted (each repeated five times) for static 
and dynamic threshold separately, each demonstrating the 
worst case, the best case and the average results. The value 
of 1.5 was chosen for static threshold to reflect widely 
accepted practice in current state-of-the-art. 

 First 5 case pairs control system environment related 
parameters, including number of servers, total required 
CPU and memory for the entire cluster. In our experiment, 
server number is changing from 20 to 100, while the 
required capacities are ranging from 135% to 27% (when 
this number exceeds 100%, which is the maximum 
available capacity the system could provide, tasks would 
wait till there are sufficient resource for them to run). The 
following 7 case pairs are targeting at the change of job 
attributes including task number per job, task CPU and 
memory requests. The last 5 case pairs focus on evaluating 
the sensitivity towards algorithm parameters by changing 
the weight parameter pair Į and ȕ as well as the standard 
parameter pair ĳ and Ȧ.  

For all experiment runs, the job QoS timing constraint 
is set to be 1000 milliseconds and the time interval is set to 
be every 100ms. The average task duration for simulator 
configuration is 700 milliseconds. When changing one 
factor of interest, the other two remain the same value. For 
system environmental factor, this default setting is 50 
homogenous servers; for task attribute factor, default job 
will be set with 90 tasks and each of which require 0.3 
CPU cores and memory ability; for the algorithm 
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TABLE 3.  Algorithm parameter experiments results 

Algorithm Threshold Performance 

Progress 

Wight ߙ 

Utilization 

Weight ߚ 

CPU 

Standard ߮ 

Memory 

Standard ߱ 

Calculation 
Method 

Response Time (time interval 100ms) Replica Number 

Worst Case Best Case Average Worst Case Best Case Average 

0.5 0.5 0.4 0.4 Static(1.5) 1100 900 960 5 3 4.4 
0.5 0.5 0.4 0.4 Dynamic 1000 900 940 4 3 3.2 

0.5 0.5 0.5 0.5 Static(1.5) 1100 900 980 4 3 3.8 

0.5 0.5 0.5 0.5 Dynamic 1000 800 860 4 3 3.6 

0.5 0.5 0.6 0.6 Static(1.5) 1000 800 900 5 3 4.2 
0.5 0.5 0.6 0.6 Dynamic 1000 700 840 5 4 4.6 

0.3 0.7 0.5 0.5 Static(1.5) 1100 900 980 4 3 3.8 

0.3 0.7 0.5 0.5 Dynamic 1000 900 980 3 3 3 

0.7 0.3 0.5 0.5 Static(1.5) 1000 900 940 4 3 3.8 

0.7 0.3 0.5 0.5 Dynamic 900 900 900 4 3 3.6 

 

Figure 4. Average job response changing with total required capacity 

 

Figure 5. Average replica number changing with total required 
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parameters, 0.5 is the configured value for Į, ȕ, ĳ and Ȧ. 

B. Evaluation 

We demonstrate the effectiveness of our dynamic time 
threshold calculation in straggler-tolerant systems in two 
aspects: 1) performance analysis and 2) parameter 
sensitivity analysis. The first part studies job timing 
improvement and resource saving improvement, using the 
job response time and replica number as the primary 
matrix. The second part studies algorithms effectiveness 
under different operational and environmental conditions. 
Our evaluation demonstrates the following:  

 The dynamic time threshold can improve job 
completion and decrease timing failure occurrence, as 
well as saving resource under high utilization scenarios 
by generating fewer replicas. As shown in Tables 1-3, the 
dynamic algorithm can reduce response time up to 17.86% 
on average across all experiment cases compared to a static 
threshold. The improvement is represented by the speedup 
of the job execution calculated as follows: 

݁ݒ݋ݎ݌݉ܫ  ൌ ஽௬௡௔௠௜௖݊݋݅ݐݑܿ݁ݔܧܾ݋ܬ െ ௌ௧௔௧௜௖݊݋݅ݐݑܿ݁ݔܧܾ݋ܬௌ௧௔௧௜௖݊݋݅ݐݑܿ݁ݔܧܾ݋ܬ ሺͳͲሻ 
Fig.4 presents the changing trend of average response 

time of dynamic threshold and static ones respectively 
among different required system capacity (ranging from 
14%, the first test case in Table 2 where a job only consists 
of 10 tasks that each require 0.3 CPU and memory 
capacity, to 135%, the first test case in Table 1 where the 
cluster has 20 servers). The required capacity exceeds 100% 
representing current available resource is less than 
required, hence tasks would wait till there is sufficient 
resource for execution. From this figure it is observable 
that dynamic threshold can improve job response time up 
to 17.86%, and reduce up to 10.58% timing constrain 
violations. This improvement is due to the algorithm 
altering the time threshold in accordance to meeting the 
specified job QoS.   

The algorithm sensitivity is driven by resource 
utilization level, task progress phase and input variable 
settings. It is observable from the tables that the replica 
number created varies dependent on different resource 
utilizations. When resource utilization is high, the dynamic 
threshold will produce less task replicas, most notably for 
case �server number 20� in table 1 and the case �task 
number 90, requirements 0.7� in table 2. On the other hand, 
when the system is idle (i.e., low resource usage, resource 
required below the standard set by ߮ and ߱), the dynamic 

method will proactively generate more replicas to pursue 
higher response time. Through Fig. 5 we see that the 
dynamic algorithm will decrease replica generation when 
there is an increase in task resource requirement, while the 
static method exhibits an opposite trend. This is due to the 
dynamic method considering the cost of creating 
speculations, as higher cost leads to stricter time threshold. 

In terms of environmental factors, Fig. 6 demonstrates 
how the time threshold changes over the execution 
lifecycle of a job. Although different required resource 
capacity experience different variability in threshold value 
changes (for example in 6(a) and 6(b), the vibration is 
much shaper in order to control the number of replicas 
under high contention situations), there are still some 
similar trends: in the middle of the job�s execution phase, 
all four experiment cases experience a decrease change,  
as during this time period tasks begin to complete and 
release resources, and when the job approaching its late 
phases, all dynamic values in Fig. 6 (a) to (d)  exhibit a 
similar increase trend to avoid needless speculation when 
the probability of a replica to outperform the original 
straggler is low. In addition, when changing the input 
variables of weight parameters and standard parameters, 
the algorithm will generate different time threshold value 
for same conditions.  

VII. CONCLUSION 
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Service providers use SLAs to define the agreed terms 
of service they should meet whilst service users use it to 
ensure that the agreed QoS has been fulfilled. However, 
straggler tasks within a parallel job can significantly 
prolong service response since all the siblings need to wait 
for the outcome of the last task before the job finishes. The 
current state-of-the-art straggler mitigating method is 
speculative execution, which creates replicas for all 
identified stragglers. Threshold is the key concept used in 
defining to what extent a task can be identified as a 
straggler. 

In this paper, we have developed a time threshold 
calculation method for straggler-tolerant systems that for 
the first time dynamically adapts to different job types and 
system conditions in order to improve job performance. 
Our conclusions are as follows: 
� A dynamic threshold calculation mechanism is an 

effective means to enhance straggle-tolerant systems 
that improves job completion. While current methods 
identify task stragglers using static time threshold 
defined as 50% greater than average task execution, 
our approach allows for an automated dynamic time 
threshold calculation that captures job QoS, system 
resource usage level, and task progress. Our findings 
demonstrate that dynamic technique can further 
improve job completion by a factor up to 17.86% 
compared to static methods. 

� Replica number trade-offs exist among different level 
of resource utilization scenarios. Improving job 
execution by speculation and saving resource can be a 
conflict of interest. Experiments conducted when 
comparing dynamic approach against current static 
approaches under different operational conditions 
demonstrate that our approach creates 58.62% less 
replicas while still adhering to QoS timing 
requirements under high utilization. In contrast, under 
low resource utilization cases, the dynamic threshold 
calculation method proactively generates more 
replicas to achieve a much quicker response time.  
Future work includes the integration of our approach 

into other established Long Tail tolerance techniques 
besides basic speculative speculation to discover whether 
substantial gains in job completion timeliness and 
fulfillment of service QoS can be achieved. Furthermore, 
there is an opportunity to extend our approach by 
exploring other factors through designing a cost function 
beyond CPU and memory utilization, including disk 
volume and network speed.  
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                         (a)             (b)                           (c)                                            (d)  

     Figure 6.  Threshold value change trend under cases with task number = 90, requirement = 0.3 for (a) 20 servers, (b) 40 servers, (c) 60 servicers, (d) 80 servers. 


