
This is a repository copy of Straggler Detection in Parallel Computing Systems through
Dynamic Threshold Calculation.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/100522/

Version: Accepted Version

Proceedings Paper:
Ouyang, X, Garraghan, P, McKee, D et al. (2 more authors) (2016) Straggler Detection in
Parallel Computing Systems through Dynamic Threshold Calculation. In: 2016 IEEE 30th
International Conference on Advanced Information Networking and Applications (AINA).
The 30th IEEE International Conference on Advanced Information Networking and
Applications (AINA-2016), 23-25 Mar 2016, Crans-Montana, Switzerland. IEEE , pp.
414-421. ISBN 978-1-5090-1857-4

https://doi.org/10.1109/AINA.2016.84

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

1

Straggler Detection in Parallel Computing Systems through

Dynamic Threshold Calculation

Xue Ouyang, Peter Garraghan, David Mckee, Paul Townend, Jie Xu

School of Computing

University of Leeds

Leeds, UK

{scxo, p.m.garraghan, scdwm, p.m.townend, j.xu} @ leeds.ac.uk

Abstract � Cloud computing systems face the substantial

challenge of the Long Tail problem: a small subset of

straggling tasks significantly impede parallel jobs completion.

This behavior results in longer service response times and

degraded system utilization. Speculative execution, which

create task replicas at runtime, is a typical method deployed

in large-scale distributed systems to tolerate stragglers. This

approach defines stragglers by specifying a static threshold

value, which calculates the temporal difference between an

individual task and the average task progression for a job.

However, specifying static threshold debilitates speculation

effectiveness as it fails to consider the intrinsic diversity of

job timing constraints within modern day Cloud computing

systems. Capturing such heterogeneity enables the ability to

impose different levels of strictness for replica creation while

achieving specified levels of QoS for different application

types. Furthermore, a static threshold also fails to consider

system environmental constraints in terms of replication

overheads and optimal system resource usage. In this paper

we present an algorithm for dynamically calculating a

threshold value to identify task stragglers, considering key

parameters including job QoS timing constraints, task

execution characteristics, and optimal system resource

utilization. We study and demonstrate the effectiveness of

our algorithm through simulating a number of different

operational scenarios based on real production cluster data

against state-of-the-art solutions. Results demonstrate that

our approach is capable of creating 58.62% less replicas

under high resource utilization while reducing response time

up to 17.86% for idle periods compared to a static threshold.

Keywords- Long Tail Problem; Stragglers; Speculative

Execution; Service QoS; Resource Utilization

I. INTRODUCTION

Modern day distributed systems are composed of
thousands of heterogeneous servers in order to provide
computing services globally. With the rapid growth of data
volume and exploitation, parallel computing has become
an increasingly common technique for running
applications effectively within clusters. Technologies such
as MapReduce and Spark achieve this by decomposing a
job into multiple tasks which perform a subset of
computation and data processing, significantly speeding up
job completion time.

In such parallel processing systems, task characteristics
are driven by diverse consumer requirements, enforced
through a Service Level Agreement (SLA) [2] detailing the
level of acceptable service. One element provisioned and
enforced by the SLA is the Quality of Service (QoS) that
may be composed by numerous parameters including
performance, real-time and security constraints of the

service. Parameters of interest are dependent on business
objectives; for example, soft real-time applications
typically emphasize a boundary on acceptable response
time, with violations resulting in timing failures [3].
However, given the increasing scale and complexity, there
have arisen challenges in tolerating emergent system
phenomena that significantly impacts the fulfillment of
service QoS [4]. One such challenge is the Long Tail
problem, defined as a small proportion of task stragglers
experience abnormally long execution in comparison to
other sibling tasks, thus incur significant delays to job
completion as well as decreased system availability due to
committed computing resources wasted on waiting tasks
[5]. It has been identified that stragglers are caused by
several factors including contention of shared resources,
node disk failures, and imbalanced task workloads [17].

Stragglers are detected within systems by measuring or
predicting when an individual task completion time is
proportionally greater than the average task execution
duration within a job, and is expressed as a threshold. In
order to tolerate the impact of Long Tail problem, methods
such as speculative execution creates replicas of task
stragglers to shorten job completion by using whichever
result completes first. Current research and industrial
practice adopts this threshold as a pre-defined value of task
execution 50% larger than the average task execution
duration [5][11-13]. However, this static approach comes
with a significant limitation: as the threshold value does
not reflect optimal straggler detection and mitigation
strategies in accordance to job diversity and system
operation. Capturing these two characteristics allows for
stricter or more relaxed time thresholds for straggler
detection and task replication while adhering to job QoS.
For example, if the system is exhibiting high utilization,
the overhead brought by additional replicas will further
burden the system, leading to increased straggler
occurrence. In contrast, low system utilization allows for
more leniencies towards replica generation to improve
parallel job completion, and benefit those jobs that
emphasize timing constraints for successful execution.

This paper proposes an algorithm that enables dynamic
threshold calculation for straggler tolerance in distributed
systems to augment state-of-the-art Long Tail
identification and mitigation techniques. Specifically, our
approach factors service QoS (specifically timing
constraints), task execution progress, and the cluster
resource usage to calculate the optimal time threshold for
defining straggler tasks for replication in parallel jobs. Our
approach is validated through simulation of a Cloud
datacenter under diverse consumer and operational
scenarios, which uses empirical findings to represent real

2

140000120000100000800006000040000200000

120

100

80

60

40

20

0

Task Duration (ms)

T
a

sk
 N

u
m

b
e
r

Execution

Average Job

 (a)

300000250000200000150000100000500000

120

100

80

60

40

20

0

Task Duration (ms)

T
a

sk
 N

u
m

b
e
r

s

Straggler

Completion

Average Job

(b)

Figure 1. Task completion time for jobs exhibiting (a) Typical behavior,

(b) Long Tail phenomena.

system behavior. Results show that our technique can
further improve job completion and reduce timing failure
probabilities, as well as reduce replica generation under
high resource utilization environment.

The paper is structured as follows: Section 2 presents
the background; Section 3 surveys the related work;
Section 4 analyzes the problem formulation; Section 5
details the algorithm design; Section 6 presents the
experiment set up as well as the evaluation results. Finally,
Section 7 discusses conclusions and future work.

II. BACKGROUD

A. Long Tail Behavior in Distributed Parallel Systems

Service response time is an important factor in pay-by-
the-hour environments such as Amazon EC2, and systems
which require rapid response to users. However, such a
requirement becomes increasingly challenging in large-
scale systems due to Long Tail. In distributed systems, the
Long Tail problem is defined as a phenomena that occurs
when a distributed job - composed of multiple smaller
tasks executing in parallel - incurs significant delays in
completion due to a small subset of impeded parallelized
tasks [5]. These delayed tasks that perform much slower
compared to their sibling tasks are defined as stragglers.

To demonstrate such a problem, we have characterized
two parallel jobs from the operational tracelog of a Google
cluster [6, 7] composed of over 12,500 servers applying
the filtering technique described in [8]. Figure 1(a) shows
an example of typical job completion, where it can be
observed that most tasks complete at approximately 100s
with the longest task execution being merely 30% greater
compared to the average job completion. On the other
hand, Figure 1(b) depicts task completion of a job from
Google cluster that exhibits Long Tail phenomena,
characterized by a pronounced tailing shape with the
longest task taking approximately 300% longer compared
to average task completion. There are a number of related
works that study the influence of the Long Tail problem.
For example, [8] demonstrates that even rare performance
abnormalities can affect a significant portion of all requests
in distributed systems after analyzing two production
system logs, while [9] further shows how Long Tail is an
increasingly common phenomenon in the face of increased
growth of system scale.

There are two ways to address the Long Tail problem:
avoidance and tolerance. Avoidance typically occurs
within the task scheduling phase. For example, a
MapReduce scheduler will typically assign Map tasks to a
node that stores the input data in order to reduce
unnecessary network transmission overhead [1]. The
scheduler may also attempt to avoid scheduling tasks onto
known faulty nodes by adopting blacklist techniques [16].
However, blacklisting may be insufficient when stragglers
are not restricted to a small set of machines [11]. As a
result, straggler tolerance, which is typically performed at
application run-time, is the most commonly applied
method for speculative execution.

B. Speculative Execution

First proposed by Dean [1], speculative execution
observes the progress of each individual task within the
same job. Once a task straggler has been identified, the
system automatically creates a replica (or a backup copy

that performs identical work) without killing the original
task, and uses whichever result that completes first. Once a
task finishes (either the original straggler or the newly
created replica), the scheduler discards the other unfinished
task and releases the computing resources back to use.
This method is commonly deployed in many production
clusters such as Facebook, Google, Bing, and Yahoo.

In Hadoop�s default speculative mechanism, stragglers
are identified by monitoring the matrix of ProgressScore
(ranging from 0 to 1) defined in equation (1) to measure
the execution progress of a task.

 ܲܵሾ݅ሿ ൌ ൜ ܯ ܰΤ ͳ ݇ݏܽݐ ݌ܽ݉ ݎ݋ܨ ͵Τ כ ሺܭ ൅ ܯ ܰΤ ሻ ݇ݏܽݐ ݁ܿݑ݀݁ݎ ݎ݋ܨ ሺͳሻ

where ܲܵሾ݅ሿ represents the progress score of the ݅௧௛
task. The number of key/value pairs need to be processed
in a task is denoted by ܰ, while ܯ stands for the number
of key/value pairs that have already been processed in a
specific task. The finished phases for a reduce task is
represented by ܭ . For a Map, the progress score is the
fraction of input data read, while for a Reduce the
execution is divided into three phases (copy, sort and
reduce) with each account to one third of the final progress
score. Such weighting can be modified through changing
scheduler settings.

III. RELATED WORK

In order to address the Long Tail problem influence in
distributed parallel systems, a straggler-tolerate system is
proposed composed by three main components shown in
Fig.2: straggler identifier, speculation executor and
decentralized agents responsible for recording task
progress and reporting. The threshold calculation is a
critical component of the straggler identifier in such
systems. Threshold is used to identify when a task is

3

200190180170160150140130

0.55

0.50

0.45

0.40

0.35

0.30

Threshold (%)

S
tr

a
g

g
le

r
P

e
rc

e
n

ta
g

e

Google

Datacenter B

Figure 3. Relation between time threshold setting and tailing jobs.

defined as a straggler, and is expressed as a ratio
calculating the time difference between an individual task
and the average progresses of all tasks within a job (i.e. If
the average task completion is speculated to be 100s, a
threshold value of 200% would indicate any tasks that
require 200s+ to complete are identified as stragglers).

 The direct impact of changing the threshold value is
the number of stragglers identified, followed with the
resource spent on creating their replicas. Figure 3 shows
how the proportion of tailing jobs (ranging from 0-1)
within two production Cloud datacenters analyzed in [8]
are affected by different time threshold settings ranging
from 130% to 200%. Currently, there exist three categories
of threshold:

Progress score based threshold identifies a straggler
and subsequently launches a speculative replica based on
progress score of task execution as shown in equation (2)
and (3).

 ܲܵ௔௩௚ ൌ ෍ ܲܵሾ݅ሿ ݊Τ௡
௜ୀଵ ሺʹሻ

 For task ܶܽ݇ݏ௜ǣ ܲܵሾ݅ሿ ൏ ܲܵ௔௩௚ כ ͺͲΨ ሺ͵ሻ

where ܲܵ௔௩௚ is the average progress score of a job and ݊ represents the number of tasks that are being executed.
This threshold calculation is adopted by the Hadoop
default scheduler [1] configured with a default threshold
value of 80%. This threshold has an unavoidable
limitation where tasks that have completed more than 80%
progress can never be speculatively executed.

Progress rate based threshold. Progress rate is a metric
used to measure the task progress rate (PR), and is
calculated by equation 4:

 ܴܲሾ݅ሿ ൌ ܲܵሾ݅ሿȀܶ ሺͶሻ

where ܶ is the amount of time ܶܽ݇ݏ௜ has been

executing. Dolly [11] adopts this type of threshold in their
straggler-tolerant system, and classifies a task as a
straggler if its progress rate is less than 50% of the average
progress rate compared to its siblings.

Although this type of threshold addresses the
limitations of progress score based methods, it still comes
with its own limitations. Taking the following scenario as
an example, if task A is three times slower than the
average task execution yet has a progress score of 0.9,
while task B is two times slower but is only at 10% of its
execution lifecycle, a progress rate based threshold would
detect task A as a straggler due to its slower progress than
B. However, in reality, it is task B that will significantly
impede total job completion time.

Estimated finish time based threshold (or time
threshold) calculates the estimated time to completion
given by LATE [5]. ܶܶܥሾ݅ሿ ൌ ሺͳ െ ܲܵሾ݅ሿሻȀܴܲሾ݅ሿ ሺͷሻ

If a task�s estimated finish time is longer than a certain
percentage compared to the average value within the same
job, it will be flagged as a straggler. The current state-of-
the-art predominantly use this time threshold [5][11-13].
By focusing on the estimated time remaining rather than

Figure 2. Cloud computing model with integrated straggler-tolerant system

Cloud Interface

Straggler

Identifier

Threshold

Calculator

Speculator

Executor

Resource Manager

Resource Pool

Controller

Job

Scheduler

Straggler

Tolerant Agent

Job

Master
Task

Straggler

Tolerant Agent

Task

Resource

Pool DB

Task Event

Log

Cloud

Management

System

Physical Server

Infrastructure

Job

Constraints

Straggler

Tolerant Agent

Straggler Tolerant System

Node 1 Node 2 Node n

Task Task

VM

Manager

4

progress rate, this type of threshold only speculatively
executes task replicas that will improve job response time.
Within this paper, time threshold is the primary type of
threshold that we focus on enhancing.

Work in [5][11][12][13] specify the value of time
threshold as a pre-defined value, typically 50% greater
than average task execution. However, such a static
threshold can debilitate the effectiveness of speculative
replica generation. Specifically, it fails to consider the
intrinsic diversity of job timing constraints within modern
day systems. An effective time threshold calculation
method should have the ability to impose different levels
of strictness for replica creation to coordinate with
specified levels of QoS. Furthermore, a static time
threshold value ignores the resource cost of launching a
speculative replica and its negative impact within the
system.

IV. PROBLEM FORMULATION

While the state-of-the-art defines the time threshold as
a static value measured by the time proportion between an
individual task and average job execution duration, a more
refined strategy is to capture intrinsic system operational
conditions and job diversity. To achieve this, it is
important to determine key factors that can be leveraged in
order to improving job performance and current system
resource usage. The key three factors identified are as
follows.

QoS timing constraints: This parameter encompasses
acceptable levels of QoS response time. Jobs which fail to
complete prior to the specified deadline result in timing
failures and degraded application performance.
Applications within modern day distributed systems
typically pursue different objectives and express different
levels of acceptable QoS. Such a characteristic allows for
different degrees of strictness for generating replicas when
attempting to tolerate the impact of task stragglers.
Therefore, it is intuitive to consider the QoS response time
as an important factor when calculating the time threshold.

Task Lifecycle Progress: It is important to consider
the current execution progress completed for a task for
effective replica generation. Specifically, a replica should
ideally be spawned when it is likely to complete prior to
the task straggler, otherwise the replica will result in
unnecessary resource consumption with no improvement
towards job completion time. For example, when a task
experiences slow down at its late phase, it still has a
probability to complete prior to its newly generated replica.
As a result, it is reasonable to increment the time threshold
slightly in response to this late task progress to avoid
needless speculation for replica creation. On the other
hand, if a straggler is identified at an early phase, the
replica should have a higher probability to outpace the
original task. This allows the system to lower the
threshold value at this point within the task lifecycle to
encourage replica generation. Based on above reasoning,
it is important to consider current task execution phase for
launching speculative replicas.

System Resource Usage: An important consideration
for straggler tolerant systems is the impact of replica
generation on resource consumption under different
operational conditions. Creating replicas at high resource
utilization poses a greater threat to system stability and

can further increase the likelihood of straggler occurrence,
while low system utilization allows for additional replica
generation. Furthermore, replicas themselves can
potentially become task stragglers too. Observations
proposed in [10] state that 3% of replicas still take ten
times longer than normal task execution in Bing�s
production cluster. Since the speculative replicas will
execute with data identical to the original task straggler
and configured with same resource requests, the expense
of tasks should also be considered. If the resource
requirement of the original task is high, then generated
replicas can result in a high resource cost with no
substantial improvement towards overall job completion
time. Based on this reasoning, the time threshold
calculation should consider current levels of system
resource utilization.

V. ALGORITHM DESIGN

Our proposed algorithm defines a dynamic time
threshold which indicates when a task replica should be
created for tolerating task stragglers by considering three
key factors: QoS timing constraints, task progress and
system resource usage. As described in previous sections,
time threshold ܶ ௝݄ is a ratio that expresses the difference

between the average progress of all tasks within a job
against an individual task. In the occurrence of an
individual task i exhibiting a time to completion (TTC)
value greater than ܶ ௝݄ ȉ ௔௩௚ܥܶܶ at time ݐ௝ , the

identification component (defined in Fig. 2) identifies the
task as a straggler. As a result, a replica is created and will
commence execution. ܶ ௝݄ is periodically updated at time

interval ݐ௝ in order to allow the algorithm adapt to the

current system environment. Equation 6 depicts the time
threshold calculator at a high level: ܶ ௝݄ ൌ ܳ௝ ൅ ߙ כ ௝ܲ ൅ ߚ כ ௝ܵ ሺ͸ሻ

where Q denotes differences in task progress with
respect to job QoS, P represents optimal replica creation
based on task lifecycle, and S indicates the current resource
utilization levels of the distributed system. Progress weight
parameters ߙ and utilization weight ߚ can be specified by
the system administrator to emphasize a particular factor
for optimizing the trade-off for replica creation based on
specific system operation goals. The sum of Q, P and S
produce the threshold for detecting task stragglers. A
greater value for ܶ ௝݄ indicates a stricter time threshold

enforced at that particular time, resulting in fewer tasks
being defined as stragglers, while a lower ܶ ௝݄ value

allows a more relaxed condition for generating speculated
replicas. These three parameters are respectively composed
of lower levels of calculation to derive their values.

A. Calculation of the QoS influence

QoS timing constraint is an important factor to be
considered when deciding how rigorous the time threshold
should be based on the nature of the application. For
example, a real-time service might emphasize a
compulsory response time frame in their QoS, and
prioritizes the rapidness of task execution over reduced
resource usage for speculation. ܳ௝ calculates the difference

between a task�s estimated completion time with respect to

5

Algorithm 1 DynamicThresholdSetting

INPUTS:

• QoS – QoS timing constrains

• Phi – ߮, CPU threshold
• Omega – ߱, Memory threshold
• Mu – ߤ, Progress threshold
• Alpha, Beta – ߚ ,ߙ, weightings
WHILE TaskRunningNumber > 0

FOR EACH task i

TTC[i] = (1 – PS[i]) / PR[i] (Eqn.5)

END FOR

IF QoS != null

SORT TTC

Q = (TTC > QoS).First

IF Q != null

Q = Q / AVERAGE(TTC)

ELSE

Q = QoS / AVERAGE(TTC)

END IF

ELSE

Q = 1.5

END IF (Eqn.7)

P = AVERAGE(PS) – mu (Eqn.8)

CPUdiff = AVERAGE(CPUreq) – phi

MEMdiff = AVERAGE(MEMreq) - omega

S = MAX(CPUdiff, MEMdiff) (Eqn.9)

Th = Q + alpha*P + beta*S (Eqn.6)

FOR EACH task i

IF TTC[i] > (Th*AVERAGE(TTC))

i.copy

TaskEunningNumber ++

END IF

END FOR

END WHILE

specified job QoS timing requirement at time interval ݐ௝

following equation (7).

 ܳ௝ ൌ ۔ۖەۖ
ۓ ௜ሻܥሺܶܶ݉ݑ݅݀݁݉ܵ݋ܳ ܵ݋ܳ ݂݅ ൒ ௜ܥ௜ሻ݉݅݊ሺܶܶܥሺܶܶ ݔܽ݉ ௜ሻܥሺܶܶ݉ݑ݅݀݁݉ ሻܵ݋ܳ ݄݊ܽݐ ݎ݁݃ݎ݈ܽ ݐ݄ܽݐ ݁ݏ݈݁ ሺ͹ሻ

where ܶܶܥ௜ represents the estimated time to

completion for the ݅௧௛ task within the cluster, and ܳܵ݋
stands for the request time requirement defined as a QoS
parameter. As an example, assume that the estimated
completion times at time interval ݐ௝ for five tasks in a job

with QoS timing constraint of 300 milliseconds are 290ms,
290ms, 300ms, 380ms and 400ms. The minimal ܶܶܥ௜
larger than ܳܵ݋ under this case is 380ms, meaning that the
value for ܳ௝ is 127% (380 ÷ 300). For cases when all tasks

are estimated to complete before the specified QoS, for
instance, if we change ܳܵ݋ to 450ms instead of 300ms in
last example, then all ܶܶܥ௜ values will be smaller than ܳܵ݋, meaning that the value for ܳ௝ is 150% (450 ÷ 300),

and no tasks will be flagged as stragglers.
It is worth highlighting that this algorithm will function

for applications which do not contain an explicit QoS time
request parameter specified. In such an event, a static time
proportion value used in current literatures described in
Section 3 is applicable, with the dynamic change for ܶ ௝݄

dependent on ௝ܲ and ௝ܵ.

B. Calculation of Progress Adjustor

The calculation of progress adjustor at time interval ݐ௝

is given as equation 8.

 ௝ܲ ൌ σ ܲܵሾ݅ሿ௡௜ୀଵ݊ െ ሺͺሻ ߤ

where ܲܵሾ݅ሿ is defined in equation 1 with value
bounded between 0 to 1, representing the start and the end
of ݇ݏܽݐ௜ respectively. Progress standard parameter ߤ
represents the specified maximum point within a task�s
lifecycle suitable for generating a replica. For example,
assigning 0.5 = ߤ represents that any task with a progress
score smaller or equal to 0.5 will still be considered as
early stage, and will lead to a smaller ݄ܶ by generating a
negative ௝ܲ value, increasing the likelihood of replica

generation. While any progress score larger than 0.5 we be
treated as late stage, resulting in higher threshold to limit
replica generation.

C. Calculation of System Environment Adjustor

Parameter ௝ܵ affects the value of ܶ ௝݄ dependent on the

system utilization at ݐ௝. This calculation is given as

 ௝ܵ ൌ ሺσ ݔܽ݉ ௜௡௜ୀ଴ݍ݁ݎܷܲܥ ݊ െ ߮ǡ σ ௜௡௜ୀ଴ݍ݁ݎܯܧܯ ݊ െ ߱ሻ ሺͻሻ

where n denotes the number of servers within the
cluster system, while ݍ݁ݎܷܲܥ௜ and ݍ݁ݎܯܧܯ௜ represent
the CPU and memory requirement of ݇ݏܽݐ௜ respectively
and the sum represents the utilization of the entire system.
If either one of these two parameters hits the optimal usage

specified by admin (CPU standard threshold ߮ and
memory standard threshold ߱), it will increase the time
threshold by generating a positive ௝ܵ value, resulting in

stricter requirements for replica generation.
To conclude, the pseudo code for the dynamic

threshold setting algorithm is given in algorithm 1. At each
time interval, the system will collect the progress score for
every active task within the target job and calculate the
estimated completion time for each task. The time
threshold for time ݐ௝ is generated by calculating the QoS

influence, progress adjustor and system environment
adjustor (Q, P and S, respectively). This will identify the
stragglers according to the calculated time threshold and
create corresponding replicas. During the next time frame,
the scheduler of such a straggler-tolerant system would
launch these speculative tasks to tolerate the tailing effect.

VI. PERFORMANCE EVALUATION

In order to evaluate the performance of the dynamic
time threshold calculation algorithm in straggler-tolerant
systems, a series of simulation experiments have been
conducted using distributed system simulator [14]. This
section will introduce the simulation and experiment cases
set up followed by the performance evaluation.

6

TABLE 1. System environmental factor experiments results

Environment Threshold Performance

Server
Number

Total Required
Memory (%)

Total Required
CPU (%)

Calculation
Method

Response Time (time interval 100ms) Replica Number

Worst Case Best Case Average Worst Case Best Case Average

20 135 135 Static(1.5) 1200 900 1080 7 5 5.8
20 135 135 Dynamic 1100 900 980 3 2 2.4

40 67.5 67.5 Static(1.5) 1200 1000 1120 6 5 5.4

40 67.5 67.5 Dynamic 1100 800 920 4 2 2.8

60 45 45 Static(1.5) 1100 800 900 4 3 3.4
60 45 45 Dynamic 1000 600 740 4 5 4.2

80 33.75 33.75 Static(1.5) 1000 700 820 4 3 3.4

80 33.75 33.75 Dynamic 900 700 740 5 4 4.6

100 27 27 Static(1.5) 1000 700 800 4 2 3
100 27 27 Dynamic 800 600 680 5 5 5

TABLE 2. Task attribute experiments results

Task Threshold Performance

Task

Number

CPU

requirement

Memory

requirement

Calculation

Method

Response Time (time interval 100ms) Replica Number

Worst Case Best Case Average Worst Case Best Case Average

10 0.7 0.7 Static(1.5) 900 700 780 1 0 0.6

10 0.7 0.7 Dynamic 800 600 660 2 1 1.2

50 0.3 0.3 Static(1.5) 1000 700 820 2 1 1.4

50 0.3 0.3 Dynamic 800 700 740 3 2 2.4

50 0.5 0.5 Static(1.5) 1000 700 800 2 1 1.8

50 0.5 0.5 Dynamic 900 700 780 3 2 2.4

50 0.7 0.7 Static(1.5) 1100 800 940 2 2 2

50 0.7 0.7 Dynamic 1100 800 920 2 1 1.8

90 0.3 0.3 Static(1.5) 1100 900 980 4 3 3.8
90 0.3 0.3 Dynamic 1000 800 860 4 3 3.6

90 0.5 0.5 Static(1.5) 1100 900 1000 5 3 4.4

90 0.5 0.5 Dynamic 1100 800 880 4 2 3.4

90 0.7 0.7 Static(1.5) 1200 1000 1080 6 5 5.2
90 0.7 0.7 Dynamic 1100 900 1000 3 1 2.8

A. Simulation and Experiment Setup

The simulator SEED [14] can generate jobs with
various numbers of tasks running in parallel and simulate
Long Tail behavior by assigning task execution times
follow the tailing distribution derived from real production
data. In our experiment, we use the characteristics
concluded in previous research such as [8, 10]. Empirical
analysis of a production cluster from Microsoft Bing [10]
claims that 80% of task stragglers have a uniform
probability of being delayed by between 120% to 250%
compared to the average task duration, while 10% of tasks
are 10 times average duration. And [8] summarize that
task level stragglers have an occurrence rate of 5%. User
submission rate models and server configuration are
determined from pattern derived from Google production
cluster described in [15].

The simulator simulates task behavior based on
following five assumptions: 1) All speculative replicas
created by the straggler-tolerant system should be allocated
with identical CPU and memory requirements, and starts
execution from the beginning of the task�s phase. 2) The
scheduler will create replicas immediately after a task has
been defined as a straggler, and will re-schedule the
replica as a normal task. 3) The maximum resource
capacity of the cluster does not change (i.e.
addition/removal of servers) during threshold calculation.
4) Replicas themselves can potentially become task
stragglers [10]; this is possible by assigning speculative
replicas the same probability of becoming a straggler
identical to normal tasks. 5) Higher resource utilization
environment leads to a higher probability of straggler
occurrence.

We altered system environment parameters, task
attribute parameters and algorithm parameters to study
their influence in terms of job response time and resource
cost of replica generation. All together 17 experiment case
pairs were conducted (each repeated five times) for static
and dynamic threshold separately, each demonstrating the
worst case, the best case and the average results. The value
of 1.5 was chosen for static threshold to reflect widely
accepted practice in current state-of-the-art.

 First 5 case pairs control system environment related
parameters, including number of servers, total required
CPU and memory for the entire cluster. In our experiment,
server number is changing from 20 to 100, while the
required capacities are ranging from 135% to 27% (when
this number exceeds 100%, which is the maximum
available capacity the system could provide, tasks would
wait till there are sufficient resource for them to run). The
following 7 case pairs are targeting at the change of job
attributes including task number per job, task CPU and
memory requests. The last 5 case pairs focus on evaluating
the sensitivity towards algorithm parameters by changing
the weight parameter pair Į and ȕ as well as the standard
parameter pair ĳ and Ȧ.

For all experiment runs, the job QoS timing constraint
is set to be 1000 milliseconds and the time interval is set to
be every 100ms. The average task duration for simulator
configuration is 700 milliseconds. When changing one
factor of interest, the other two remain the same value. For
system environmental factor, this default setting is 50
homogenous servers; for task attribute factor, default job
will be set with 90 tasks and each of which require 0.3
CPU cores and memory ability; for the algorithm

7

TABLE 3. Algorithm parameter experiments results

Algorithm Threshold Performance

Progress

Wight ߙ

Utilization

Weight ߚ

CPU

Standard ߮

Memory

Standard ߱

Calculation
Method

Response Time (time interval 100ms) Replica Number

Worst Case Best Case Average Worst Case Best Case Average

0.5 0.5 0.4 0.4 Static(1.5) 1100 900 960 5 3 4.4
0.5 0.5 0.4 0.4 Dynamic 1000 900 940 4 3 3.2

0.5 0.5 0.5 0.5 Static(1.5) 1100 900 980 4 3 3.8

0.5 0.5 0.5 0.5 Dynamic 1000 800 860 4 3 3.6

0.5 0.5 0.6 0.6 Static(1.5) 1000 800 900 5 3 4.2
0.5 0.5 0.6 0.6 Dynamic 1000 700 840 5 4 4.6

0.3 0.7 0.5 0.5 Static(1.5) 1100 900 980 4 3 3.8

0.3 0.7 0.5 0.5 Dynamic 1000 900 980 3 3 3

0.7 0.3 0.5 0.5 Static(1.5) 1000 900 940 4 3 3.8

0.7 0.3 0.5 0.5 Dynamic 900 900 900 4 3 3.6

Figure 4. Average job response changing with total required capacity

Figure 5. Average replica number changing with total required

capacity

500

700

900

1100

1300

14 24 34 44 54 64 74 84 94 104 114 124 134

dynamic threshold static threshold

A
v
erag

e resp
o
n

se tim
e

(m
s)

Total required capacity (%)

1

3

5

7

14 24 34 44 54 64 74 84 94 104 114 124 134

dynamic threshold static threshold

R
ep

lica n
u

m
b

er g
en

erated

Total required capacity (%)

parameters, 0.5 is the configured value for Į, ȕ, ĳ and Ȧ.

B. Evaluation

We demonstrate the effectiveness of our dynamic time
threshold calculation in straggler-tolerant systems in two
aspects: 1) performance analysis and 2) parameter
sensitivity analysis. The first part studies job timing
improvement and resource saving improvement, using the
job response time and replica number as the primary
matrix. The second part studies algorithms effectiveness
under different operational and environmental conditions.
Our evaluation demonstrates the following:

 The dynamic time threshold can improve job
completion and decrease timing failure occurrence, as
well as saving resource under high utilization scenarios
by generating fewer replicas. As shown in Tables 1-3, the
dynamic algorithm can reduce response time up to 17.86%
on average across all experiment cases compared to a static
threshold. The improvement is represented by the speedup
of the job execution calculated as follows:

݁ݒ݋ݎ݌݉ܫ ൌ ஽௬௡௔௠௜௖݊݋݅ݐݑܿ݁ݔܧܾ݋ܬ െ ௌ௧௔௧௜௖݊݋݅ݐݑܿ݁ݔܧܾ݋ܬௌ௧௔௧௜௖݊݋݅ݐݑܿ݁ݔܧܾ݋ܬ ሺͳͲሻ
Fig.4 presents the changing trend of average response

time of dynamic threshold and static ones respectively
among different required system capacity (ranging from
14%, the first test case in Table 2 where a job only consists
of 10 tasks that each require 0.3 CPU and memory
capacity, to 135%, the first test case in Table 1 where the
cluster has 20 servers). The required capacity exceeds 100%
representing current available resource is less than
required, hence tasks would wait till there is sufficient
resource for execution. From this figure it is observable
that dynamic threshold can improve job response time up
to 17.86%, and reduce up to 10.58% timing constrain
violations. This improvement is due to the algorithm
altering the time threshold in accordance to meeting the
specified job QoS.

The algorithm sensitivity is driven by resource
utilization level, task progress phase and input variable
settings. It is observable from the tables that the replica
number created varies dependent on different resource
utilizations. When resource utilization is high, the dynamic
threshold will produce less task replicas, most notably for
case �server number 20� in table 1 and the case �task
number 90, requirements 0.7� in table 2. On the other hand,
when the system is idle (i.e., low resource usage, resource
required below the standard set by ߮ and ߱), the dynamic

method will proactively generate more replicas to pursue
higher response time. Through Fig. 5 we see that the
dynamic algorithm will decrease replica generation when
there is an increase in task resource requirement, while the
static method exhibits an opposite trend. This is due to the
dynamic method considering the cost of creating
speculations, as higher cost leads to stricter time threshold.

In terms of environmental factors, Fig. 6 demonstrates
how the time threshold changes over the execution
lifecycle of a job. Although different required resource
capacity experience different variability in threshold value
changes (for example in 6(a) and 6(b), the vibration is
much shaper in order to control the number of replicas
under high contention situations), there are still some
similar trends: in the middle of the job�s execution phase,
all four experiment cases experience a decrease change,
as during this time period tasks begin to complete and
release resources, and when the job approaching its late
phases, all dynamic values in Fig. 6 (a) to (d) exhibit a
similar increase trend to avoid needless speculation when
the probability of a replica to outperform the original
straggler is low. In addition, when changing the input
variables of weight parameters and standard parameters,
the algorithm will generate different time threshold value
for same conditions.

VII. CONCLUSION

8

Service providers use SLAs to define the agreed terms
of service they should meet whilst service users use it to
ensure that the agreed QoS has been fulfilled. However,
straggler tasks within a parallel job can significantly
prolong service response since all the siblings need to wait
for the outcome of the last task before the job finishes. The
current state-of-the-art straggler mitigating method is
speculative execution, which creates replicas for all
identified stragglers. Threshold is the key concept used in
defining to what extent a task can be identified as a
straggler.

In this paper, we have developed a time threshold
calculation method for straggler-tolerant systems that for
the first time dynamically adapts to different job types and
system conditions in order to improve job performance.
Our conclusions are as follows:
� A dynamic threshold calculation mechanism is an

effective means to enhance straggle-tolerant systems
that improves job completion. While current methods
identify task stragglers using static time threshold
defined as 50% greater than average task execution,
our approach allows for an automated dynamic time
threshold calculation that captures job QoS, system
resource usage level, and task progress. Our findings
demonstrate that dynamic technique can further
improve job completion by a factor up to 17.86%
compared to static methods.

� Replica number trade-offs exist among different level
of resource utilization scenarios. Improving job
execution by speculation and saving resource can be a
conflict of interest. Experiments conducted when
comparing dynamic approach against current static
approaches under different operational conditions
demonstrate that our approach creates 58.62% less
replicas while still adhering to QoS timing
requirements under high utilization. In contrast, under
low resource utilization cases, the dynamic threshold
calculation method proactively generates more
replicas to achieve a much quicker response time.
Future work includes the integration of our approach

into other established Long Tail tolerance techniques
besides basic speculative speculation to discover whether
substantial gains in job completion timeliness and
fulfillment of service QoS can be achieved. Furthermore,
there is an opportunity to extend our approach by
exploring other factors through designing a cost function
beyond CPU and memory utilization, including disk
volume and network speed.

ACKNOWLEDGMENTS

The work is supported in part by the National Basic
Research Program of China (973) (No.2011CB302602),

and the U.K. EPSRC WRG platform project (No.
EP/F057644/1).

REFERENCES

[1] Dean J, Ghemawat S. "MapReduce: simplified data processing on
large clusters", Communications of the ACM, 51(1), 2008, pp.
107-113.

[2] Patel P, Ranabahu AH, Sheth AP. "Service Level Agreement in
Cloud Computing", Cloud Workshops at OOPSLA, 2009.

[3] Avi�ienis A, Laprie JC, Randell B, Landwehr C. "Basic concepts
and taxonomy of dependable and secure computing", IEEE
Transactions on Dependable and Secure Computing, 1(1), 2004,
pp. 11-33.

[4] García-Valls M, Cucinotta T, Lu C. "Challenges in real-time
virtualization and predictable cloud computing", Journal of
Systems Architecture, 60(9), 2014, pp. 726-740.

[5] Zaharia M, Konwinski A, Joseph AD, Katz RH, Stoica I.
"Improving MapReduce Performance in Heterogeneous
Environments", In OSDI, 2008, vol. 8, no. 4, p. 7.

[6] Google. Google Cluster Data V2. Available:
https://github.com/google/cluster-data.

[7] Reiss C, Wilkes J, Hellerstein JL. "Google cluster-usage traces:
format+ schema", Google Inc., Technical Report, 2011.

[8] Garraghan P, Ouyang X, Townend P, Xu J. �Timely Long Tail
Identification Through Agent Based Monitoring and Analytics�, In
ISORC, 2015, pp. 19-26.

[9] Dean J, Barroso LA. "The tail at scale", Communications of the
ACM, 56(2), 2013, pp. 74-80.

[10] Ananthanarayanan G, Kandula S, Greenberg AG, Stoica I, Lu Y,
Saha B, Harris E. "Reining in the Outliers in Map-Reduce Clusters
using Mantri", In OSDI, 2010, vol. 10, no. 1, p. 24.

[11] Ananthanarayanan G, Ghodsi A, Shenker S, Stoica I. "Effective
Straggler Tolerance: Attack of the Clones", In NSDI, 2013, Vol. 13,
pp. 185-198.

[12] Kwon Y, Balazinska M, Howe B, Rolia J. " Skewtune: mitigating
skew in mapreduce applications", in Proceeding of ACM SIGMOD
International Conference on Management of Data, 2012, pp. 25-36.

[13] Rosen J, Zhao B. "Fine-Grained Micro-Tasks for MapReduce
Skew-Handling", White Paper, University of Berkeley, 2012.

[14] Garraghan P, McKee D, Ouyang X, Webster D, Xu J. "SEED: A
Scalable Approach for Cyber-Physical System Simulation", IEEE
Transactions on Services Computing, 2015.

[15] Moreno IS, Garraghan P, Townend P, Xu J. "Analysis, modeling
and simulation of workload patterns in a large-scale utility cloud",
IEEE transaction on Cloud Computing, 2014, vol. 2, no. 2, pp.
208-221.

[16] Zhang Z, Li C, Tao Y, Yang R, Tang H, Xu J. "Fuxi: a Fault-
Tolerant Resource Management and Job Scheduling System at
Internet Scale", Proceedings of the VLDB Endowment, 7(13),
2014, pp. 1393-1404.

[17] Kumar U, Kumar J. "A Comprehensive Review of Straggler
Handling Algorithms for MapReduce Framework", International
Journal of Grid and Distributed Computing, 7(4), 2014, pp. 139-
148.

11
00

10
0090

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0

2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0

Time elapsed

T
h

re
sh

o
ld

 v
a

lu
e

11
00

10
0090

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0

2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0

Time elapsed
T

h
re

sh
o
ld

 v
a

lu
e

11

00

10
0090

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0

2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0

Time elapsed

T
h

re
sh

o
ld

 v
a

lu
e

11

00

10
0090

0
80

0
70

0
60

0
50

0
40

0
30

0
20

0
10

0

2.1
2.0
1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1
1.0

Time elapsed

T
h

re
sh

o
ld

 v
a

lu
e

 (a) (b) (c) (d)

 Figure 6. Threshold value change trend under cases with task number = 90, requirement = 0.3 for (a) 20 servers, (b) 40 servers, (c) 60 servicers, (d) 80 servers.

