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Abstract— The ability of servers to effectively execute tasks 
within Cloud datacenters varies due to heterogeneous CPU and 
memory capacities, resource contention situations, network 
configurations and operational age. Unexpectedly slow server 
nodes (node-level stragglers) result in assigned tasks becoming 
task-level stragglers, which dramatically impede parallel job 
execution. However, it is currently unknown how slow nodes 
directly correlate to task straggler manifestation. To address 
this knowledge gap, we propose a method for node performance 
modeling and ranking in Cloud datacenters based on analyzing 
parallel job execution tracelog data. By using a production 
Cloud system as a case study, we demonstrate how node 
execution performance is driven by temporal changes in node 
operation as opposed to node hardware capacity. Different 
sample sets have been filtered in order to evaluate the generality 
of our framework, and the analytic results demonstrate that 
node abilities of executing parallel tasks tend to follow a 3-
parameter-loglogistic distribution. Further statistical attribute 
values such as confidence interval, quantile value, extreme case 
possibility, etc. can also be used for ranking and identifying 
potential straggler nodes within the cluster. We exploit a graph-
based algorithm for partitioning server nodes into five levels, 
with 0.83% of node-level stragglers identified. Our work lays 
the foundation towards enhancing scheduling algorithms by 
avoiding slow nodes, reducing task straggler occurrence, and 
improving parallel job performance. 

Keywords- Stragglers; Node Performance; Clusters;  Tracelog 
Data Analysis; Modeling; Ranking 

I.  INTRODUCTION 

Modern day Cloud datacenters are composed of thousands 
of heterogeneous server nodes to provide computing services 
globally [1]. These nodes are composed of different 
characteristics including resource capacity (CPU, memory, 
disk, etc.), architecture, and operational age. These physical 
heterogeneities combined with changing resource utilization 
patterns and multi-tenancy [2] result in diverse task execution 
performance at given time for each node within the system.  

The response time of services is critical for both Cloud 
providers and users. For providers, jobs which take longer to 
complete result in system performance degradation and 
increased resource waste, causing financial loss and decreased 
user satisfaction. For users, additional response time results in 
potential Quality of Service (QoS) [3] violations with respect 
to timing constraints. Parallel computing models such as 

MapReduce [4] and Hadoop [5] divide jobs into multiple tasks 
for performing a subset of computation. Although these 
models attempt to evenly split computation based on input 
data size to achieve similar completion times across all tasks, 
in practice tasks will exhibit different execution durations as a 
result of being assigned to different nodes. This is important 
within the context of task-level stragglers, defined as parallel 
tasks which experience abnormally longer execution in 
comparison to sibling ones, and node-level stragglers defined 
as server nodes that exhibit poor performance regarding task 
execution, leading to higher task straggler occurrence and 
susceptibility. In this paper, node execution performance is 
defined as the measurement of effective task execution within 
a node in the presence of task stragglers. 

This straggler problem for parallel jobs increasingly 
manifests itself within distributed systems as scale increases 
[6], significantly impedes overall parallel job completion, and 
debilitates service response time, causing economic loss and 
degraded system performance and availability. There have 
been concentrated efforts toward addressing these issues, 
ranging from task straggler analysis [6][16] to mitigation [9-
15][18]. Effective approaches for the latter include server 
blacklisting [17], which attempts to assign tasks to nodes that 
do not exhibit poor performance in order to reduce task 
straggler occurrence, and speculative execution [5] which 
launches replica copies for task stragglers on different nodes 
in an attempt to outpace the original task. However, these 
approaches assume that slow nodes are static [9][13] (i.e. 
server execution performance will constantly be poor), while 
in practice server execution performance can be transient due 
to diverse resource utilization driven by user demand. Such a 
characteristic is important to consider in order to inform the 
scheduler concerning alterations to node performance at run-
time. Furthermore, there is presently a lack of comprehensive 
methods for modeling slow nodes that are capable of 
capturing node execution performance that can be applied 
generally to Cloud datacenters. 

This paper proposes a method for modeling and ranking 
node performance to determine the likelihood of straggler 
manifestation within Cloud datacenters. This is achieved 
through analyzing historical data within a configurable time 
window. The outputs of such work can be further integrated 
into straggler mitigation techniques such as intelligent 
speculation [10]. Our contributions are summarized as follows: 
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 .A method for modeling node execution performance ࡳ
We describe in detail a model framework that can 
analyze nodes’ task execution performance in the 
presence of stragglers, including execution data 
extraction and normalization, distribution fitting, 
indicator selection and ranking. 

 .An approach for node-level straggler detection ࡳ
Through ranking, our framework can classify server 
nodes into different performance levels and identify 
the weakest node-level stragglers within a system. This 
is important for improving blacklisting and speculation 
efficiency when dealing with stragglers. 

 New insights into node-level straggler manifestation ࡳ
within production Cloud datacenters. We have 
evaluated our method using production data from a 
Google datacenter [7][8]. From our results, we are able 
to gain new insight demonstrating the transient nature 
of execution performance within datacenter nodes.  

The paper is structured as follows: Section 2 presents the 
straggler problem background and related work; Section 3 
illustrates the node performance modeling and ranking 
framework; Section 4 discusses the case study data and the 
methods of extracting MapReduce task information, while 
Section 5 presents the analysis findings using the model; 
Section 6 discusses conclusions and future work. 

II. RELATED WORK 

Frameworks such as MapReduce decompose jobs into 
multiple tasks which are executed across numerous nodes in 
order to achieve better performance through parallelization. 
However, these frameworks still face challenging problems 
toward effective execution within large-scale clusters. The 
Long Tail problem [6] is one example of such a challenge, 
characterized as a small subset of parallel tasks performing 
much slower (defined as task-level stragglers) in comparison 
with other tasks in the same job, therefore incurring a 
significant delay towards final job completion. Figure 1 
depicts task execution patterns within jobs of varying sizes 
from a Google production cluster [7][8]. It is observable that 
the Long Tail problem manifests within different sizes of jobs. 
For example, in Fig. 1(a-c) the slowest task is approximately 
2.5 slower to complete in comparison with the average.  Fig. 
1(d) demonstrates job containers with no stragglers, with the 
majority of tasks completing in approximately the same time 
frame. Task-level stragglers can stem from numerous causes 
including hardware heterogeneity [10], resource contention 
[11], background network traffic [12], I/O discord [13], data 
skew [14] and OS or application-level related sources [15]. 

There are numerous works that analyze the impact of task-
level stragglers on system performance from the application 
perspective: for example, Jeffrey et al. [6] demonstrate that the 
slowest 5% of completed requests are responsible for half of 
the total 99th percentile latency. That work also discusses the 
positive correlation between straggler probability and cluster 
size, concluding that the probability of longer latency 
increases within larger system scales. 

Ananthanarayanan et al. [12] show that 80% of task 
stragglers have a uniform probability of delay between 150%-
250% compared to the median task duration, with 10% 
exhibiting a delay 1000% greater than median task duration.   

Garraghan et al. [16] analyze two production Cloud 
datacenters and demonstrate that less than 5% and 3% of task 
stragglers negatively impact between 35% and 59% of total 
batch jobs within two production Cloud datacenters. From 
these results they propose a task straggler identification 
system that combines both historical and online analytics. 

There exist primarily two methods for mitigating task- 
level stragglers: server blacklisting [17] and speculative 
execution [5]. Server blacklisting is performed by the 
scheduler maintaining a blacklist of nodes within the cluster 
(such as detailed in Fuxi [23] or by modifying the mapred-
site.xml for Hadoop). This results in tasks never assigned to 
such nodes until list removal. The effectiveness of this 
approach is dependent on correctly detecting faulty nodes for 
blacklisting, otherwise, the system capacity will be degraded 
due to false positives. Furthermore, current practice assumes 
that weak nodes are known by the system administrator, and 
that server performance will remain stable. This is not always 
the case, making it increasingly infeasible to conduct such 
manual configuration for clusters comprising thousands of 
nodes, and such static configuration is unable to capture 
accurate node performance.  

Speculative execution [5] monitors the execution of each 
task and will launch speculative replicas for identified task 
stragglers with the assumption that it will complete prior to 
the original straggler. There exist numerous techniques which 
extend this method in terms of specified cases such as a 
heterogeneous nodes environment [10] and small jobs 
execution (less than 10 parallel tasks)[18]. While these works 
are effective in minimizing the impact of task stragglers 
within the system, they are mainly focused on selecting the 
best task candidates to make replicas and ignore the impact of 
poor node-level straggler performance. This is particularly 
important in avoiding the scheduling of speculative replicas 
onto these straggler nodes, leading to decreased likelihood of 
the replica completing prior to the task straggler. In this case, 

   
                         (a)                       (b)            (c)                                            (d)  

     Figure 1.  Task duration pattern of (a) job 6336907144, (b) job 6336143870, (c) job 6335538471, (d) job 6301092750 from Google trace 
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speculation results in limited improvement in job performance 
as well as increased resource overhead. 

In terms of determining the effective placement of replicas 
on nodes, Chen et al. [13] consider both data locality and data 
skew to develop a cost benefit model based on the cluster load. 
Yadwadkar et al. [9] develop a system to proactively avoid 
stragglers by analyzing a production trace and perform 
regression using node level statistics. This system periodically 
produces correlations between node level status and task 
execution times in the form of decision trees, enhancing 
scheduler policy making when determining which node to run 
the replica in order to minimize overall job execution. 

While these methods leverage the concept of applying data 
analytics to identify weak nodes effectively, they each assume 
that poor node performance is a static characteristic that 
remains constant within the cluster, and is determined by node 
capacity. In reality, the execution performance of a node 
fluctuates over time due to factors such as resource contention 
level, workload heterogeneity and user demand. This has been 
studied in [2] demonstrating that there exists dynamicity in 
system conditions within clusters driven by diverse users and 
tasks execution profiles. 

III. FRAMEWORK FOR MODELING AND RANKING NODE 

EXECUTION PERFORMANCE  

Before introducing our framework, it is necessary to 
define key concepts in our research. The scheduler is 
responsible for assigning jobs into the Cloud datacenter 
which comprise M server nodes. Job j contains N subtasks 
running in parallel on multiple nodes where ݏܽݐ ௝݇௜  represents 
the ݅௧௛  task belonging to job ݆ (݅ ൑ ܰ). It is assumed that 
subtasks exhibiting non-straggler behavior share similar 
response times (for example, all map tasks of a certain 
MapReduce job have similar execution lengths due to 
identical block size).  

The duration of ݏܽݐ ௝݇௜  is defined as the time between 
scheduling and completion, represented as ݐ௝௜. Task stragglers 
refers to those with ݐ௝௜ ൐ ݄ܶ ௝ଵǡݐ൫݃ݒܣ=ఫഥݐ ఫഥ, whereݐ כ ௝ଶǡݐ ǥ ǡ ௝௡൯ݐ ൌσ ௝௜௡௜ୀଵݐ ݊Τ Ǥ Th represents a specific threshold for task straggler 
identification. In most literature pertaining to stragglers, this 
threshold is typically configured to a value of 1.5 (i.e. tasks 
whose execution is 50% greater than the average execution 
of tasks within the same job) [10][14][18], while [19] 

proposes a dynamic threshold calculation algorithm to define 
task stragglers in accordance to workload type and cluster 
resource usage.  

A. Overall Framework 

The framework consists of four steps as shown in 
Algorithm 1 and Figure 2: (i) Execution Normalizer within 
Application Master calculates normalized task duration 
respective to job execution, (ii) Model Builder within Node 
Manager is responsible for calculating the probability 
distribution models of execution performance for each node, 
(iii) Indicator Calculator is responsible for selecting 
statistical properties to indicate node ability in turns of 
parallel job execution, and (iv) the Node Ranking component 
will produce a rank order list of all system nodes to determine 
susceptibility to stragglers. This framework can be readily 
integrated into current 2-tier Cloud resource managers such 
as Yarn [24] as shown in Figure 2, leveraging data typically 
recorded in system operation, including task start and 
completion timestamps, job and task identifiers, and server 
node ID. Therefore, it results in minimal burden upon the 
system due to no need for additional monitoring and data 
extraction. The following sections introduce each of the 
phases in detail.  

B. Task Duration Normalization 

Node-level straggler detection is performed by studying 
task execution performance on a per node basis. However, as 
Cloud datacenters are composed of heterogeneous workload 
characteristics [2], it is challenging to directly compare job (by 
extension task) performance across the entire system. On the 
other hand, the relative task durations (compared to its job 
average) can be used to study a tasks’ progress in comparison 
to its own siblings. As a result, the first step of the framework 
is to use z-score normalization across all tasks duration ݐ௝௜ to 
generate ݐఫప෩ by using equation (1). 

ఫప෩ݐ                                     ൌ ௧ೕ೔ି௧ണഥఙೕ                                              (1) 

Algorithm 1. Operation of Model Framework 

Inputs: 
Quintuple ݁ ൌ ൏ ௦ǡݐ ௘ݐ ǡ ௧௔௦௞ܦܫ ǡ ௝௢௕ܦܫ ǡ ௠௔௖௛௜௡௘ܦܫ ൐    

 ݐ௦ , ݐ௘ – task start / end time 

 ܦܫ௧௔௦௞ ௝௢௕ܦܫ ,   ௠௔௖௛௜௡௘ – task ID, job ID this taskܦܫ  , 
belongs to, and machine ID this task runs on   

1. For each ݁ from filtered trace data 

 (݁) NormalizedExecutionValue = ߤ     .2
3.     ߱ ൌ ൏ ௧௔௦௞ܦܫ ǡ ௝௢௕ܦܫ ǡ ௠௔௖௛௜௡௘ܦܫ ǡ ߤ ൐ 

4. For each ߱ 

5.      ɔ ൌ ൏ ௠௔௖௛௜௡௘ܦܫ ǡ ߤ ൐  

6. For each ܦܫ௠௔௖௛௜௡௘  
7.       ݂ = BestFitDistribution (ɔ) 
ܫ       .8 ൌ TargetAbilityIndicator (݂) 

9. Rank (ܫ) 
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where ߪ௝ ൌ ௝ଵǡݐ൫ݒ݁ܦݐݏ ௝ଶǡݐ ǥ ǡ ௝ݐ ௝௡൯ is the standard deviation ofݐ . The normalized value ݐఫప෩  reflects the relative speed of ݏܽݐ ௝݇௜  compared to other sibling tasks within job ݆. ݐఫప෩ ൐ Ͳ 
signifies ݐ௝௜  is larger than the average job execution time, 
therefore ݏܽݐ ௝݇௜  is a slow task within this job. A larger value 
of ݐఫప෩ represents more severe straggler behavior in ݏܽݐ ௝݇௜. This 
makes it possible to compare the performance of tasks 
irrespective of job heterogeneity.  

For every node ܯ , the normalized execution value for 
assigned tasks can be used to analyze its performance in terms 
of task execution ability. For example, if the majority of tasks 
assigned onto a node are always the slower ones (with a 
positive normalized value indicating longer execution than 
their own average) for different jobs, this reflects poor node 
execution performance compared to other nodes within the 
system. In contrast, if most of the normalized values assigned 
onto the node are negative, this represents that tasks assigned 
tend to execute faster, demonstrating strong node execution 
performance. Therefore, it is necessary to form a data file 
consisting of the following sextuples for each node in order 
to analyze its performance model:  ൏ ௦ǡݐ ௘ݐ ǡ ௧௔௦௞ܦܫ ǡ ௝௢௕ܦܫ ǡ ௠௔௖௛௜௡௘ܦܫ ǡ ௧݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൐   

This records start time of a task, end time of a task, task ID, 
job ID, machine ID and task normalized value as the input to 
enable the analysis. 

C. Best Fit Distribution for Node Execution Performance  

 The normalized task duration is used in order to construct 
probabilistic models of execution performance for tasks 
within each server node in order to ascertain the likelihood of 
task straggler occurrence.   

There exist numerous Goodness of Fit (GoF) tests 
designed for different data characteristics including chi-
square, Kolmogorov-Smirnov (KS) and Anderson-Darling 
(AD) [20, 21]. For our analysis, AD test is adopted as it places 
greater emphasis towards tailing data distributions. Figure 3 
shows an example result of distribution fit for the node with 
ID 4820223869 in Google. In this case, 9 different 

distributions have been tested, including 3-parameter 
Lognormal, Normal, 2-parameter Exponential, 3-parameter 
Weibull, Smallest Extreme Value, Largest Extreme Value, 3-
parameter Gamma, Loglogistic and 3-parameter Loglogistic. 
Figure 3 (a) lists the top four best fits, among which 3-
parameter Loglogistic distribution represents the best 
accuracy due to a lower AD value (CDF fitting is given in 
Figure 3 (b)).   

D. Target Indicator of Node Execution Performance 

 The distribution function constructed for each node is 
used to derive the statistical properties of node performance 
and susceptibility to task straggler behavior. The indicator 
used to capture this behavior includes the mean value, 
standard deviation, confidence interval, quantile points, and 
extreme value possibility, with each reflects different 
analysis objective. For example, standard deviation describes 
the stability of the node execution performance, while 
extreme value possibility represents the task straggler 
occurrence probability. Table 1 lists representative attributes 
and their corresponding meanings for reference. 

 Under cases when the confidence interval is chosen as the 
indicator of interest, it provides information that, for all tasks 
assigned onto this node, there is a confidence (e.g. 95%) to 
believe their normalized durations will fall within a specified 
interval. This is necessary to determine the optimal placement 
of tasks into nodes under the presence of stragglers; therefore 
in the following analysis, the indicator confidence interval 
will be adopted.  

Table 1 Indicator Candidates and Corresponding Meanings 
Indicator Meaning 

Mean  
Value 

The possible normalized execution value for tasks 
assigned onto this node 

Standard 
Deviation 

The normalized task execution value on this specific 
machine is stable or random 

Confidence 
Interval 

The possible normalized execution value assigned 
will between a certain interval 

Extreme 
Value 

Possibility 
The task straggler possibility for this machine. 

Quantile 
Value 

Describes the normalized value for most tasks been 
assigned onto that specific node 

             
                                                      (a)                                                                                                         (b)           

     Figure 3. (a) Top four best fitting distribution for node 4820223869 (b) 3-parameter loglogistic CDF fitting 
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E. Ranking 

The final step of the framework is to determine a rank 
order of the indicator values to classify node performance in 
order to categorize and identify node-level stragglers. There 
exist numerous ranking algorithm candidates which can 
leverage indicators presented in Table 1. If value-type 
indicators have been chosen (i.e. mean, deviation, quantile 
points and extreme value possibility), the ranking is relatively 
straight forward. If an interval-type indicator has been 
chosen, such as confidence interval, a graph based ranking 
algorithm can be adopted. 

In this paper, we use the P-Cores algorithm [25] to deal 
with confidence interval indicator by constructing a directed 
acyclic graph (DAG). The nodes in the DAG represent 
servers within the cluster. If [A1, B1] represents the 
confidence interval execution performance of Node 1 and 
[A2, B2] represents the confidence interval of execution 
performance of Node 2, there will be an edge from Node 1 to 
Node 2 only when the condition A2>B1 stands (as shown in 
Figure 4). The next step is to remove nodes that do not 
contain an outward edge (as they represent the weakest nodes 
within the graph) until there are no nodes remaining. The time 
on which the node is been deleted is subscribed as the level 
this machine should be classified to. In other words, level 
zero nodes represent the worst execution performance as they 
contain the largest confidence interval value, and were 
removed within the first iteration. P-cores only demonstrates 
one such ranking algorithm within this framework, and can 
be substituted by other means if required. 

This framework can be easily integrated into current 
implementations such as Hadoop. As long as the ranking 
result has been generated, the only modification required for 
system implementation is to re-modify the node health 
checker condition. This allows for the core system scheduler 
code to remain unattached and the node performance can be 
easily adopted by existing scheduling algorithms. 

IV. CASE STUDY BASED ON PRODUCTION TRACELOG 

DATA 

The proposed framework was applied to a Google 
datacenter publicly available at [7][8] to demonstrate its 
effectiveness. As different providers typically have bespoke 
methods for collecting and structuring produced system data, 
we will first detail the semantics, data formats and schema of 
the case study. We will then describe the filtering and 
sampling process. 

The tracelog of the case study system comprises 29 days 
operation detailing job/task behavior within a Google cluster 
consisting of 12,583 server nodes that share a common cluster 
management system. Work arrives at this cluster in the form 
of jobs that comprises several tasks, and a task is represented 
as a Linux program that executes on a single node.  

There are four tables within the tracelog that relate to our 
research objectives.  The machine events table details server 
status (i.e. whether it has been added, removed, or modified 
within the cluster). The job events and task events tables 
record information pertaining to job/task status (un-submitted, 
pending, running, dead) expressed through recorded events 

(submit, schedule, kill, evict) at specific timestamps. The task 
usage table gives information of the start/end time of each 
individual task as well as the specific placement onto servers. 
Usually, all tasks within a job execute exactly the same binary 
code with the same options and resource request. The dataset 
is voluminous (approximately 400GB in size unzipped), and 
contains traces of 672,074 jobs composed of 25,228,174 tasks. 
As a result, it is important to filter out noisy information and 
properly decide suitable target jobs to conduct the analysis.  

A. Data Pre-processing 

It has been identified that the cluster contains numerous 
application types including batch, latency sensitive, gratis and 
system monitoring jobs. In our analysis, we focus on 
MapReduce jobs - a representative job type that containing 
subtasks which exhibit similar completion times. For example 
in Hadoop system, the default data block size settings is 64MB, 
and map tasks are automatically generated based on input data 
size; they will, therefore, have similar completion times. 
However, due to commercial confidentiality, Google does not 
reveal precise information concerning specific job types. In 
order to extract MapReduce job data, three filter conditions 
have been applied. 

1) Identify parallel jobs  
The first condition is to identify jobs which execute tasks 

in parallel. Task number is used to design this filter, and the 
ones that have more than two tasks submitted at the same time 
are been extracted out. This is possible by studying the 
timestamps of job and task submissions and completions, as 
well as using the right SQL query to select corresponding 
jobID with multiple taskIDs. 

2) Determine production jobs  
Tasks within the cluster are assigned priorities ranging 

between 0 and 11 for lowest and highest scheduling priority, 
respectively, indicated in job events table. According to 
documentation [8], production tasks including batch job 
processing and latency sensitive tasks are with priority from 2 
to 9, monitoring are 10 to 11, and gratis tasks are 0 to 1.  

3) Extract MapReduce jobs 
Unlike the former two conditions that have explicit 

relating attributes, filtering out jobs that exhibit MapReduce 
characteristics used two additional hypotheses in our work. 
First, according to [8], the attributes “job name” and “logical 
job name” within the job events table, both of which are 
opaque base 64-encoded strings that have been hashed to hide 
sensitive information, can be used. Unique job names are 
generated by automated tools to avoid conflicts, however, the 
job names generated by different executions of the same 
program will usually have the same logical name. [8] points 

[1.2, 1.8][0.1, 0.9]  
Figure 4.  DAG edge example 
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out that MapReduce is an example of this kind of application 
that frequently generates unique job names with identical 
logical names. Second, the attribute named “username” can 
also assist towards identifying MapReduce jobs. Usernames 
in this trace represent services run on top of the Google Cloud 
cluster, and jobs executing under the same username are likely 
to be part of the same external or internal service. When a 
single program runs multiple jobs, such as master job and 
worker job spawned by the same MapReduce, those jobs will 
almost always run as the same user.  

After filtering, the total target job size is reduced to 92,848 
with 10,894,461 tasks for analysis. Importantly, since no 
biased selections have been conducted towards node type, the 
influence brought by eliminating additional tasks is applied 
equally to all nodes, therefore, there should be no imbalance 
that will lead to unreliable node performance result.  

B. Node Sampling 

As there are over 12,500 server nodes within the cluster, 
it is beneficial to perform sampling in order to conduct in-
depth analysis of node execution performance that accurately 
reflects the general characteristics of the whole cluster. There 
exist four primary types of server nodes within this cluster, 
with each type reflecting different physical capacities in 
dimensions of CPU cores and RAM size as shown in Table 2. 
We conduct systematic sampling based on the number of 
tasks assigned to the nodes. The minimum value of the 
sample set that retains a 5% margin of error to the whole 
population is 132 after applying Minitab (statistical software 

similar to SPSS) sample size calculation function. By making 
a random selection from each server type to generate the 
corresponding number of nodes, we generate the final target 
set which consists nodes that remain the same server type 
proportion. Furthermore, in order to minimize the error 
brought by sampling, two different sets have been selected to 
perform both modeling and validation.  

V. MODEL EVALUATION 

This section evaluates the framework’s effectiveness for 
determining a node’s performance and its susceptibility to 
straggler behavior, performed through experiments and data 
analytics.  

A. Distribution Modeling 

Figure 5 illustrates four examples of node performance 
distributions of individual server nodes when applying the 
proposed framework. Within the time the data covered, it is 
observable that the normalized execution data on nodes with 
ID (a) 672206, (b) 554297904, and (d) 4820223869 follow a 
relatively normal distribution, with approximately same 
positive and negative values, indicating an average node 
performance regarding to its ability of executing tasks, while 
node (c) 257336015 has more negative values, representing a 
better performance. 

When modeling the distribution of nodes execution 
performance within the derived samples described in Section 
4, it is shown that among the 132 machines, 112 and 117 have 
3-parameter loglogistic as their best fit (84.85% and 88.64%), 
and all of them include this distribution in their top three.  

B. Node Execution Performance 

1) Relationship with physical capacity 

In order to explore whether the assumption adopted by most 
current literature claiming that higher node capacity always 
results in better execution performance is valid, we conduct 
several analyzes. The first sample set is applied as the input 
for the framework, with mean value selected as the indicator 
of interest to analyze nodes performance regarding tasks 
execution. We group the nodes’ execution performance 
results in accordance with four server types described in Table 
2. When expressed as a boxplot as shown in Figure 6(a), it is 
observable that server 4 nodes tend to exhibit larger 
normalized execution values, while values for server type 2 
nodes all fall below zero, signifying most tasks run on this 
server category execute quicker than their own average. 
Figure 6(b) illustrates the result that takes the second sample 
set as the input for the framework with extreme value 
possibility as the indicator, and nodes still categorized 

     
                         (a)                         (b)            (c)                                            (d)  

     Figure 5.  Normalized value frequency for machine (a) 672206, (b) 554297904, (c) 257336015, (d) 4820223869 from filtered trace data 
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Figure 6. Box plot of (a) mean normalized value result (b) extreme value 

possibility result for each group in Google cluster 

   
     (c)  Box plot of  normalized execution value for each VM in experiment 
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depending on the four server types to summarize their 
performance. This analysis indicates similar results with the 
first sample set, that the ranking of the overall nodes execution 
performance is S2 > S1 > S3 > S4. However, the server node 
capacities actually have an opposite ranking, with capacity(S2) 
< capacity(S1) < capacity(S3) < capacity(S4). 

 To test whether this negative correlation exists within 
other environments, we executed MapReduce jobs on top of 
a test cluster consisting of 9 VMs (one Namenode and eight 
Datanodes), using Hadoop 2.5.2 integrated with Hive 1.0.1 
[22]. The CPU and memory capacities configured for 
workers are detailed in Table 3. The Hive queries are 
automatically transformed into MapReduce jobs that 
commence execution. For our experiment, four types of 
queries have been tested on different data sizes, including 
“select”, “count”, “group by”, and “load data”. By collecting 
these newly generated job completion logs from the VMs and 
making them inputs for our framework, we ascertain the node 
execution performance per machine ID shown in Figure 6(c). 
We observe that the relationship between node capacity and 
its execution performance exhibits a positive correlation, 
differing from the Google analysis result. 

From above analysis, we demonstrate that node capacity is 
not the only factor that decides node performance regarding 
task execution. In some situations, a larger capacity can 
actually have worse execution performance for reasons such 
as different architecture, load, utilization or even year of 
purchase. Therefore, the assumption of simple proportional 
correlation between a node’s capacity and its execution 
performance requires restructuring. Our framework uses task 
execution data itself to analyze node performance, and is 
capable of accurately identifying weak nodes. 

2) Temporal patterns of node execution performance  

 Another assumption adopted by most straggler related 
literature is that node execution performance is a static 
attribute of servers that will remain constant for long periods 
of time. However, this assumption breaks down in real 
systems due to reasons including utilization rate, resource 
contention, workload type, latent server faults, etc. Figure 7 
illustrates the analysis result of how node performance 
changes over time after applying Google data into our 
framework, with the average value the indicator of interest to 
represent performance. Five server nodes have been chosen 
based on a random selection. From this daily performance 
trend we observe that node performance in executing tasks 
varies along with time, demonstrating that node-level 

stragglers identification should take time interval into 
consideration; simply configuring a static blacklist does not 
meet this requirement.  

 Although node performance fluctuates over time, it is still 
observable that node one performs weaker than the other 
nodes, with a larger normalized execution value. The next 
section shows how our framework is capable of ranking 
nodes according to their performance within the system, and 
identifying node-level stragglers.   

C. Node-level Straggler Identification  

Our framework classifies Google nodes into five levels 
depending on their performance of executing tasks, with level 
0 servers representing the slowest node-level stragglers (as 
such nodes were removed in the first iteration of the ranking 
procedure detailed in Section 3) and level 4 nodes the fastest. 
We observe that, 105 out of 12583 nodes within the Google 
cluster are identified as node-level stragglers after analyzing 
one month of MapReduce execution data. This information 
can be integrated into further enhanced scheduling algorithms 
to improve blacklist or speculation efficiency. Furthermore, 
when the system is fed with further new executions, the newly 
generated trace can be used to dynamically adjust the ranking, 
making it accurately reflect newest system state.  

 To evaluate the generality of the ranking, another analysis 
is conducted using batch job execution data. Batch jobs are 
derived following the method described in [16], which 
considers the characteristics of job priority, job start and 
completion time in relation to task submission and 
completion. Through such filtering criteria, 3,043 jobs 
comprised of 252,950 tasks within Google trace have been 
identified. The node performance ranking result generated by 
this new workload execution log is detailed in Table 4. 
Although it only classifies the servers into four levels instead 
of five (with more level 0 nodes), all node-level stragglers 
that have been identified using MapReduce data are included 
in this batch job result, indicating the same small set of 
weakest nodes have been successfully detected. 

 
Figure 7. Node execution performance daily changing trend  

Table 2 Google server capacity characteristics 
Server Type CPU Capacity Memory Capacity Proportion 

S1 0.5 0.4995 53.50% 
S2 0.5 0.2493 30.70% 
S3 0.5 0.749 7.96% 
S4 1 1 6.32% 

Table 3 VM capacity characteristics 

VM IP CPU 
Cores Memory VM IP CPU 

Cores Memory 

10.1.0.2 1 1 GB 10.1.0.6 2 1 GB 
10.1.0.3 1 2 GB 10.1.0.7 2 2 GB 
10.1.0.4 1 3 GB 10.1.0.8 2 3 GB 
10.1.0.5 1 4 GB 10.1.0.9 2 4 GB 

 

Table 4 Ranking Results According to Confidence Interval 

 
Batch Job Result MapReduce Job Result 

Node 
Number Proportion Node 

Number Proportion 

Level 0 416 3.31% 105 0.83% 
Level 1 4031 32.04% 1772 14.08% 
Level 2 7505 59.64% 7265 57.74% 
Level 3 631 5.01% 3386 26.91% 
Level 4 -- -- 55 0.44% 
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VI. CONCLUSION AND FUTURE WORK 

In this paper, we propose a node performance modeling 
and ranking framework to analyze node execution ability and 
susceptibility to straggler occurrence. This can be used to 
avoid scheduling tasks onto node-level stragglers that 
exhibiting weak performance. Our core contributions are as 
following: 
 Propose a node execution performance modeling ޤ

framework, describing and ranking node ability in terms 
of parallel job execution. Slow nodes will influence 
parallel job execution by enlarging the possibility of the 
long tail problem, and can limit straggler mitigation 
technique efficiency by influence speculation execution. 
Our framework enables the ability to identify node-level 
stragglers within a cluster in a lightweight manner, and 
can be easily integrated into systems that already adopted 
node health check mechanisms such as Hadoop.  

 A ranking of node execution performance within the ޤ
cluster, enabling further enhanced straggler-aware 
scheduling. By using the Google Cloud production data 
as a case study, our framework generated a node 
performance ranking which identified the 105 weakest 
nodes among 12,500+ servers within the datacenter 
(0.83%) over a period of a month. If the system generates 
new tracelog data detailing new executions, it can be used 
to dynamically adjust the ranking, making it accurately 
reflect the newest system state. 

 Demonstrate that node execution performance is not ޤ
purely dependent on server capacity. Current literature 
assumes that larger CPU or memory capacity of a node 
means better performance; however, after analyzing real 
production task execution data and cross-matching it with 
different server types, we see that those assumptions do 
not always stand in the presence of stragglers.  
Future work includes the development of a node 

execution performance aware scheduling algorithm that can 
better improve straggler mitigating efficiency, as well as 
integrate additional parameters such as current node load into 
the framework, improve node-level straggler identification 
into node-level straggler prediction. 
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