
This is a repository copy of An Approach for Modeling and Ranking Node-level Stragglers
in Cloud Datacenters.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/100521/

Version: Accepted Version

Proceedings Paper:
Ouyang, X, Garraghan, P, Wang, C et al. (2 more authors) (2016) An Approach for
Modeling and Ranking Node-level Stragglers in Cloud Datacenters. In: Zhang, J, Miller, JA
and Xu, X, (eds.) Proceedings. 2016 IEEE International Conference on Services
Computing (SCC), 27 Jun - 02 Jul 2016, San Francisco, USA. Institute of Electrical and
Electronics Engineers , pp. 673-680. ISBN 978-1-5090-2628-9

https://doi.org/10.1109/SCC.2016.93

© 2016, IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers
or lists, or reuse of any copyrighted components of this work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

1

An Approach for Modeling and Ranking Node-level
Stragglers in Cloud Datacenters

Xue Ouyang1,2, Peter Garraghan1, Changjian Wang2, Paul Townend1, Jie Xu1

School of Computing1
University of Leeds

Leeds, UK
 {scxo,p.m.garraghan,p.m.townend,j.xu}@leeds.ac.uk

 Parallel and Distributed Laboratory2
National University of Defense Technology
 Changsha, China

c_j_wang@yeah.net

Abstract— The ability of servers to effectively execute tasks
within Cloud datacenters varies due to heterogeneous CPU and
memory capacities, resource contention situations, network
configurations and operational age. Unexpectedly slow server
nodes (node-level stragglers) result in assigned tasks becoming
task-level stragglers, which dramatically impede parallel job
execution. However, it is currently unknown how slow nodes
directly correlate to task straggler manifestation. To address
this knowledge gap, we propose a method for node performance
modeling and ranking in Cloud datacenters based on analyzing
parallel job execution tracelog data. By using a production
Cloud system as a case study, we demonstrate how node
execution performance is driven by temporal changes in node
operation as opposed to node hardware capacity. Different
sample sets have been filtered in order to evaluate the generality
of our framework, and the analytic results demonstrate that
node abilities of executing parallel tasks tend to follow a 3-
parameter-loglogistic distribution. Further statistical attribute
values such as confidence interval, quantile value, extreme case
possibility, etc. can also be used for ranking and identifying
potential straggler nodes within the cluster. We exploit a graph-
based algorithm for partitioning server nodes into five levels,
with 0.83% of node-level stragglers identified. Our work lays
the foundation towards enhancing scheduling algorithms by
avoiding slow nodes, reducing task straggler occurrence, and
improving parallel job performance.

Keywords- Stragglers; Node Performance; Clusters; Tracelog
Data Analysis; Modeling; Ranking

I. INTRODUCTION

Modern day Cloud datacenters are composed of thousands
of heterogeneous server nodes to provide computing services
globally [1]. These nodes are composed of different
characteristics including resource capacity (CPU, memory,
disk, etc.), architecture, and operational age. These physical
heterogeneities combined with changing resource utilization
patterns and multi-tenancy [2] result in diverse task execution
performance at given time for each node within the system.

The response time of services is critical for both Cloud
providers and users. For providers, jobs which take longer to
complete result in system performance degradation and
increased resource waste, causing financial loss and decreased
user satisfaction. For users, additional response time results in
potential Quality of Service (QoS) [3] violations with respect
to timing constraints. Parallel computing models such as

MapReduce [4] and Hadoop [5] divide jobs into multiple tasks
for performing a subset of computation. Although these
models attempt to evenly split computation based on input
data size to achieve similar completion times across all tasks,
in practice tasks will exhibit different execution durations as a
result of being assigned to different nodes. This is important
within the context of task-level stragglers, defined as parallel
tasks which experience abnormally longer execution in
comparison to sibling ones, and node-level stragglers defined
as server nodes that exhibit poor performance regarding task
execution, leading to higher task straggler occurrence and
susceptibility. In this paper, node execution performance is
defined as the measurement of effective task execution within
a node in the presence of task stragglers.

This straggler problem for parallel jobs increasingly
manifests itself within distributed systems as scale increases
[6], significantly impedes overall parallel job completion, and
debilitates service response time, causing economic loss and
degraded system performance and availability. There have
been concentrated efforts toward addressing these issues,
ranging from task straggler analysis [6][16] to mitigation [9-
15][18]. Effective approaches for the latter include server
blacklisting [17], which attempts to assign tasks to nodes that
do not exhibit poor performance in order to reduce task
straggler occurrence, and speculative execution [5] which
launches replica copies for task stragglers on different nodes
in an attempt to outpace the original task. However, these
approaches assume that slow nodes are static [9][13] (i.e.
server execution performance will constantly be poor), while
in practice server execution performance can be transient due
to diverse resource utilization driven by user demand. Such a
characteristic is important to consider in order to inform the
scheduler concerning alterations to node performance at run-
time. Furthermore, there is presently a lack of comprehensive
methods for modeling slow nodes that are capable of
capturing node execution performance that can be applied
generally to Cloud datacenters.

This paper proposes a method for modeling and ranking
node performance to determine the likelihood of straggler
manifestation within Cloud datacenters. This is achieved
through analyzing historical data within a configurable time
window. The outputs of such work can be further integrated
into straggler mitigation techniques such as intelligent
speculation [10]. Our contributions are summarized as follows:

2

 .A method for modeling node execution performance ࡳ
We describe in detail a model framework that can
analyze nodes’ task execution performance in the
presence of stragglers, including execution data
extraction and normalization, distribution fitting,
indicator selection and ranking.

 .An approach for node-level straggler detection ࡳ
Through ranking, our framework can classify server
nodes into different performance levels and identify
the weakest node-level stragglers within a system. This
is important for improving blacklisting and speculation
efficiency when dealing with stragglers.

 New insights into node-level straggler manifestation ࡳ
within production Cloud datacenters. We have
evaluated our method using production data from a
Google datacenter [7][8]. From our results, we are able
to gain new insight demonstrating the transient nature
of execution performance within datacenter nodes.

The paper is structured as follows: Section 2 presents the
straggler problem background and related work; Section 3
illustrates the node performance modeling and ranking
framework; Section 4 discusses the case study data and the
methods of extracting MapReduce task information, while
Section 5 presents the analysis findings using the model;
Section 6 discusses conclusions and future work.

II. RELATED WORK

Frameworks such as MapReduce decompose jobs into
multiple tasks which are executed across numerous nodes in
order to achieve better performance through parallelization.
However, these frameworks still face challenging problems
toward effective execution within large-scale clusters. The
Long Tail problem [6] is one example of such a challenge,
characterized as a small subset of parallel tasks performing
much slower (defined as task-level stragglers) in comparison
with other tasks in the same job, therefore incurring a
significant delay towards final job completion. Figure 1
depicts task execution patterns within jobs of varying sizes
from a Google production cluster [7][8]. It is observable that
the Long Tail problem manifests within different sizes of jobs.
For example, in Fig. 1(a-c) the slowest task is approximately
2.5 slower to complete in comparison with the average. Fig.
1(d) demonstrates job containers with no stragglers, with the
majority of tasks completing in approximately the same time
frame. Task-level stragglers can stem from numerous causes
including hardware heterogeneity [10], resource contention
[11], background network traffic [12], I/O discord [13], data
skew [14] and OS or application-level related sources [15].

There are numerous works that analyze the impact of task-
level stragglers on system performance from the application
perspective: for example, Jeffrey et al. [6] demonstrate that the
slowest 5% of completed requests are responsible for half of
the total 99th percentile latency. That work also discusses the
positive correlation between straggler probability and cluster
size, concluding that the probability of longer latency
increases within larger system scales.

Ananthanarayanan et al. [12] show that 80% of task
stragglers have a uniform probability of delay between 150%-
250% compared to the median task duration, with 10%
exhibiting a delay 1000% greater than median task duration.

Garraghan et al. [16] analyze two production Cloud
datacenters and demonstrate that less than 5% and 3% of task
stragglers negatively impact between 35% and 59% of total
batch jobs within two production Cloud datacenters. From
these results they propose a task straggler identification
system that combines both historical and online analytics.

There exist primarily two methods for mitigating task-
level stragglers: server blacklisting [17] and speculative
execution [5]. Server blacklisting is performed by the
scheduler maintaining a blacklist of nodes within the cluster
(such as detailed in Fuxi [23] or by modifying the mapred-
site.xml for Hadoop). This results in tasks never assigned to
such nodes until list removal. The effectiveness of this
approach is dependent on correctly detecting faulty nodes for
blacklisting, otherwise, the system capacity will be degraded
due to false positives. Furthermore, current practice assumes
that weak nodes are known by the system administrator, and
that server performance will remain stable. This is not always
the case, making it increasingly infeasible to conduct such
manual configuration for clusters comprising thousands of
nodes, and such static configuration is unable to capture
accurate node performance.

Speculative execution [5] monitors the execution of each
task and will launch speculative replicas for identified task
stragglers with the assumption that it will complete prior to
the original straggler. There exist numerous techniques which
extend this method in terms of specified cases such as a
heterogeneous nodes environment [10] and small jobs
execution (less than 10 parallel tasks)[18]. While these works
are effective in minimizing the impact of task stragglers
within the system, they are mainly focused on selecting the
best task candidates to make replicas and ignore the impact of
poor node-level straggler performance. This is particularly
important in avoiding the scheduling of speculative replicas
onto these straggler nodes, leading to decreased likelihood of
the replica completing prior to the task straggler. In this case,

 (a) (b) (c) (d)

 Figure 1. Task duration pattern of (a) job 6336907144, (b) job 6336143870, (c) job 6335538471, (d) job 6301092750 from Google trace

5004003002001000

250

200

150

100

50

Task Index (Ranked)

T
a
s
k

 D
u

ra
ti

o
n

50403020100

240

230

220

210

200

190

180

170

160

Task Index (Ranked)

T
a
s
k

 D
u

ra
ti

o
n

9008007006005004003002001000

300

250

200

150

100

50

Task Index (Ranked)

T
a
s
k

 D
u

ra
ti

o
n

5004003002001000

300

250

200

150

100

50

Task Index (Ranked)

T
a
sk

 D
u

ra
ti

o
n

3

speculation results in limited improvement in job performance
as well as increased resource overhead.

In terms of determining the effective placement of replicas
on nodes, Chen et al. [13] consider both data locality and data
skew to develop a cost benefit model based on the cluster load.
Yadwadkar et al. [9] develop a system to proactively avoid
stragglers by analyzing a production trace and perform
regression using node level statistics. This system periodically
produces correlations between node level status and task
execution times in the form of decision trees, enhancing
scheduler policy making when determining which node to run
the replica in order to minimize overall job execution.

While these methods leverage the concept of applying data
analytics to identify weak nodes effectively, they each assume
that poor node performance is a static characteristic that
remains constant within the cluster, and is determined by node
capacity. In reality, the execution performance of a node
fluctuates over time due to factors such as resource contention
level, workload heterogeneity and user demand. This has been
studied in [2] demonstrating that there exists dynamicity in
system conditions within clusters driven by diverse users and
tasks execution profiles.

III. FRAMEWORK FOR MODELING AND RANKING NODE

EXECUTION PERFORMANCE

Before introducing our framework, it is necessary to
define key concepts in our research. The scheduler is
responsible for assigning jobs into the Cloud datacenter
which comprise M server nodes. Job j contains N subtasks
running in parallel on multiple nodes where ݏܽݐ ௝݇௜ represents
the ݅௧௛ task belonging to job ݆ (݅ ൑ ܰ). It is assumed that
subtasks exhibiting non-straggler behavior share similar
response times (for example, all map tasks of a certain
MapReduce job have similar execution lengths due to
identical block size).

The duration of ݏܽݐ ௝݇௜ is defined as the time between
scheduling and completion, represented as ݐ௝௜. Task stragglers
refers to those with ݐ௝௜ ൐ ݄ܶ ௝ଵǡݐ൫݃ݒܣ=ఫഥݐ ఫഥ, whereݐ כ ௝ଶǡݐ ǥ ǡ ௝௡൯ݐ ൌσ ௝௜௡௜ୀଵݐ ݊Τ Ǥ Th represents a specific threshold for task straggler
identification. In most literature pertaining to stragglers, this
threshold is typically configured to a value of 1.5 (i.e. tasks
whose execution is 50% greater than the average execution
of tasks within the same job) [10][14][18], while [19]

proposes a dynamic threshold calculation algorithm to define
task stragglers in accordance to workload type and cluster
resource usage.

A. Overall Framework

The framework consists of four steps as shown in
Algorithm 1 and Figure 2: (i) Execution Normalizer within
Application Master calculates normalized task duration
respective to job execution, (ii) Model Builder within Node
Manager is responsible for calculating the probability
distribution models of execution performance for each node,
(iii) Indicator Calculator is responsible for selecting
statistical properties to indicate node ability in turns of
parallel job execution, and (iv) the Node Ranking component
will produce a rank order list of all system nodes to determine
susceptibility to stragglers. This framework can be readily
integrated into current 2-tier Cloud resource managers such
as Yarn [24] as shown in Figure 2, leveraging data typically
recorded in system operation, including task start and
completion timestamps, job and task identifiers, and server
node ID. Therefore, it results in minimal burden upon the
system due to no need for additional monitoring and data
extraction. The following sections introduce each of the
phases in detail.

B. Task Duration Normalization

Node-level straggler detection is performed by studying
task execution performance on a per node basis. However, as
Cloud datacenters are composed of heterogeneous workload
characteristics [2], it is challenging to directly compare job (by
extension task) performance across the entire system. On the
other hand, the relative task durations (compared to its job
average) can be used to study a tasks’ progress in comparison
to its own siblings. As a result, the first step of the framework
is to use z-score normalization across all tasks duration ݐ௝௜ to
generate ݐఫప෩ by using equation (1).

ఫప෩ݐ ൌ ௧ೕ೔ି௧ണഥఙೕ (1)

Algorithm 1. Operation of Model Framework

Inputs:
Quintuple ݁ ൌ ൏ ௦ǡݐ ௘ݐ ǡ ௧௔௦௞ܦܫ ǡ ௝௢௕ܦܫ ǡ ௠௔௖௛௜௡௘ܦܫ ൐

 ݐ௦ , ݐ௘ – task start / end time

 ܦܫ௧௔௦௞ ௝௢௕ܦܫ , ௠௔௖௛௜௡௘ – task ID, job ID this taskܦܫ ,
belongs to, and machine ID this task runs on

1. For each ݁ from filtered trace data

 (݁) NormalizedExecutionValue = ߤ .2
3. ߱ ൌ ൏ ௧௔௦௞ܦܫ ǡ ௝௢௕ܦܫ ǡ ௠௔௖௛௜௡௘ܦܫ ǡ ߤ ൐

4. For each ߱

5. ɔ ൌ ൏ ௠௔௖௛௜௡௘ܦܫ ǡ ߤ ൐

6. For each ܦܫ௠௔௖௛௜௡௘
7. ݂ = BestFitDistribution (ɔ)
ܫ .8 ൌ TargetAbilityIndicator (݂)

9. Rank (ܫ)

Client

Resource Manager

Scheduler Node Ranking

Node 1

App Master

Execution

Normalizer

Node 2 Node n

TaskApp Master

Execution

Normalizer Task

Task Task

Node Manager

Model Builder

Indicator

Calculator

Node Manager

Model Builder

Indicator

Calculator

Node Manager

Model Builder

Indicator

Calculator

Task

Task

Figure 2. Framework architecture

4

where ߪ௝ ൌ ௝ଵǡݐ൫ݒ݁ܦݐݏ ௝ଶǡݐ ǥ ǡ ௝ݐ ௝௡൯ is the standard deviation ofݐ . The normalized value ݐఫప෩ reflects the relative speed of ݏܽݐ ௝݇௜ compared to other sibling tasks within job ݆. ݐఫప෩ ൐ Ͳ
signifies ݐ௝௜ is larger than the average job execution time,
therefore ݏܽݐ ௝݇௜ is a slow task within this job. A larger value
of ݐఫప෩ represents more severe straggler behavior in ݏܽݐ ௝݇௜. This
makes it possible to compare the performance of tasks
irrespective of job heterogeneity.

For every node ܯ , the normalized execution value for
assigned tasks can be used to analyze its performance in terms
of task execution ability. For example, if the majority of tasks
assigned onto a node are always the slower ones (with a
positive normalized value indicating longer execution than
their own average) for different jobs, this reflects poor node
execution performance compared to other nodes within the
system. In contrast, if most of the normalized values assigned
onto the node are negative, this represents that tasks assigned
tend to execute faster, demonstrating strong node execution
performance. Therefore, it is necessary to form a data file
consisting of the following sextuples for each node in order
to analyze its performance model: ൏ ௦ǡݐ ௘ݐ ǡ ௧௔௦௞ܦܫ ǡ ௝௢௕ܦܫ ǡ ௠௔௖௛௜௡௘ܦܫ ǡ ௧݀݁ݖ݈݅ܽ݉ݎ݋ܰ ൐

This records start time of a task, end time of a task, task ID,
job ID, machine ID and task normalized value as the input to
enable the analysis.

C. Best Fit Distribution for Node Execution Performance

 The normalized task duration is used in order to construct
probabilistic models of execution performance for tasks
within each server node in order to ascertain the likelihood of
task straggler occurrence.

There exist numerous Goodness of Fit (GoF) tests
designed for different data characteristics including chi-
square, Kolmogorov-Smirnov (KS) and Anderson-Darling
(AD) [20, 21]. For our analysis, AD test is adopted as it places
greater emphasis towards tailing data distributions. Figure 3
shows an example result of distribution fit for the node with
ID 4820223869 in Google. In this case, 9 different

distributions have been tested, including 3-parameter
Lognormal, Normal, 2-parameter Exponential, 3-parameter
Weibull, Smallest Extreme Value, Largest Extreme Value, 3-
parameter Gamma, Loglogistic and 3-parameter Loglogistic.
Figure 3 (a) lists the top four best fits, among which 3-
parameter Loglogistic distribution represents the best
accuracy due to a lower AD value (CDF fitting is given in
Figure 3 (b)).

D. Target Indicator of Node Execution Performance

 The distribution function constructed for each node is
used to derive the statistical properties of node performance
and susceptibility to task straggler behavior. The indicator
used to capture this behavior includes the mean value,
standard deviation, confidence interval, quantile points, and
extreme value possibility, with each reflects different
analysis objective. For example, standard deviation describes
the stability of the node execution performance, while
extreme value possibility represents the task straggler
occurrence probability. Table 1 lists representative attributes
and their corresponding meanings for reference.

 Under cases when the confidence interval is chosen as the
indicator of interest, it provides information that, for all tasks
assigned onto this node, there is a confidence (e.g. 95%) to
believe their normalized durations will fall within a specified
interval. This is necessary to determine the optimal placement
of tasks into nodes under the presence of stragglers; therefore
in the following analysis, the indicator confidence interval
will be adopted.

Table 1 Indicator Candidates and Corresponding Meanings
Indicator Meaning

Mean
Value

The possible normalized execution value for tasks
assigned onto this node

Standard
Deviation

The normalized task execution value on this specific
machine is stable or random

Confidence
Interval

The possible normalized execution value assigned
will between a certain interval

Extreme
Value

Possibility
The task straggler possibility for this machine.

Quantile
Value

Describes the normalized value for most tasks been
assigned onto that specific node

 (a) (b)

 Figure 3. (a) Top four best fitting distribution for node 4820223869 (b) 3-parameter loglogistic CDF fitting

5

E. Ranking

The final step of the framework is to determine a rank
order of the indicator values to classify node performance in
order to categorize and identify node-level stragglers. There
exist numerous ranking algorithm candidates which can
leverage indicators presented in Table 1. If value-type
indicators have been chosen (i.e. mean, deviation, quantile
points and extreme value possibility), the ranking is relatively
straight forward. If an interval-type indicator has been
chosen, such as confidence interval, a graph based ranking
algorithm can be adopted.

In this paper, we use the P-Cores algorithm [25] to deal
with confidence interval indicator by constructing a directed
acyclic graph (DAG). The nodes in the DAG represent
servers within the cluster. If [A1, B1] represents the
confidence interval execution performance of Node 1 and
[A2, B2] represents the confidence interval of execution
performance of Node 2, there will be an edge from Node 1 to
Node 2 only when the condition A2>B1 stands (as shown in
Figure 4). The next step is to remove nodes that do not
contain an outward edge (as they represent the weakest nodes
within the graph) until there are no nodes remaining. The time
on which the node is been deleted is subscribed as the level
this machine should be classified to. In other words, level
zero nodes represent the worst execution performance as they
contain the largest confidence interval value, and were
removed within the first iteration. P-cores only demonstrates
one such ranking algorithm within this framework, and can
be substituted by other means if required.

This framework can be easily integrated into current
implementations such as Hadoop. As long as the ranking
result has been generated, the only modification required for
system implementation is to re-modify the node health
checker condition. This allows for the core system scheduler
code to remain unattached and the node performance can be
easily adopted by existing scheduling algorithms.

IV. CASE STUDY BASED ON PRODUCTION TRACELOG

DATA

The proposed framework was applied to a Google
datacenter publicly available at [7][8] to demonstrate its
effectiveness. As different providers typically have bespoke
methods for collecting and structuring produced system data,
we will first detail the semantics, data formats and schema of
the case study. We will then describe the filtering and
sampling process.

The tracelog of the case study system comprises 29 days
operation detailing job/task behavior within a Google cluster
consisting of 12,583 server nodes that share a common cluster
management system. Work arrives at this cluster in the form
of jobs that comprises several tasks, and a task is represented
as a Linux program that executes on a single node.

There are four tables within the tracelog that relate to our
research objectives. The machine events table details server
status (i.e. whether it has been added, removed, or modified
within the cluster). The job events and task events tables
record information pertaining to job/task status (un-submitted,
pending, running, dead) expressed through recorded events

(submit, schedule, kill, evict) at specific timestamps. The task
usage table gives information of the start/end time of each
individual task as well as the specific placement onto servers.
Usually, all tasks within a job execute exactly the same binary
code with the same options and resource request. The dataset
is voluminous (approximately 400GB in size unzipped), and
contains traces of 672,074 jobs composed of 25,228,174 tasks.
As a result, it is important to filter out noisy information and
properly decide suitable target jobs to conduct the analysis.

A. Data Pre-processing

It has been identified that the cluster contains numerous
application types including batch, latency sensitive, gratis and
system monitoring jobs. In our analysis, we focus on
MapReduce jobs - a representative job type that containing
subtasks which exhibit similar completion times. For example
in Hadoop system, the default data block size settings is 64MB,
and map tasks are automatically generated based on input data
size; they will, therefore, have similar completion times.
However, due to commercial confidentiality, Google does not
reveal precise information concerning specific job types. In
order to extract MapReduce job data, three filter conditions
have been applied.

1) Identify parallel jobs
The first condition is to identify jobs which execute tasks

in parallel. Task number is used to design this filter, and the
ones that have more than two tasks submitted at the same time
are been extracted out. This is possible by studying the
timestamps of job and task submissions and completions, as
well as using the right SQL query to select corresponding
jobID with multiple taskIDs.

2) Determine production jobs
Tasks within the cluster are assigned priorities ranging

between 0 and 11 for lowest and highest scheduling priority,
respectively, indicated in job events table. According to
documentation [8], production tasks including batch job
processing and latency sensitive tasks are with priority from 2
to 9, monitoring are 10 to 11, and gratis tasks are 0 to 1.

3) Extract MapReduce jobs
Unlike the former two conditions that have explicit

relating attributes, filtering out jobs that exhibit MapReduce
characteristics used two additional hypotheses in our work.
First, according to [8], the attributes “job name” and “logical
job name” within the job events table, both of which are
opaque base 64-encoded strings that have been hashed to hide
sensitive information, can be used. Unique job names are
generated by automated tools to avoid conflicts, however, the
job names generated by different executions of the same
program will usually have the same logical name. [8] points

[1.2, 1.8][0.1, 0.9]
Figure 4. DAG edge example

6

out that MapReduce is an example of this kind of application
that frequently generates unique job names with identical
logical names. Second, the attribute named “username” can
also assist towards identifying MapReduce jobs. Usernames
in this trace represent services run on top of the Google Cloud
cluster, and jobs executing under the same username are likely
to be part of the same external or internal service. When a
single program runs multiple jobs, such as master job and
worker job spawned by the same MapReduce, those jobs will
almost always run as the same user.

After filtering, the total target job size is reduced to 92,848
with 10,894,461 tasks for analysis. Importantly, since no
biased selections have been conducted towards node type, the
influence brought by eliminating additional tasks is applied
equally to all nodes, therefore, there should be no imbalance
that will lead to unreliable node performance result.

B. Node Sampling

As there are over 12,500 server nodes within the cluster,
it is beneficial to perform sampling in order to conduct in-
depth analysis of node execution performance that accurately
reflects the general characteristics of the whole cluster. There
exist four primary types of server nodes within this cluster,
with each type reflecting different physical capacities in
dimensions of CPU cores and RAM size as shown in Table 2.
We conduct systematic sampling based on the number of
tasks assigned to the nodes. The minimum value of the
sample set that retains a 5% margin of error to the whole
population is 132 after applying Minitab (statistical software

similar to SPSS) sample size calculation function. By making
a random selection from each server type to generate the
corresponding number of nodes, we generate the final target
set which consists nodes that remain the same server type
proportion. Furthermore, in order to minimize the error
brought by sampling, two different sets have been selected to
perform both modeling and validation.

V. MODEL EVALUATION

This section evaluates the framework’s effectiveness for
determining a node’s performance and its susceptibility to
straggler behavior, performed through experiments and data
analytics.

A. Distribution Modeling

Figure 5 illustrates four examples of node performance
distributions of individual server nodes when applying the
proposed framework. Within the time the data covered, it is
observable that the normalized execution data on nodes with
ID (a) 672206, (b) 554297904, and (d) 4820223869 follow a
relatively normal distribution, with approximately same
positive and negative values, indicating an average node
performance regarding to its ability of executing tasks, while
node (c) 257336015 has more negative values, representing a
better performance.

When modeling the distribution of nodes execution
performance within the derived samples described in Section
4, it is shown that among the 132 machines, 112 and 117 have
3-parameter loglogistic as their best fit (84.85% and 88.64%),
and all of them include this distribution in their top three.

B. Node Execution Performance

1) Relationship with physical capacity

In order to explore whether the assumption adopted by most
current literature claiming that higher node capacity always
results in better execution performance is valid, we conduct
several analyzes. The first sample set is applied as the input
for the framework, with mean value selected as the indicator
of interest to analyze nodes performance regarding tasks
execution. We group the nodes’ execution performance
results in accordance with four server types described in Table
2. When expressed as a boxplot as shown in Figure 6(a), it is
observable that server 4 nodes tend to exhibit larger
normalized execution values, while values for server type 2
nodes all fall below zero, signifying most tasks run on this
server category execute quicker than their own average.
Figure 6(b) illustrates the result that takes the second sample
set as the input for the framework with extreme value
possibility as the indicator, and nodes still categorized

 (a) (b) (c) (d)

 Figure 5. Normalized value frequency for machine (a) 672206, (b) 554297904, (c) 257336015, (d) 4820223869 from filtered trace data

43210-1-2-3

90

80

70

60

50

40

30

20

10

0

Normalized Task Execution Value

F
re

q
u

e
n

c
y

6420-2-4-6

200

150

100

50

0

Normalized Task Execution Value

F
re

q
u

e
n

c
y

2.501.250.00-1.25-2.50-3.75-5.00

90

80

70

60

50

40

30

20

10

0

Normalized Task Execution Value

F
re

q
u

e
n

c
y

5.003.752.501.250.00-1.25-2.50-3.75

140

120

100

80

60

40

20

0

Normalized Task Execution Value

F
re

q
u

e
n

c
y

Figure 6. Box plot of (a) mean normalized value result (b) extreme value

possibility result for each group in Google cluster

 (c) Box plot of normalized execution value for each VM in experiment

S4S3S2S1

0.15

0.10

0.05

0.00

-0.05

-0.10

Server Type

N
o

rm
a
li
z
e
d

 V
a
lu

e
 A

v
e
ra

g
e

S4S3S2S1

0.30

0.25

0.20

0.15

0.10

Server Type

P
(n

o
m

a
li
z
e
d

 v
a
lu

e
>

1
)

87654321

2.5

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

MachineID

N
o

rm
o

lis
e

Ex
ec

u
ti

o
n

 V
al

u
e

7

depending on the four server types to summarize their
performance. This analysis indicates similar results with the
first sample set, that the ranking of the overall nodes execution
performance is S2 > S1 > S3 > S4. However, the server node
capacities actually have an opposite ranking, with capacity(S2)
< capacity(S1) < capacity(S3) < capacity(S4).

 To test whether this negative correlation exists within
other environments, we executed MapReduce jobs on top of
a test cluster consisting of 9 VMs (one Namenode and eight
Datanodes), using Hadoop 2.5.2 integrated with Hive 1.0.1
[22]. The CPU and memory capacities configured for
workers are detailed in Table 3. The Hive queries are
automatically transformed into MapReduce jobs that
commence execution. For our experiment, four types of
queries have been tested on different data sizes, including
“select”, “count”, “group by”, and “load data”. By collecting
these newly generated job completion logs from the VMs and
making them inputs for our framework, we ascertain the node
execution performance per machine ID shown in Figure 6(c).
We observe that the relationship between node capacity and
its execution performance exhibits a positive correlation,
differing from the Google analysis result.

From above analysis, we demonstrate that node capacity is
not the only factor that decides node performance regarding
task execution. In some situations, a larger capacity can
actually have worse execution performance for reasons such
as different architecture, load, utilization or even year of
purchase. Therefore, the assumption of simple proportional
correlation between a node’s capacity and its execution
performance requires restructuring. Our framework uses task
execution data itself to analyze node performance, and is
capable of accurately identifying weak nodes.

2) Temporal patterns of node execution performance

 Another assumption adopted by most straggler related
literature is that node execution performance is a static
attribute of servers that will remain constant for long periods
of time. However, this assumption breaks down in real
systems due to reasons including utilization rate, resource
contention, workload type, latent server faults, etc. Figure 7
illustrates the analysis result of how node performance
changes over time after applying Google data into our
framework, with the average value the indicator of interest to
represent performance. Five server nodes have been chosen
based on a random selection. From this daily performance
trend we observe that node performance in executing tasks
varies along with time, demonstrating that node-level

stragglers identification should take time interval into
consideration; simply configuring a static blacklist does not
meet this requirement.

 Although node performance fluctuates over time, it is still
observable that node one performs weaker than the other
nodes, with a larger normalized execution value. The next
section shows how our framework is capable of ranking
nodes according to their performance within the system, and
identifying node-level stragglers.

C. Node-level Straggler Identification

Our framework classifies Google nodes into five levels
depending on their performance of executing tasks, with level
0 servers representing the slowest node-level stragglers (as
such nodes were removed in the first iteration of the ranking
procedure detailed in Section 3) and level 4 nodes the fastest.
We observe that, 105 out of 12583 nodes within the Google
cluster are identified as node-level stragglers after analyzing
one month of MapReduce execution data. This information
can be integrated into further enhanced scheduling algorithms
to improve blacklist or speculation efficiency. Furthermore,
when the system is fed with further new executions, the newly
generated trace can be used to dynamically adjust the ranking,
making it accurately reflect newest system state.

 To evaluate the generality of the ranking, another analysis
is conducted using batch job execution data. Batch jobs are
derived following the method described in [16], which
considers the characteristics of job priority, job start and
completion time in relation to task submission and
completion. Through such filtering criteria, 3,043 jobs
comprised of 252,950 tasks within Google trace have been
identified. The node performance ranking result generated by
this new workload execution log is detailed in Table 4.
Although it only classifies the servers into four levels instead
of five (with more level 0 nodes), all node-level stragglers
that have been identified using MapReduce data are included
in this batch job result, indicating the same small set of
weakest nodes have been successfully detected.

Figure 7. Node execution performance daily changing trend

Table 2 Google server capacity characteristics
Server Type CPU Capacity Memory Capacity Proportion

S1 0.5 0.4995 53.50%
S2 0.5 0.2493 30.70%
S3 0.5 0.749 7.96%
S4 1 1 6.32%

Table 3 VM capacity characteristics

VM IP CPU
Cores Memory VM IP CPU

Cores Memory

10.1.0.2 1 1 GB 10.1.0.6 2 1 GB
10.1.0.3 1 2 GB 10.1.0.7 2 2 GB
10.1.0.4 1 3 GB 10.1.0.8 2 3 GB
10.1.0.5 1 4 GB 10.1.0.9 2 4 GB

Table 4 Ranking Results According to Confidence Interval

Batch Job Result MapReduce Job Result

Node
Number Proportion Node

Number Proportion

Level 0 416 3.31% 105 0.83%
Level 1 4031 32.04% 1772 14.08%
Level 2 7505 59.64% 7265 57.74%
Level 3 631 5.01% 3386 26.91%
Level 4 -- -- 55 0.44%

8

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a node performance modeling
and ranking framework to analyze node execution ability and
susceptibility to straggler occurrence. This can be used to
avoid scheduling tasks onto node-level stragglers that
exhibiting weak performance. Our core contributions are as
following:
 Propose a node execution performance modeling ޤ

framework, describing and ranking node ability in terms
of parallel job execution. Slow nodes will influence
parallel job execution by enlarging the possibility of the
long tail problem, and can limit straggler mitigation
technique efficiency by influence speculation execution.
Our framework enables the ability to identify node-level
stragglers within a cluster in a lightweight manner, and
can be easily integrated into systems that already adopted
node health check mechanisms such as Hadoop.

 A ranking of node execution performance within the ޤ
cluster, enabling further enhanced straggler-aware
scheduling. By using the Google Cloud production data
as a case study, our framework generated a node
performance ranking which identified the 105 weakest
nodes among 12,500+ servers within the datacenter
(0.83%) over a period of a month. If the system generates
new tracelog data detailing new executions, it can be used
to dynamically adjust the ranking, making it accurately
reflect the newest system state.

 Demonstrate that node execution performance is not ޤ
purely dependent on server capacity. Current literature
assumes that larger CPU or memory capacity of a node
means better performance; however, after analyzing real
production task execution data and cross-matching it with
different server types, we see that those assumptions do
not always stand in the presence of stragglers.
Future work includes the development of a node

execution performance aware scheduling algorithm that can
better improve straggler mitigating efficiency, as well as
integrate additional parameters such as current node load into
the framework, improve node-level straggler identification
into node-level straggler prediction.

ACKNOWLEDGMENT

The work is supported by the National Basic Research
Program of China (973) (No. 2011CB302602, No.
2014CB340303), as well as the University of Leeds and CSC
joint scholarship program.

REFERENCES
[1] Buyya R, Yeo CS, Venugopal S. Market-oriented cloud computing:

Vision, hype, and reality for delivering IT services as computing
utilities. In 10th IEEE International Conference on High Performance
Computing and Communications, HPCC 2008. pp. 5-13.

[2] Moreno IS, Garraghan P, Townend P, Xu J. Analysis, modeling and
simulation of workload patterns in a large-scale utility cloud. Cloud
Computing, IEEE Transactions on. 2014; 2(2):208-21.

[3] Patel P, Ranabahu AH, Sheth AP. Service Level Agreement in Cloud
Computing, Proceedings of Cloud Workshops at OOPSLA, 2009.

[4] Dean J, Ghemawat S. MapReduce: simplified data processing on large
clusters. Communications of the ACM 51.1 (2008): 107-113.

[5] Shvachko K, Kuang H, Radia S, Chansler R. The hadoop distributed
file system. In Mass Storage Systems and Technologies (MSST), IEEE
26th Symposium on, 2010, pp. 1-10.

[6] Dean J, Barroso LA. The tail at scale. Communications of the ACM.
2013 1;56(2):74-80.

[7] Google. Google Cluster Data V2. Available:
https://github.com/google/cluster-data.

[8] Reiss C, Wilkes J, Hellerstein JL. Google cluster-usage traces: format+
schema. Google Inc., White Paper (2011).

[9] Yadwadkar NJ, Choi W. Proactive Straggler Avoidance using Machine
Learning. White paper, University of Berkeley, 2012.

[10] Zaharia M, Konwinski A, Joseph AD, Katz RH, Stoica I. Improving
MapReduce Performance in Heterogeneous Environments. in
Proceedings of the 8th USENIX conference on Operating systems
design and implementation (ODSI), 2008, pp 29-42.

[11] Bortnikov E, Frank A, Hillel E, Rao S. Predicting Execution
Bottlenecks in Map-reduce Clusters. USENIX conference on Hot
Topics in Cloud Computing, 2012, pp. 18-18.

[12] Ananthanarayanan G, Kandula S, Greenberg AG, Stoica I, Lu Y, Saha
B, Harris E. "Reining in the Outliers in Map-Reduce Clusters using
Mantri." OSDI, 2010, vol. 10, no. 1, pp. 24.

[13] Chen Q, Liu C, Xiao Z. Improving Mapreduce Performance using
Smart Speculative Execution Strategy. IEEE Transactions on
Computers, 2014, no. 4, pp. 954-967.

[14] Kwon Y, Balazinska M, Howe B, Rolia J. Skewtune: mitigating skew
in mapreduce applications. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2012, pp. 25-36.

[15] Li J, Sharma NK, Ports DR, Gribble SD. Tales of the Tail: Hardware,
OS, and Application-level Sources of Tail Latency. in Proceedings of
ACM Symposium on Cloud Computing, 2014, pp. 1-14.

[16] Garraghan P, Ouyang X, Townend P, Xu J. Timely Long Tail
Identification Through Agent Based Monitoring and Analytics. IEEE
symposium on real-time computing ISORC 2015, pp. 19-26.

[17] Kumar U, Kumar J. A. A Comprehensive Review of Straggler
Handling Algorithms for MapReduce Framework. International
Journal of Grid and Distributed Computing 7, no. 4 (2014): 139-148.

[18] Ananthanarayanan G, Ghodsi A, Shenker S, Stoica I. Effective
Straggler Tolerance: Attack of the Clones. In Proceedings of the 10th
USENIX conference on Networked Systems Design and
Implementation NSDI, 2013, Vol. 13., pp. 185-198.

[19] Ouyang X, Garraghan P, Mckee D, Townend P, Xu J. Straggler
Detection in Parallel Computing Systems through Dynamic Threshold
Calculation. In Proceedings of the 30th IEEE Conference on Advanced
Information Networking and Applications (AINA-2016).

[20] Massey Jr FJ. The Kolmogorov-Smirnov test for goodness of fit.
Journal of the American statistical Association. 1951; 46(253):68-78.

[21] Razali NM, Wah YB. Power comparisons of shapiro-wilk,
kolmogorov-smirnov, lilliefors and anderson-darling tests. Journal of
Statistical Modeling and Analytics. 2011, 2(1):21-33.

[22] Thusoo A, Sarma JS, Jain N, Shao Z, Chakka P, Anthony S, Liu H,
Wyckoff P, Murthy R. Hive: a warehousing solution over a map-reduce
framework. Proceedings of the VLDB Endowment 2, no. 2 (2009):
1626-1629

[23] Zhang Z, Li C, Tao Y, Yang R, Tang H, Xu J. Fuxi: a fault-tolerant
resource management and job scheduling system at internet scale.
Proceedings of the VLDB Endowment, 2014: 1393-1404.

[24] Vavilapalli VK, Murthy AC, Douglas C, Agarwal S, Konar M, Evans
R, Graves T, Lowe J, Shah H, Seth S, Saha B. Apache hadoop yarn:
Yet another resource negotiator. In Proceedings of the 4th annual
Symposium on Cloud Computing 2013 (p. 5).

[25] Batagelj V, Zaveršnik M. Generalized cores. arXiv preprint
cs/0202039. 2002 Feb 28. http://arxiv.org/abs/cs/0202039.

