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In confined helimagnetic nanostructures, skyrmionic states in the form of incomplete and isolated
skyrmion states can emerge as the ground state in absence of both external magnetic field and mag-
netocrystalline anisotropy. In this work, we study the dynamic properties (resonance frequencies
and corresponding eigenmodes) of skyrmionic states in thin film FeGe disk samples. We employ
two different methods in finite-element based micromagnetic simulation: eigenvalue and ringdown
method. The eigenvalue method allows us to identify all resonance frequencies and corresponding
eigenmodes that can exist in the simulated system. However, using a particular experimentally fea-
sible excitation can excite only a limited set of eigenmodes. Because of that, we perform ringdown
simulations that resemble the experimental setup using both in-plane and out-of-plane excitations.
In addition, we report the nonlinear dependence of resonance frequencies on the external magnetic
bias field and disk sample diameter and discuss the possible reversal mode of skyrmionic states.
We compare the power spectral densities of incomplete skyrmion and isolated skyrmion states and
observe several key differences that can contribute to the experimental identification of the state
present in the sample. We measure the FeGe Gilbert damping, and using its value we determine what
eigenmodes can be expected to be observed in experiments. Finally, we show that neglecting the
demagnetisation energy contribution or ignoring the magnetisation variation in the out-of-film direc-
tion – although not changing the eigenmode’s magnetisation dynamics significantly – changes their
resonance frequencies substantially. Apart from contributing to the understanding of skyrmionic
states physics, this systematic work can be used as a guide for the experimental identification of
skyrmionic states in confined helimagnetic nanostructures.

I. INTRODUCTION

Dzyaloshinskii-Moriya interactions1,2 (DMI) may oc-
cur in magnetic systems that lack some type of in-
version symmetry. The inversion asymmetry can be
present in the magnetic system either because of a non-
centrosymmetric crystal lattice2 (helimagnetic material)
or due to the interfaces between different materials which
inherently lack inversion symmetry.3,4 Consequently, the
DMI can be classified either as bulk or interfacial. The
DMI favours magnetic moments at neighbouring lattice
sites to be perpendicular to each other (in plane that is
perpendicular to the Dzyaloshinskii vector), which is in
contrast to the symmetric ferromagnetic exchange inter-
action which tends to align them parallel. When acting
together, these two interactions mutually compete and
find a compromise in the twist between two neighbouring
magnetic moments, which allows a rich variety of differ-
ent magnetisation textures. One of them is a skyrmion
configuration with very promising properties5–9 for the
development of future high-density, power-efficient stor-
age10,11 and logic12 devices.

After it was predicted13–15 that magnetic skyrmions
can emerge in the presence of DMI, skyrmions were ob-
served in magnetic systems with both bulk6,16–19 and in-
terfacial5,7,20 types of DMI. However, all studies of heli-
magnetic (bulk DMI) materials required an external mag-
netic field to be applied in order to stabilise skyrmions.

Recently, a systematic micromagnetic study21 reported
all equilibrium states that can emerge in confined he-
limagnetic nanostructures and identified the lowest en-
ergy (ground) states. In particular, this study reported
that in confined helimagnetic nanostructures two differ-
ent skyrmionic states can emerge as the ground state
in absence of both external magnetic field and magne-
tocrystalline anisotropy. One state does not contain a
complete spin rotation, whereas the other state contains
one full spin rotation along the disk sample diameter,
plus an additional magnetisation tilting at the bound-
ary due to the specific boundary conditions.22 We refer
to these configurations as incomplete skyrmion (iSk) and
isolated skyrmion (Sk) states, respectively.21 In addition,
the same study showed that the higher-order target (T)
state with two complete spin rotations along the disk
sample diameter can emerge as a metastable state at zero
external magnetic field.

Understanding the dynamic response of skyrmionic
states in confined helimagnetic nanostructures is of im-
portance both from the aspect of fundamental physics as
well as for their manipulation. In this work, we explore
the dynamics of all three equilibrium skyrmionic states
using a full three-dimensional model which includes the
demagnetisation energy contribution and does not as-
sume the translational invariance of magnetisation in
the out-of-film direction. A similar dynamics simulation
study was performed for the isolated skyrmion breath-
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ing eigenmodes23 in confined two-dimensional samples
with interfacial DMI; and high-frequency skyrmion spin
excitations were analytically studied in thin cylindri-
cal dots.24 The low-frequency (two lateral and one
breathing) eigenmodes were reported in two-dimensional
simulations of a hexagonal skyrmion lattice,25 where
the demagnetisation energy was neglected. Later, mi-
crowave absorption measurements explored the low fre-
quency eigenmodes in Cu2OSeO3,

26–28 Fe1−xCoxSi,
28

and MnSi28 helimagnetic bulk samples. In the case of
a magnetic bubble29–32 (magnetisation state stabilised
due to the strong uniaxial anisotropy in the absence
of DMI) analytic,33 simulation,34 and experimental35

studies reported the existence of two low frequency gy-
rotropic eigenmodes, suggesting that the skyrmion pos-
sesses mass. In contrast, a recent analytic work36 sug-
gests that only one gyrotropic eigenmode exists in the
confined DMI-induced skyrmion state, whereas another
low-frequency lateral eigenmode is interpreted as an az-
imuthal spin-wave mode36.

Using our full three-dimensional model, employing the
eigenvalue37 method, we compute all existing (both lat-
eral and breathing) eigenmodes below 50GHz in three
different skyrmionic states. In addition, using the ring-
down38 method, we determine which eigenmodes can be
excited using two different experimentally feasible excita-
tions (in-plane and out-of-plane). In contrast to the mag-
netic bubble, in the confined DMI stabilised skyrmionic
states we find the existence of only one low frequency
gyrotropic eigenmode. We also demonstrate the nonlin-
ear dependence of eigenmode frequencies on the external
magnetic bias field and the disk sample diameter, and
show that the gyrotropic eigenmode might be the re-
versal mode of skyrmionic states. After we identify all
eigenmodes of incomplete skyrmion (iSk) and isolated
skyrmion (Sk) ground states, we compare their power
spectral densities (PSDs) in the same sample at different
external magnetic field values. We discuss the compar-
isons and observe several key differences that can con-
tribute to the experimental identification of the state
present in the studied sample. Although we base this
study on the specific helimagnetic material FeGe, in order
to make this study relevant to any helimagnetic material,
we need to determine as many resonant frequencies as
possible that can be detected using a specific excitation.
Because of that, we need to reduce the linewidth and
allow sufficient separation between peaks in the power
spectral density (computed using the ringdown method).
Consequently, in the first part of this work, we use the
Gilbert damping23 α′ = 0.002. After we identify all res-
onance frequencies and corresponding eigenmodes using
α′, we experimentally measure the real value of FeGe
Gilbert damping and use it to determine which (out of
all previously identified eigenmodes) can be experimen-
tally detected in the FeGe sample. Finally, we investi-
gate how the demagnetisation energy contribution and
magnetisation variation in the out-of-film direction af-
fect the dynamics of skyrmionic states. We report that

FIG. 1. (a) A thin film FeGe disk sample with 10 nm thick-
ness and diameter d. An external magnetic bias field H is ap-
plied uniformly and perpendicular to the sample (in the posi-
tive z direction). (b) A cardinal sine wave excitation magnetic
field h(t), used in the ringdown method, is applied for 0.5 ns
in either in-plane (x̂) or out-of-plane (ẑ) direction. (c) The
Fourier transform of excitation field h(t) shows that all eigen-
modes (allowed by the used excitation direction) with fre-
quencies lower than fc = 100GHz are excited approximately
equally.

although the eigenmode magnetisation dynamics is not
significantly affected, the resonance frequencies change
substantially, which indicates that ignoring the demag-
netisation energy or modelling the thin film helimagnetic
samples using two-dimensional meshes is not always jus-
tified.

II. METHODS

We simulate a thin film helimagnetic cubic B20 FeGe
disk with 10 nm thickness and diameter d, as shown in
Fig. 1(a). The thin film sample is in the xy plane and
perpendicular to the z axis. An external magnetic bias
field H is applied uniformly and perpendicular to the
sample (in the positive z direction).
The total energy of the system we simulate contains

several energy contributions and can be written as

E =

∫

[wex + wdmi + wz + wd + wa] d
3r. (1)

The first term wex = A
[

(∇mx)
2 + (∇my)

2 + (∇mz)
2
]

is the symmetric exchange energy density with material
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parameter A. The unit vector field m = m(r, t), with
Cartesian components mx, my, and mz, represents the
magnetisation field M(r, t) = Msm(r, t), where Ms is
the saturation magnetisation. The second term wdmi =
Dm · (∇×m) is the Dzyaloshinskii-Moriya energy den-
sity with material parameter D, which is obtained by in-
cluding Lifshitz invariants suitable for materials of the
crystallographic class T, such as the cubic B20 FeGe
(P213 space group) used in this study. The coupling of
magnetisation to an external magnetic field H is defined
by the Zeeman energy density term wz = −µ0MsH ·m,
with µ0 being the magnetic constant. The wd term is
the demagnetisation (magnetostatic) energy density. Be-
cause wd is crucial for the stability of skyrmionic states
in confined helimagnetic nanostructures,21 we include its
contribution in all subsequent simulations. The last term
is the magnetocrystalline anisotropy energy density wa,
and because it does not play an important role in the
stability of skyrmionic states in the studied system,21 we
assume the simulated material is isotropic and neglect
the magnetocrystalline anisotropy energy contribution.
The FeGe material parameters we use are the following:21

saturation magnetisation Ms = 384 kAm−1, exchange
energy constant A = 8.78 pJm−1, and Dzyaloshinskii-
Moriya energy constant D = 1.58mJm−2. In our model,
we do not assume any translational invariance of mag-
netisation in the out-of-film direction, which significantly
changes the energy landscape both in infinitely large thin
films39 and in confined thin film nanostructures.21 The
relevant length scales in the simulated system are the
exchange length lex =

√

2A/µ0M2
s = 9.73 nm and he-

lical length LD = 4πA/D = 70nm. We choose the fi-
nite element mesh discretisation so that the maximum
spacing between two neighbouring mesh nodes is below
lmax = 3nm, which is significantly smaller than the ex-
change length lex.
The magnetisation dynamics is governed by the

Landau-Lifshitz-Gilbert (LLG) equation40,41

∂m

∂t
= −γ∗

0m×Heff + αm×
∂m

∂t
, (2)

where γ∗
0 = γ0(1 + α2), with γ0 = 2.21 × 105 mA−1s−1

and α ≥ 0 is the Gilbert damping. We compute the
effective magnetic field Heff using

Heff = −
1

µ0Ms

δE[m]

δm
, (3)

where E[m] is the total magnetic energy functional, given
by Eq. (1). We validated the boundary conditions by run-
ning a series of simulations and reproducing the results
reported by Rohart and Thiaville22.

We implemented the presented model in the finite el-
ement method framework and developed a micromag-
netic simulation tool Finmag (successor of Nmag42). For
the low-level finite element operations, we use FEniCS
project43 and for the adaptive step time integration we
use Sundials/CVODE solver.44,45 For visualisation, we
use Matplotlib46 and ParaView.47

We study the dynamic properties of skyrmionic states
using two different methods: eigenvalue method37 and
ringdown method.38 In both eigenvalue and ringdown
methods, we firstly compute an equilibrium magnetisa-
tion configuration m0 by integrating a set of dissipative
time-dependent equations, starting from a specific ini-
tial magnetisation configuration, until the condition of
vanishing torque (m × Heff) is satisfied. The details on
selecting the initial magnetisation configurations can be
found in Ref. 21. We perform all relaxations in this work
down to the maximum precision limited by the unavoid-
able numerical noise. Because the magnetisation dynam-
ics is not of interest in the relaxation process, we set the
Gilbert damping in this stage to α = 1.
We perform the eigenvalue method computations in a

finite element framework, motivated by the analytic pro-
cedure by d’Aquino et al.

37 The perturbation of the sys-
tem’s magnetisation from its equilibrium state m0 can
be written as m(t) = m0 + εv(t), where ε ∈ R

+ and
v(t) ⊥ m0 because of the imposed micromagnetic condi-
tion |m| = 1. If this perturbation expression is inserted
into the undamped LLG equation, we obtain

∂

∂t
(m0 + εv(t)) = −γ∗

0 (m0 + εv(t))×Heff(m0 + εv(t)).

(4)
By using a Taylor expansion Heff(m0 + εv(t)) = H0 +
εH′

eff(m0) · v(t) + O(ε2), where H0 = Heff(m0), and
knowing that ∂m0/∂t = 0 and m0 ×H0 = 0, we get

∂

∂t
v(t) = −γ∗

0 [v(t)×H0 +m0 × (H′
eff(m0) · v(t))] ,

(5)
where all O(ε2) terms and higher are neglected. When
the system is in its equilibrium, because Heff(m0) ‖ m0

and |m0| = 1, the equilibrium effective field can be writ-
ten as H0 = h0m0, where h0 = |H0|. Now, if all vector
fields are discretised on the finite elements mesh, Eq. (5)
becomes

∂

∂t
v(t) = γ∗

0m0 × [(h01−H
′
eff(m0)) · v(t)] . (6)

Using the matrix Λ(m0) with property m0×x = Λ(m0) ·
x, Eq. (6) can be written as

∂

∂t
v(t) = A · v(t), (7)

where A = γ∗
0Λ(m0) [h01−H

′
eff(m0)]. This linear dif-

ferential equation has a full set of solutions that can be
expressed as v(t) = ṽei2πft, where ṽ is a constant vector
field. Using this ansatz, Eq. (7) becomes the eigenvalue
problem

i2πf ṽ = Aṽ. (8)

We solve this eigenvalue problem using Python wrappers
for the ARPACK48 solvers which are implemented in the
SciPy49,50 package, which results in a set of resonant fre-
quencies f and eigenvectors ṽ from which we express the
magnetisation dynamics as m(t) = m0 + ṽei2πft.
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In the ringdown method, similar to the eigenvalue
method, we firstly relax the system to its equilibrium
magnetisation state m0. After that, we perturb the sys-
tem from its equilibrium by applying a time-dependent
h(t) = hmax sinc(2πfct)ê external magnetic field excita-
tion23,51 over texc = 0.5 ns, where hmax is the maximum
excitation field value, fc = 100GHz is the cut-off fre-
quency, ê is the direction in which the excitation is ap-
plied, and sinc(2πfct) is the unnormalised cardinal sine
function

sinc(2πfct) =

{

sin(2πfct)
2πfct

, for t 6= 0

1, for t = 0.
(9)

The time-dependence of the used excitation h(t) is shown
in Fig. 1(b). Computing the Fourier transform of h(t)
shows that using this excitation enables us to excite all
eigenmodes (which are allowed by the direction of ex-
citation ê) in the [0, fc] range approximately equally, as
demonstrated in Fig. 1(c). We compute the hmax value so
that Hf = 0.5mT is the excitation amplitude at any fre-
quency.23 More precisely, the maximum value of the car-
dinal sine wave excitation is hmax = 2fctexcH

f = 50mT.
We apply the excitation in two experimentally feasible
directions: (i) in-plane ê = x̂ and (ii) out-of-plane ê = ẑ.
After the system is perturbed from its equilibrium state,
we simulate the magnetisation dynamics for tsim = 20ns
and sample the magnetisation field m(ri, tj) at all mesh
nodes ri at uniform time steps tj = j∆t (∆t = 5ps).
Although the excitation is sufficiently small so that the
perturbation from the equilibrium state can be approxi-
mated linearly, in order to make sure we do not introduce
any nonlinearities to the system’s dynamics with the ex-
citation, we delay sampling by 2 ns after the excitation
field is removed.
Finally, we analyse the recorded magnetisation dy-

namics m(ri, tj) using: (i) spatially averaged and (ii)
spatially resolved methods.52 We subtract the time-
independent equilibrium magnetisation configuration
m0(ri) from the recorded magnetisation dynamics and
perform the Fourier analysis only on the time-dependent
part ∆m(ri, tj) = m(ri, tj)−m0(ri). In the spatially av-
eraged analysis, we compute all three spatially averaged
magnetisation components 〈∆mk(tj)〉, k = x, y, z, at all
time steps tj . After that, we apply a discrete Fourier
transform and sum the squared Fourier coefficient mod-
uli (which are proportional to the power) to obtain the
power spectral density (PSD):

Psa(f) =
∑

k=x,y,z

∣

∣

∣

∣

n
∑

j=1

〈∆mk(tj)〉 e
−i2πftj

∣

∣

∣

∣

2

, (10)

where n is the number of time steps at which the mag-
netisation dynamics was sampled. On the other hand, in
the spatially resolved analysis, we firstly compute the dis-
crete Fourier transform at all mesh nodes (separately for
all three magnetisation components) and then compute
the PSD as the spatial average of the squared Fourier

coefficient moduli:38

Psr(f) =
∑

k=x,y,z

1

N

N
∑

i=1

∣

∣

∣

∣

n
∑

j=1

mk(ri, tj)e
−i2πftj

∣

∣

∣

∣

2

, (11)

where N is the number of finite element mesh nodes.
Because the power values in PSD are in arbitrary units
(a.u.), we normalise all PSDs in this work so that
∫ fmax

0
P (f) df = 1, where fmax = 50GHz, and show

them in the logarithmic scale. We choose to analyse dy-
namics of skyrmionic states in the [0, 50GHz] range in or-
der to avoid the presence of artefact peaks in PSDs due to
aliasing53 as a consequence of discrete time sampling lim-
itations. Although, the frequency resolution in the eigen-
value method is determined by the machine precision, the
frequency resolution for the ringdown method is ∆f =
(n∆t)−1 ≈ tsim

−1 = 0.05GHz, where n = tsim/∆t + 1
is the number of sampling points during the sampling
simulation stage.

III. RESULTS

We study the dynamics of all three equilibrium
skyrmionic states that can be observed at zero exter-
nal magnetic field in confined thin film helimagnetic disk
samples with diameters d ≤ 180 nm. More precisely,
we explore the resonance frequencies and corresponding
eigenmode magnetisation dynamics of the ground state
incomplete skyrmion (iSk) and isolated skyrmion (Sk)
states, as well as the metastable target (T) configura-
tion. The difference between these states is in how many
times the magnetisation configuration covers the sphere.
A quantity that is usually used to determine whether
a magnetisation configuration covers the sphere is the
skyrmion number5 S. However, in confined helimag-
netic nanostructures, an additional tilting of magnetisa-
tion at the sample edges22 in the winding direction oppo-
site to the skyrmion configuration reduces the absolute
skyrmion number value21,54. This does not allow us to
determine what skyrmionic state is present is the sample
because |S| < 1 for all of them. To address this, a scalar
value21 Sa in a three-dimensional sample is defined as

Sa =
1

8π

∫
∣

∣

∣

∣

m ·

(

∂m

∂x
×

∂m

∂y

)∣

∣

∣

∣

d3r. (12)

This scalar value has no mathematical or physical inter-
pretation, and is defined merely to support the classifi-
cation of skyrmionic states in confined nanostructures.
Using the eigenvalue method, we find all existing eigen-

modes by computing their resonance frequencies and
magnetisation dynamics. However, this method does not
allow us to determine what eigenmodes can be excited
using a particular excitation. Therefore, we employ the
ringdown method for an in-plane and an out-of-plane ex-
citation and overlay the resulting spatially averaged and
spatially resolved power spectral densities (PSDs) with
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the resonance frequencies obtained from the eigenvalue
method. If the eigenvalue method resonance frequency
coincides with a PSD peak, this implies that the corre-
sponding eigenmode can be “activated” using a specific
excitation and we mark it using a triangle (△) symbol.
All other eigenmodes, that cannot be activated using a
particular excitation, we mark with a circle (◦) symbol.
Throughout this work, we study the magnetisation dy-
namics below 50GHz. We analyse the target state dy-
namics in Supplementary Section S1.

A. Incomplete skyrmion (iSk) state

The first magnetisation configuration that we study is
the incomplete skyrmion (iSk) state. The magnetisation
component mz of the iSk state, along the sample diam-
eter, does not cover the whole [−1, 1] range, which is
required for the skyrmion configuration to be present in
the sample, and because of that, the scalar value Sa is in
the [0, 1] range.21 In other works, this state is called ei-
ther the quasi-ferromagnetic22,54 or the edged vortex55,56

state. The incomplete skyrmion state is in an equilibrium
for all studied disk sample diameters 40 nm ≤ d ≤ 180 nm
and at all external magnetic bias field values.21 We ex-
plore the resonance frequencies and corresponding eigen-
mode magnetisation dynamics in a 80 nm diameter disk
sample at zero external magnetic field, where the iSk
state is not only in an equilibrium, but is also the ground
state21 (global energy minimum).
Firstly, we compute all existing eigenmodes using the

eigenvalue method and show the magnetisation dynamics
of all identified eigenmodes in Supplementary Video 1,
and their schematic representations in Supplementary
Section S3. Then, we excite the system using an in-plane
excitation and show the spatially averaged (SA) and spa-
tially resolved (SR) power spectral densities (PSDs) over-
laid with the eigenvalue method resonant frequencies in
Figs. 2(a) and 2(b), respectively. In these two PSDs, we
identify five peaks (A, D, E, F, and H) and schemati-
cally represent their corresponding eigenmode magneti-
sation dynamics in Fig. 2(e). The lowest frequency and
the most dominant eigenmode A at 2.35GHz consists
of a dislocated incomplete skyrmion state core (where
mz = 1) revolving (gyrating) around its equilibrium po-
sition in the clockwise (CW) direction. Schematically,
we represent the skyrmionic state core with a circle sym-
bol, together with a directed loop if it gyrates around
its equilibrium position. Consequently, we classify the
eigenmode A as the gyrotropic (translational) mode. The
eigenmode F at 23.04GHz is the second most dominant
eigenmode. Its magnetisation dynamics consists of a ring
contour, defined by the constant magnetisation z compo-
nent distribution, revolving around the sample centre in
the counterclockwise (CCW) direction. This eigenmode
is not gyrotropic because the iSk state core remains at
its equilibrium position. The eigenmode H at 41.65GHz,
present in both SA and SR PSDs, is composed of the iSk

state core together with two mz contour rings revolving
in the CW direction. However, the inner contour revolves
out-of-phase with respect to both the outer contour and
the iSk state core. Because of that, we depict the inner
contour ring using a dashed line and both the iSk state
core loop and the outer contour ring using a solid line as
a way of visualising the mutually out-of-phase dynam-
ics. The eigenmode D is present only in the SR PSD at
13.83GHz and consists of the iSk state core and a contour
ring revolving in the CW direction, but mutually out-of-
phase. So far, all identified eigenmodes are lateral, but in
the SA PSD at 14.49GHz, we also identify a very weak
eigenmode E with radially symmetric magnetisation dy-
namics. Although we expect that all eigenmodes present
in the SA PSD are also present in the SR PSD, this is
not the case for eigenmode E. We believe this is the case
because this breathing eigenmode can be excited with an
out-of-plane excitation, but emerges in simulations with
an in-plane excitation due to the numerical noise, which
is consistent with its small amplitude. This eigenmode,
together with other breathing eigenmodes, will be dis-
cussed subsequently when we excite the iSk state using
an out-of-plane excitation.

Now, we perturb the incomplete skyrmion state from
its equilibrium using an out-of-plane excitation and show
the spatially averaged (SA) and spatially resolved (SR)
power spectral densities (PSDs) in Figs. 2(c) and 2(d),
respectively. Using this excitation, we identify five eigen-
modes (A, B, C, E, and G) and schematically represent
their magnetisation dynamics in Fig. 2(e). The most
dominant eigenmode E is present in both SA and SR
PSDs at 13.83GHz. Its magnetisation dynamics consists
of a mz contour ring that shrinks and expands period-
ically, while the overall magnetisation configuration re-
mains radially symmetric. Because of that, we classify
this eigenmode as a breathing mode. The second most
dominant eigenmode is the gyrotropic mode A, which
was also observed when the system was excited using an
in-plane excitation, suggesting that it can be experimen-
tally detected independent of the used excitation direc-
tion. The last eigenmode G present in both SA and SR
PSDs at 32.37GHz consists of two contour rings breath-
ing mutually out-of-phase. More precisely, when one con-
tour shrinks, another one expands, and vice versa. We
schematically illustrate this out-of-phase breathing using
dashed and solid lines depicting the contours. Finally,
the eigenmodes B and C, visible only in the SR PSD at
2.57GHz and 3.76GHz, respectively, can be understood
as a particular magnetisation configuration rotating in
the sample in the CW direction without dislocating their
core, as shown in Fig. 2(e).

After analysing the incomplete skyrmion power spec-
tral densities for d = 80nm and H = 0, we now explore
how the resonance frequencies depend on the external
magnetic bias field H and the disk sample diameter d for
both an in-plane and an out-of-plane excitation. Firstly,
we fix the disk sample diameter at 80 nm and reduce the
external magnetic field from 1.2T to −0.5T in steps of
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FIG. 2. The power spectral densities (PSDs) of an incomplete skyrmion (iSk) ground state at zero external magnetic field in a
80 nm diameter FeGe disk sample with 10 nm thickness. (a) Spatially averaged and (b) spatially resolved PSDs for an in-plane
excitation, together with overlaid resonance frequencies computed using the eigenvalue method. The resonant frequencies
obtained using the eigenvalue method are marked with a triangle symbol (△) if they can be activated using a particular
excitation and with a circle symbol (◦) otherwise. (c) Spatially averaged and (d) spatially resolved PSDs for an out-of-plane
excitation. (e) Schematic representations of magnetisation dynamics associated with the identified eigenmodes. Schematically,
we represent the skyrmionic state core with a circle symbol, together with a directed loop if it gyrates around its equilibrium
position. Contour rings represented using dashed lines revolve/breathe out-of-phase with respect to the those marked with
solid lines. The magnetisation dynamics animations of all identified eigenmodes are provided in Supplementary Video 1.

10mT. More precisely, we start at µ0H = 1.2T initialis-
ing the system using incomplete skyrmion configuration
with positive core orientation iSk↑, relax the system to
its equilibrium, and then run both eigenvalue and ring-
down simulations. After that, we reduce the external
magnetic field by 10mT, relax the system to its equi-
librium using the relaxed (equilibrium) state from the
previous simulation as initial configuration, and run dy-
namics simulations. We iterate until we reach −0.5T.
We show the resulting H-dependent power spectral den-
sity (PSD) maps for an in-plane and an out-of-plane ex-
citation in Figs. 3(a) and 3(b), respectively. In these H-
dependent PSD maps, a discontinuity in resonance fre-
quencies at −0.26T is evident. This is the case because
for d = 80nm and −0.26T ≤ µ0H ≤ 1.2T, the iSk state

with positive (mz = 1) core orientation (iSk↑) is in an
equilibrium. However, for µ0H < −0.26T, the iSk↑ is
not in an equilibrium anymore and the iSk state reverses
its orientation to the negative (mz = −1) direction (iSk↓)
in order to reduce its Zeeman energy. This is consistent
with the incomplete skyrmion hysteretic behaviour stud-
ies.21 Secondly, we change the disk sample diameter d
between 40 nm and 180 nm in steps of 2 nm at zero exter-
nal magnetic bias field and show in Figs. 3(c) and 3(d)
the d-dependent PSD maps for an in-plane and an out-
of-plane excitation, respectively. In PSD maps, we show
the spatially resolved PSDs, computed using Eq. (11),
because in comparison to the spatially averaged PSDs,
they exhibit more resonance peaks.38 We show two plots
for every PSD map: one for the complete studied fre-
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FIG. 3. Power spectral density (PSD) maps showing the dependence of incomplete skyrmion (iSk) state resonant frequencies
on the external magnetic bias field changed between −0.5T and 1.2T in steps of 10mT for d = 80nm when the system is excited
using (a) in-plane and (b) out-of-plane excitation. The dependence of resonance frequencies on the disk sample diameter varied
between 40 nm and 180 nm in steps of 2 nm at zero external magnetic field for (c) in-plane and (d) out-of-plane excitation. We
show two plots for every PSD map: one for the complete studied frequency range (0 − 50GHz) and another plot in order to
better resolve the low-frequency (0− 10GHz) part of the PSD map.

quency range (0 − 50GHz) and another plot in order to
better resolve the low-frequency (0− 10GHz) part of the
PSD map.

In the case of an in-plane excitation, three lateral
eigenmodes (A, D, and F) are visible in the H-dependent
PSD map, shown in Fig. 3(a), and in the iSk↑ range
their frequencies nonlinearly and monotonically increase
with H. Eigenmodes D and F are not as dominant as

eigenmode A in the PSD map below approximately 0.3T,
which results in the lack of sufficient contrast for them
to be visible. Now, if we change the direction of exci-
tation, five eigenmodes (A, B, C, E, and G) are visible
in the H-dependent PSD map, as shown in Fig. 3(b).
In the iSk↑ range, eigenmodes A, B, and C are visible
only between Hs and approximately 0.4T. In Fig. 2(d)
at zero external magnetic field, eigenmodes A, B, and
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C have very similar frequencies which makes it difficult
for experimentalists to determine which eigenmode the
resonance frequency they measure belongs to. From the
out-of-plane H-dependent PSD map in Fig. 3(b), we ob-
serve that this difficulty can be resolved by reducing the
external magnetic field towards the switching field. More
precisely, the frequencies of eigenmodes A and B both de-
crease, but only the frequency of eigenmode A approaches
zero. On the contrary, the frequency of eigenmode C
increases by reducing H. Also, the separation between
A, B, and C peaks in the PSD increases, by either in-
creasing or decreasing external magnetic field value. We
show the dependence of their frequencies at high exter-
nal magnetic fields in Supplementary Section S2 using the
eigenvalue method and demonstrate that no eigenmode
crossing occurs. In addition, as we previously discussed,
by changing the excitation to an in-plane direction, only
eigenmode A would be present. The eigenmodes E and G
are visible in the whole examined range of H, and their
frequencies increase nonlinearly and monotonically with
external magnetic bias field. Interestingly, the frequency
of eigenmode A approaches zero near the switching field
µ0Hs = −0.26T, suggesting that this gyrotropic eigen-
mode might be the reversal (zero) mode of the incomplete
skyrmion state in the studied sample.
By varying the disk sample diameter d, for an in-plane

excitation, we observe the gyrotropic eigenmode A fre-
quency increasing between 40 nm and 64 nm (where it
reaches its maximum), and then decreasing with d, as
shown in Fig. 3(c). Another visible eigenmode in the
PSD map above approximately 74 nm, for an in-plane
excitation, is the eigenmode F whose frequency mono-
tonically decreases with d. In the case of an out-of-plane
excitation, we identify seven (A, B, C, E, G, X1, and X2)
eigenmodes in the PSD map shown in Fig. 3(d). The
magnetisation dynamics of all these eigenmodes was dis-
cussed before, except X1 and X2, because they were not
present in the PSDs below the maximum studied fre-
quency 50GHz for d = 80nm. The eigenmode A fre-
quency dependence is the same as for an in-plane excita-
tion and another six eigenmodes (B, C, E, G, X1, and X2)
frequencies monotonically decrease with the disk sample
diameter.

B. Isolated skyrmion (Sk) state

In this section, we explore the dynamics of an isolated
skyrmion (Sk) state, for which the magnetisation z com-
ponent covers the [−1, 1] range once (plus the additional
magnetisation tilting at the boundaries due to the spe-
cific boundary conditions22) along the disk sample diam-
eter, and consequently, the scalar value Sa is in the [1, 2]
range.21 The Sk state is in an equilibrium21 for d ≥ 70 nm
and µ0H ≤ 1.1T. We study the Sk state dynamics for a
150 nm diameter disk sample at zero external magnetic
bias field, where the Sk state is not only in an equilib-
rium, but is also the ground state.21

After we perform the eigenvalue method computations,
we excite the system using an in-plane excitation and
show the spatially averaged (SA) and spatially resolved
(SR) power spectral densities (PSDs) in Figs. 4(a) and
4(b), respectively. The magnetisation dynamics of all ex-
isting eigenmodes computed using the eigenvalue method
are shown in Supplementary Videos 2 and 3, and their
schematic representations in Supplementary Section S3.
In both SA and SR PSDs, we identify nine peaks (eigen-
modes A, B, D, E, G, I, J, L, and M), and show their
schematic representations in Fig. 4(e). The lowest fre-
quency eigenmode at 0.67GHz is the gyrotropic eigen-
mode A. Its magnetisation dynamics consists of a dislo-
cated Sk state core (where mz = −1) gyrating around
its equilibrium position in the CCW direction. In both
PSDs, the eigenmode B at 1.91GHz is the most dominant
one, and consists of a contour ring (defined as a constant
magnetisation z component distribution) revolving in the
CW direction. The eigenmode D at 7.61GHz is com-
posed of both the Sk state core and a magnetisation con-
tour ring revolving in the CCW direction, but mutually
out-of-phase. At 14.54GHz, we identify an eigenmode E
with two magnetisation contour rings revolving mutually
out-of-phase in the CW direction. Similarly, the eigen-
mode G at 18.89GHz also consists of two contour rings
revolving mutually out-of-phase, but now in the CCW
direction. The four remaining eigenmodes (I, J, L, and
M) are significantly weaker in both PSDs when compared
to the power of previously discussed eigenmodes. Their
magnetisation dynamics, shown in Fig. 4(e), are all lat-
eral and contain different combinations of revolving con-
tour rings and revolving Sk state core.

Now, we change the excitation to be in the out-of-
plane direction. The computed spatially averaged and
spatially resolved power spectral densities, overlaid with
the resonance frequencies obtained from the eigenvalue
method, are shown in Figs. 4(c) and 4(d), respectively.
In this case, we observe five peaks (eigenmodes A, C,
F, H, and K) in both PSDs, and a significantly weaker
lateral eigenmode G (previously discussed) in SA PSD.
We show the schematic representation of their magneti-
sation dynamics in Fig. 4(e). Similar to the incomplete
skyrmion state, the gyrotropic eigenmode A can also be
activated with an out-of-plane excitation. The lowest fre-
quency breathing eigenmode C at 2.00GHz consists of a
single contour ring that shrinks and expands periodically.
An eigenmode F at 16.12GHz is composed of two con-
tour rings breathing mutually out-of-phase. Similar to
the eigenmode C, the eigenmode H at 25.22GHz consists
of a single breathing contour, but now with a smaller
contour diameter (smaller mz). At 39.25GHz, we iden-
tify the highest frequency breathing eigenmode K in the
studied frequency range, which contains three breathing
contours, where the inner and the outer contours breathe
out-of-phase with respect to the middle one.

So far, we analysed the isolated skyrmion state dynam-
ics for d = 150 nm and H = 0. Now, our objective is to
determine how the resonance frequencies depend on disk
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FIG. 4. The power spectral densities (PSDs) of an isolated skyrmion (Sk) ground state in a 150 nm diameter FeGe disk sample
with 10 nm thickness at zero external magnetic bias field. (a) Spatially averaged and (b) spatially resolved PSDs for an in-plane
excitation, together with overlaid resonance frequencies computed using the eigenvalue method. The resonant frequencies
obtained using the eigenvalue method are marked with a triangle symbol (△) if they can be activated using a particular
excitation and with a circle symbol (◦) otherwise. (c) Spatially averaged and (d) spatially resolved PSDs computed when
the Sk state is perturbed from its equilibrium with an out-of-plane excitation. (e) Schematic representations of magnetisation
dynamics associated with the identified eigenmodes. Schematically, we represent the skyrmionic state core with a circle
symbol, together with a directed loop if it gyrates around its equilibrium position. Contour rings represented using dashed
lines revolve/breathe out-of-phase with respect to the those marked with solid lines. The magnetisation dynamics animations
of all identified eigenmodes are provided in Supplementary Videos 2 and 3.

sample diameter and external magnetic field. We com-
pute the H-dependent PSD map in two parts in order to
obtain how the resonance frequencies change in the entire
range of external magnetic field values where the isolated
skyrmion state with negative core orientation (Sk↓) is in
equilibrium. More precisely, the system initialised with
Sk↓ at high external magnetic fields relaxes to the in-
complete skyrmion state with positive core orientation21

iSk↑. Consequently, if we keep reducing H and use the
equilibrium state from previous simulation iteration as
initial state, we could not reach the Sk↓ state. There-
fore, we firstly fix the disk sample diameter to 150 nm,
set H = 0, initialise the system using Sk↓ configuration,
relax the system, and run dynamics simulations. Then

we increase the external magnetic field by 10mT using
the equilibrium state from previous simulation as the ini-
tial state at new value of external magnetic field. We
iterate this until we reach 1.2T. Similarly, starting from
zero external magnetic field, we reduce µ0H in steps of
10mT, until µ0H = −0.5T is reached. We show the H-
dependent PSD maps for an in-plane and an out-of-plane
excitation in Fig. 5(a) and 5(b), respectively. In these
PSD maps, two discontinuities in resonant frequencies
at −0.24T and 1.12T are present. The first discontinu-
ity occurs because decreasing H causes the Sk state core
with negative (mz = −1) orientation (Sk↓) to switch to
the positive (mz = 1) direction (Sk↑) at the switching
field µ0Hs = −0.24T. On the other hand, the discon-
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FIG. 5. Power spectral density (PSD) maps showing the dependence of isolated skyrmion (Sk) state resonant frequencies on
the external magnetic bias field changed between −0.5T and 1.2T in steps of 10mT for d = 150 nm when the system is excited
using (a) in-plane and (b) out-of-plane excitation. The dependence of resonance frequencies on the disk sample diameter varied
between 40 nm and 180 nm in steps of 2 nm at zero external magnetic field for (c) in-plane and (d) out-of-plane excitation. We
show two plots for every PSD map: one for the complete studied frequency range (0 − 50GHz) and another plot in order to
better resolve the low-frequency (0− 10GHz) part of the PSD map.

tinuity at 1.12T occurs because, above this value, the
Sk↓ is not in an equilibrium anymore and the system re-
laxes to the incomplete skyrmion state with positive core
orientation (iSk↑). Secondly, at H = 0, we vary d be-
tween 40 nm and 180 nm in steps of 2 nm and show the
d-dependent PSD maps in Figs. 5(c) and 5(d) for an in-
plane and an out-of-plane excitation, respectively. Now,

a single discontinuity in resonance frequencies is present
at 70 nm, below which the disk sample diameter becomes
too small to accommodate the full magnetisation rotation
and the iSk state emerges. The external magnetic bias
field and disk sample diameter values at which the dis-
continuities occur are consistent with equilibrium21 and
hysteretic behaviour21,57 studies.
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FIG. 6. Comparisons of power spectral densities (PSDs) of ground incomplete skyrmion (iSk) state (solid red line) and
metastable isolated skyrmion (Sk) state (dashed blue line) in a 100 nm disk sample with 10 nm thickness at different values of
external magnetic field H, computed for an in-plane (left column) and an out-of-plane (right column) excitation.

For an in-plane excitation, in the H-dependent PSD
map, shown in Fig. 5(a), five previously discussed eigen-
modes (A, B, D, E, and G) are visible in the H range
where the Sk↓ state is in an equilibrium. The frequency
of gyrotropic eigenmode A firstly increases, reaches its
maximum at approximately 0.15T, and then decreases
down to its minimum at approximately 0.9T, after which
it keeps increasing with H. In comparison to the other
eigenmodes, its frequency varies over a much smaller
range (less than 1GHz) over the entireH range where the
Sk↓ state is in an equilibrium. Similar to the incomplete
skyrmion state, the frequency of gyrotropic eigenmode A
approaches zero near the switching field µ0Hs = −0.24T,
suggesting that this eigenmode might govern the iso-
lated skyrmion reversal process. The eigenmode B fre-

quency increases approximately linearly up to 0.6T, after
which it continues increasing nonlinearly. The frequency
of eigenmode D, firstly decreases, reaches its minimum
at approximately 0.22T, and then continues increasing
nonlinearly with H. The frequencies of eigenmodes E
and G exhibit more complicated behaviour where two
extremes (maximum and minimum) are present in their
H-dependences. When an out-of-plane excitation is used,
we observe five previously discussed eigenmodes (A, C,
F, H, and J) in the H-dependent PSD map, shown in
Fig. 5(b). The eigenmode A now becomes invisible in the
PSD map below 0.2T. The breathing eigenmode C fre-
quency increases monotonically over the entire Sk↓ field
range. The frequency dependences of eigenmodes F, H,
and J, exhibit more complicated behaviour having both
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local maximum and minimum in their H-dependences.
In the d-dependent PSD map, shown in Fig. 5(c), ob-

tained when an in-plane excitation is used, five previously
discussed eigenmodes (A, B, D, E, and G) are present.
In contrast to the frequencies of eigenmodes D, E, and G
that monotonically decrease with d over a wide range of
frequencies, the eigenmodes A and B frequencies vary in
a much smaller (less than 1GHz) range over entire stud-
ied d range. Eigenmodes D, E, and G become invisible in
the PSD map below approximately 120 nm. In Fig. 5(d),
we show the d-dependent PSD map for an out-of-plane
excitation, where five eigenmodes (A, C, F, H, and J) are
visible. Similar to the eigenmodes A and B, the lowest
frequency breathing eigenmode frequency changes over a
much smaller range than the frequencies of eigenmodes
F, H, and J, when the disk sample diameter is changed.

C. Comparison of incomplete skyrmion and
isolated skyrmion power spectral densities

One of the challenges in the study of skyrmionic states
in confined helimagnetic nanostructures is the detection
of what state emerged in the studied sample. In this
subsection we discuss how measuring resonance frequen-
cies can contribute to the identification of the emerged
state. Previously, in Sections IIIA and III B, we studied
the dynamics of both incomplete skyrmion (iSk) and iso-
lated skyrmion (Sk) states in disk samples with diameters
for which these states were the ground states. Now, we
compare the power spectral densities (PSDs) of iSk and
Sk states in a 100 nm diameter disk sample with 10 nm
thickness at different external magnetic field values µ0H
(between 0T and 1T in steps of 0.25T). In this sample
size and at all simulated external magnetic field values,
both iSk and Sk states are in equilibrium. More specifi-
cally, the Sk state is metastable and the iSk state is the
ground state.21 We show the comparison of spatially re-
solved iSk and Sk PSDs at different external magnetic
field values for an in-plane and an out-of-plane excita-
tion in Fig. 6. Because in a 100 nm diameter disk sample
there are no dominant iSk and Sk eigenmodes that can
be easily detected in experiments above 30GHz, we now
limit our discussion of PSDs below 30GHz in order to
better resolve the key differences, that can contribute to
the identification of the present state.
Firstly, in the case of an in-plane excitation (left col-

umn in Fig. 6), the frequency of iSk gyrotropic eigen-
mode A (the lowest frequency iSk eigenmode), increases
with H. On the contrary, the Sk gyrotropic eigenmode
A (again the lowest frequency Sk eigenmode) frequency
remains approximately the same. Furthermore, by in-
creasing the external magnetic field the Sk eigenmode
B frequency increases, and consequently, the frequency
difference between two lowest frequency Sk eigenmodes
∆AB increases in a wide range of frequencies. In contrast,
the frequencies of two lowest frequency iSk eigenmodes
A and D both increase with H, so that the frequency

difference ∆AD between them changes over a small range
of frequencies (remains approximately the same). How-
ever, at low values of external magnetic field, it could be
difficult to measure the iSk eigenmode D due to its rela-
tively small amplitude. In that case, between 0.25T and
0.75T, the frequency of dominant iSk eigenmode F does
not change, so the ∆AF = ∆AD+∆DF difference reduces
with H for about 5GHz.
When we excite the system using an out-of-plane ex-

citation (right column in Fig. 6), at H = 0, several res-
onance frequencies below 5GHz are present, which does
not allow a clear identification of the emerged state by
measuring resonance frequencies in that region. How-
ever, by increasing the external magnetic field, the low
frequency part of PSDs simplifies. More specifically, the
Sk eigenmode A frequency again does not change, while
the Sk breathing eigenmode C, and therefore the dif-
ference ∆AC, increase with H. In addition, for a Sk
state above 0.25T, the frequency of eigenmode F re-
mains approximately the same, and therefore, the dif-
ference ∆CF decreases with H. On the contrary, iSk
eigenmodes A, B, and C disappear from the PSD after
µ0H = 0.5T, whereas the frequency difference ∆EG be-
tween two most dominant iSk eigenmodes E and G re-
mains approximately the same, since their frequencies
both increase.
The dependences of resonant frequencies in this sample

with d = 100 nm are in a good agreement with the PSD
maps shown in Fig. 3(a) and Fig. 5(a) and eigenvalue
computed results in Supplementary Section S2. This sug-
gests that these identification differences can probably be
applied to different sample sizes. At µ0H = 1T, we ap-
proach the transition from Sk to iSk state and additional
peaks in Sk state PSDs, shown in Fig. 6, occur.

D. Simulations with real FeGe damping

In the previous analysis of skyrmionic states dynamics,
we intentionally used the small Gilbert damping value
α′ = 0.002 as used in other eigenmode studies,23 in order
to allow enough separation between peaks in the power
spectral densities (enabled by the reduced linewidth) and
identify all eigenmodes that can be excited using a par-
ticular experimentally feasible excitation. However, in
experiments, which eigenmodes can be observed strongly
depends on the real value of Gilbert damping. Therefore,
in this section, we measure the FeGe Gilbert damping
value α and repeat our simulations in order to determine
what eigenmodes are expected to be experimentally ob-
served in helimagnetic FeGe confined nanostructures.
We perform the ferromagnetic resonance measure-

ments in a FeGe thin film with 67.8 ± 0.1 nm thickness,
grown on the Si substrate in the (111) direction and
capped with a 4.77±0.07 nm thin Ge layer.58 We show the
linewidth ∆H (half width at half maximum) measure-
ment points at different resonance frequencies f , together
with a first degree polynomial fit in Fig. 7. The polyno-
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FIG. 7. The linewidth ∆H (half width at half maximum)
measurement points at different resonance frequencies f for
a FeGe thin film, together with a first degree polynomial fit
from which the Gilbert damping was extracted.

mial fit allows us to decompose the ∆H dependence into a
frequency independent inhomogeneously-broadened com-
ponent ∆H0 and an intrinsic damping-related part:59–61

∆H = ∆H0 +
αf

γ
, (13)

where α is the Gilbert damping and γ is the gyromagnetic
ratio. From the slope of the polynomial fit and using
the frequency-dependent term that reflects the “viscous”
damping of the precessive magnetisation motion associ-
ated with the FMR, we find α = 0.28± 0.02.

Now, we use the measured α = 0.28 and repeat
the ringdown simulations for the two skyrmionic ground
states that can exist in the studied system. We show the
spatially resolved power spectral density of an incomplete
skyrmion state in a 80 nm diameter disk sample at zero
external magnetic bias field for an in-plane and an out-
of-plane excitation in Figs. 8(a) and 8(b), respectively.
We observe that, when the system is excited using an
in-plane excitation, only the gyrotropic eigenmode A is
present in the PSD. On the other hand, for an out-of-
plane excitation, we identify two eigenmodes in the PSD
shown in Fig. 8(b). The first one is the gyrotropic eigen-
mode A, which is also present in the in-plane PSD, and
another one is the lowest frequency breathing eigenmode
E. The PSDs of the isolated skyrmion state in a 150 nm
diameter disk sample at zero external magnetic bias field
are shown in Figs. 8(c) and 8(d) for an in-plane and
an out-of-plane excitation, respectively. Now, only the
three lowest frequency isolated skyrmion eigenmodes are
present. The gyrotropic eigenmode A and eigenmode B
can be identified when the system is excited using an in-
plane excitation. On the other hand, for the out-of-plane
excitation, only the breathing eigenmode C is present.

E. Demagnetisation energy and out-of-plane
magnetisation variation effects

Usually, in the simulations of skyrmionic states dy-
namics in helimagnetic samples, for simplicity, the de-
magnetisation energy contribution is neglected and/or a
helimagnetic thin film sample is modelled using a two-
dimensional mesh. It has been shown that the demag-
netisation energy contribution21 and the magnetisation
variation in the out-of-film direction21,39 radically change
the energy landscape. Consequently, using these assump-
tions when the static properties of skyrmionic states are
explored is not justified. Because of that, in this sec-
tion, we investigate how these two assumptions affect the
dynamics of the isolated skyrmion (Sk) state in studied
helimagnetic nanostructure. Firstly, we repeat the iso-
lated skyrmion state simulations in a 150 nm diameter
disk sample at zero external magnetic bias field, but this
time we set the demagnetisation energy contribution wd

in Eq. (1) artificially to zero. Secondly, again in the ab-
sence of demagnetisation energy contribution, we simu-
late the Sk state dynamics under the same conditions,
but this time using a two-dimensional mesh to model
a thin film sample (i.e. not allowing the magnetisation
variation in the out-of-film direction). We show the com-
parison of power spectral densities computed using three-
dimensional and two-dimensional models in absence of
demagnetisation energy contribution with the one com-
puted using a full model in Figs. 9(a) and 9(b), for an
in-plane and an out-of-plane excitations, respectively.

We observe that although the magnetisation dynam-
ics of identified eigenmodes do not change significantly,
the resonance frequencies of some eigenmodes change
substantially. In the 3D simulations in absence of de-
magnetisation energy, while the frequency of eigenmode
D remains approximately the same, the frequencies of
eigenmodes A and B increase by 71% and 18%, respec-
tively. On the other hand, the frequencies of eigenmodes
E and G decrease by 14% and 21%, respectively. Further-
more, power spectral densities in Fig. 9(b), computed for
the out-of-plane excitation, show that the frequency of
breathing eigenmode C increases by 17%, whereas the
frequency of eigenmode F decreases by 34%.

If the thin film sample is modelled using a 2D mesh,
which does not allow the magnetisation to vary in the
z direction, the frequencies of lateral eigenmodes A, B,
and G do not change significantly in comparison to the
3D model in absence of demagnetisation energy contri-
bution. Although the frequency of eigenmode D does
not change in the 3D simplified (wd = 0) model, neglect-
ing the sample thickness, increases its frequency by 20%.
The frequency of eigenmode E increases so that it is ap-
proximately the same as in the full 3D model. In compar-
ison to the 3D simplified model, the frequency of breath-
ing eigenmodes C and F further increase by 19% and
7%, respectively. In the low frequency region of Fig. 9(b)
we observe several eigenmodes that are not present in
the three-dimensional model. Although there are theo-
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FIG. 8. The spatially resolved power spectral densities (PSDs) of an incomplete skyrmion state in a 80 nm diameter FeGe
disk sample with 10 nm thickness at zero external magnetic bias field for (a) in-plane and (b) out-of-plane excitation direction.
The isolated skyrmion state in a 150 nm diameter thin film disk with 10 nm thickness at H = 0 when the system is excited
with (c) in-plane and (d) out-of-plane excitation. The PSDs are computed using the experimentally measured value of FeGe
Gilbert damping α = 0.28.

retically less eigenmodes in a two-dimesional sample (the
number of existing eigenmodes equals to the number of
degrees of freedom in the system), we do not know at
what frequencies they will occur. We believe the rea-
son for this is that although the state is the same, its
dynamics quilitatively changes at low frequencies due to
the missing thickness dimension. We also observe eigen-
modes computed using the eigenvalue method that agree
with the peaks in PSD shown in Fig. 9(b).

IV. DISCUSSION AND CONCLUSION

Using the eigenvalue method, we computed all eigen-
modes with frequencies below 50GHz for the incomplete
skyrmion, isolated skyrmion, and target states in heli-
magnetic thin film disk samples at zero external mag-
netic field. Because which eigenmodes are present in
the power spectral density strongly depends on the ex-
citation used to perturb the system from its equilib-
rium state, we performed the ringdown simulations us-
ing two different experimentally feasible excitations (in-
plane and out-of-plane). We demonstrated that in all
three simulated states, two lateral and one breathing low-

frequency eigenmodes exist, as previously demonstrated
in two-dimensional skyrmion lattice simulations25 and
microwave absorption measurements in bulk helimag-
netic materials26–28. However, only one lateral eigen-
mode is gyrotropic, with the skyrmionic state core gy-
rating around its equilibrium position. The other lateral
eigenmode we observed is not gyrotropic because it con-
sists of a single contour ring (defined by the magneti-
sation z component distribution) revolving around the
static skyrmionic state core. The existence of only one
gyrotropic eigenmode is in accordance with the recent
analytic (rigid skyrmion two-dimensional model) find-
ings by Guslienko and Gareeva,36 but in contrast to
magnetic bubbles where two gyrotropic eigenmodes were
found.33–35 Because the two gyrotropic eigenmodes with
opposite gyration direction in a magnetic bubble imply
it possesses mass, our findings suggest that the confined
DMI-induced skyrmionic states in the studied system are
massless. The low-frequency breathing eigenmode we ob-
serve, where a single magnetisation z component contour
ring shrinks and expands periodically, is in accordance
with findings in Ref. 23, 25–28, 62, and 63.

For the incomplete skyrmion and the isolated skyrmion
states we found that the resonance frequencies depend
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FIG. 9. The comparison of power spectral densities com-
puted using three-dimensional and two-dimensional models
in absence of demagnetisation energy contribution with the
PSD obtained using a full simulation model for an isolated
skyrmion state in the case of (a) in-plane and (b) out-of-plane
excitation. Simulated sample is a 150 nm diameter disk with
10 nm thickness at zero external magnetic field.

nonlinearly on both the disk sample diameter and the
external magnetic bias field. We observed that the fre-
quency of the gyrotropic eigenmode approaches zero near
the switching field Hs (where the reversal of skyrmionic
state core occurs) for both incomplete skyrmion and iso-
lated skyrmion states, suggesting that this eigenmode
might be the reversal mode of studied skyrmionic states.
We find that when the skyrmionic state core orientation
reverses, the revolving direction of all lateral eigenmodes
changes, which confirms that the revolving direction de-
pends on the direction of the gyrovector as shown in
Ref. 25 and 36.

After we identified all existing eigenmodes of iSk and
Sk ground states, we compared their PSDs in the same
sample at different external magnetic field values. We
identified several characteristics that can contribute to
the experimental identification of the state that emerged
in the sample by measuring the resonance frequencies.

In the identification and analysis of eigenmodes, we
used a small Gilbert damping value in order to provide
enough separation between peaks in the PSD. However,
which eigenmodes are expected to be observed in ex-
periments strongly depends on the real Gilbert damp-
ing value α. Therefore we measured α in the FeGe thin
film, and carried out ringdown simulations with this α.
We showed that for the incomplete skyrmion, two eigen-

modes (gyrotropic and breathing) are present in the PSD
computed using an out-of-plane excitation, whereas only
the gyrotropic eigenmode is present in the PSD computed
using an in-plane excitation. In the isolated skyrmion
case, two lateral eigenmodes are present in the PSD
obtained using an in-plane excitation, whereas a single
breathing eigenmode is present in the PSD computed af-
ter using the out-of-plane excitation.
Our simulations took into account the demagnetisation

energy contribution, which is usually neglected for sim-
plicity in both analytic and simulation works. To explore
the importance of model assumptions, we carried out fur-
ther systematic simulation studies in which we set the
demagnetisation energy contribution artificially to zero.
We also repeated the simulations under the same condi-
tions on 3D and 2D meshes (with and without permissi-
ble magnetisation variation in the out-of-film direction,
respectively). We found that although the magnetisation
dynamics of eigenmodes does not change significantly,
their frequencies change substantially. This suggests that
ignoring the demagnetisation energy contribution or ap-
proximating a thin film helimagnetic sample using a two-
dimensional mesh is not always justified.
This work provides a systematic dynamics study of

skyrmionic states in confined helimagnetic nanostruc-
tures. We report all eigenmodes present in the sample
as well as which eigenmodes can be observed using par-
ticular experimentally feasible excitations. Apart from
contributing to fundamental physics, this work could sup-
port experimentalists to determine what magnetisation
configuration is present in the confined helimagnetic sam-
ple by measuring ferromagnetic resonance spectra.
All data supporting this study are openly avail-

able from the University of Southampton repository at
http://doi.org/10.5258/SOTON/403976.
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and S. Eisebitt, Nat. Phys. 11, 225 (2015).

36 K. Y. Gusliyenko and Z. Gareeva, IEEE Magn. Lett. 7, 1
(2016).

37 M. D’Aquino, C. Serpico, G. Miano, and C. Forestiere, J.
Comput. Phys. 228, 6130 (2009).

38 R. D. McMichael and M. D. Stiles, J. Appl. Phys. 97,
10J901 (2005).

39 F. N. Rybakov, A. B. Borisov, and A. N. Bogdanov, Phys.
Rev. B 87, 094424 (2013).

40 L. Landau and E. Lifshits, Phys. Zeitsch. der Sow. 8, 153
(1935).

41 T. L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).
42 T. Fischbacher, M. Franchin, G. Bordignon, and H. Fan-

gohr, IEEE Trans. Magn. 43, 2896 (2007).
43 A. Logg, K. A. Mardal, and G. N. Wells, Automated solu-

tion of differential equations by the finite element method ,
edited by A. Logg, K.-A. Mardal, and G. Wells, Lecture
Notes in Computational Science and Engineering, Vol. 84
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2012) p.
724.

44 A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee,
R. Serban, D. E. Shumaker, and C. S. Woodward, ACM
Trans. Math. Softw. 31, 363 (2005).

45 S. D. Cohen, A. C. Hindmarsh, and P. F. Dubois, Comput.
Phys. 10, 138 (1996).

46 J. D. Hunter, Comput. Sci. Eng. 9, 90-95 (2007).
47 J. Ahrens, B. Geveci, and C. Law, ParaView: An end-user

tool for large data visualization (Elsevier, 2005).
48 K. J. Maschho and D. C. Sorensen, Lect. Notes Comput.

Sci. (2005) pp. 478–486.
49 T. E. Oliphant, Comput. Sci. Eng. 9, 10 (2007).
50 S. van der Walt, S. C. Colbert, and G. Varoquaux, Com-

put. Sci. Eng. 13, 22 (2011).
51 G. Venkat, D. Kumar, M. Franchin, O. Dmytriiev,

M. Mruczkiewicz, H. Fangohr, A. Barman, M. Krawczyk,
and A. Prabhakar, IEEE Trans. Magn. 49, 524 (2013).

52 A. Baker, M. Beg, G. Ashton, M. Albert, D. Chernyshenko,

mailto:m.beg@soton.ac.uk
mailto:h.fangohr@soton.ac.uk
http://dx.doi.org/10.1016/0022-3697(58)90076-3
http://dx.doi.org/10.1103/PhysRev.120.91
http://dx.doi.org/10.1103/PhysRevLett.44.1538
http://dx.doi.org/10.1016/S0304-8853(97)01044-5
http://dx.doi.org/10.1016/S0304-8853(97)01044-5
http://dx.doi.org/ 10.1038/nphys2045
http://dx.doi.org/10.1103/PhysRevB.86.134425
http://dx.doi.org/10.1103/PhysRevB.86.134425
http://dx.doi.org/10.1126/science.1240573
http://dx.doi.org/ 10.1126/science.1195709
http://dx.doi.org/ 10.1126/science.1195709
http://dx.doi.org/10.1038/ncomms1990
http://dx.doi.org/10.1038/ncomms1990
http://dx.doi.org/ 10.1088/0022-3727/44/39/392001
http://dx.doi.org/10.1038/nnano.2013.29
http://dx.doi.org/10.1038/nnano.2013.29
http://dx.doi.org/ 10.1038/srep09400
http://dx.doi.org/ 10.1038/srep09400
http://www.jetp.ac.ru/cgi-bin/e/index/e/68/1/p101?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/68/1/p101?a=list
http://dx.doi.org/10.1016/S0304-8853(98)01038-5
http://dx.doi.org/10.1016/S0304-8853(98)01038-5
http://dx.doi.org/10.1038/nature05056
http://dx.doi.org/10.1038/nature05056
http://dx.doi.org/ 10.1126/science.1166767
http://dx.doi.org/ 10.1126/science.1166767
http://dx.doi.org/ 10.1038/nmat2916
http://dx.doi.org/ 10.1038/nmat2916
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1038/nature09124
http://dx.doi.org/10.1126/science.1214143
http://dx.doi.org/10.1126/science.1214143
http://dx.doi.org/ 10.1103/PhysRevLett.113.077202
http://dx.doi.org/10.1038/srep17137
http://dx.doi.org/10.1038/srep17137
http://dx.doi.org/10.1103/PhysRevB.88.184422
http://dx.doi.org/10.1103/PhysRevB.88.184422
http://dx.doi.org/ 10.1103/PhysRevB.90.064410
http://dx.doi.org/ 10.1103/PhysRevB.90.064410
http://dx.doi.org/10.1002/pssr.201510419
http://dx.doi.org/10.1002/pssr.201510419
http://dx.doi.org/10.1103/PhysRevLett.108.017601
http://dx.doi.org/ 10.1103/PhysRevLett.109.037603
http://dx.doi.org/10.1038/ncomms3391
http://dx.doi.org/10.1038/nmat4223
http://dx.doi.org/ 10.1109/20.951053
http://dx.doi.org/ 10.1103/PhysRevB.74.214406
http://dx.doi.org/10.1103/PhysRevB.76.104426
http://dx.doi.org/10.1103/PhysRevB.76.104426
http://dx.doi.org/10.1109/LMAG.2015.2413758
http://dx.doi.org/10.1103/PhysRevLett.109.217201
http://dx.doi.org/10.1103/PhysRevLett.109.217201
http://dx.doi.org/10.1103/PhysRevB.79.224429
http://dx.doi.org/10.1103/PhysRevB.79.224429
http://dx.doi.org/ 10.1038/nphys3234
http://dx.doi.org/10.1109/LMAG.2016.2616333
http://dx.doi.org/10.1109/LMAG.2016.2616333
http://dx.doi.org/ 10.1016/j.jcp.2009.05.026
http://dx.doi.org/ 10.1016/j.jcp.2009.05.026
http://dx.doi.org/10.1063/1.1852191
http://dx.doi.org/10.1063/1.1852191
http://dx.doi.org/10.1103/PhysRevB.87.094424
http://dx.doi.org/10.1103/PhysRevB.87.094424
http://dx.doi.org/10.1109/TMAG.2004.836740
http://dx.doi.org/10.1109/TMAG.2007.893843
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/10.1007/978-3-642-23099-8
http://dx.doi.org/ 10.1145/1089014.1089020
http://dx.doi.org/ 10.1145/1089014.1089020
http://dx.doi.org/10.1063/1.4822377
http://dx.doi.org/10.1063/1.4822377
http://dx.doi.org/10.1109/MCSE.2007.55
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.6660{&}rep=rep1{&}type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.48.6660{&}rep=rep1{&}type=pdf
http://dx.doi.org/10.1109/MCSE.2007.58
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/TMAG.2012.2206820


17

W. Wang, S. Zhang, M.-A. Bisotti, M. Franchin, C. L. Hu,
R. Stamps, T. Hesjedal, and H. Fangohr, J. Magn. Magn.
Mater. 421, 428 (2017).

53 A. Antoniou, Digital Signal Processing: Signals, Systems,

and Filters (McGraw-Hill Professional, 2005) p. 965.
54 J. Sampaio, V. Cros, S. Rohart, A. Thiaville, and A. Fert,

Nat. Nanotechnol. 8, 839 (2013).
55 H. Du, W. Ning, M. Tian, and Y. Zhang, Phys. Rev. B

87, 014401 (2013).
56 H. Du, W. Ning, M. Tian, and Y. Zhang, EPL 101, 37001

(2013).
57 R. Carey, M. Beg, M. Albert, M.-A. Bisotti, D. Cortés-

Ortuño, M. Vousden, W. Wang, O. Hovorka, and H. Fan-
gohr, Appl. Phys. Lett. 109, 122401 (2016).

58 N. A. Porter, C. S. Spencer, R. C. Temple, C. J. Kinane,
T. R. Charlton, S. Langridge, and C. H. Marrows, Phys.
Rev. B 92, 144402 (2015).

59 Xiaomin L., J. Rantschler, C. Alexander, and G. Zangari,
IEEE Trans. Magn. 39, 2362 (2003).

60 S. S. Kalarickal, P. Krivosik, M. Wu, C. E. Patton, M. L.
Schneider, P. Kabos, T. J. Silva, and J. P. Nibarger, J.
Appl. Phys. 99, 093909 (2006).

61 T. Kawai, A. Itabashi, M. Ohtake, S. Takeda, and M. Fu-
tamoto, EPJ Web Conf. 75, 02002 (2014).

62 W. Wang, M. Beg, B. Zhang, W. Kuch, and H. Fangohr,
Phys. Rev. B 92, 020403 (2015).

63 B. Zhang, W. Wang, M. Beg, H. Fangohr, and W. Kuch,
Appl. Phys. Lett. 106, 102401 (2015).

http://dx.doi.org/10.1016/j.jmmm.2016.08.009
http://dx.doi.org/10.1016/j.jmmm.2016.08.009
http://dx.doi.org/ 10.1038/nnano.2013.210
http://dx.doi.org/ 10.1103/PhysRevB.87.014401
http://dx.doi.org/ 10.1103/PhysRevB.87.014401
http://dx.doi.org/ 10.1209/0295-5075/101/37001
http://dx.doi.org/ 10.1209/0295-5075/101/37001
http://dx.doi.org/10.1063/1.4962726
http://dx.doi.org/ 10.1103/PhysRevB.92.144402
http://dx.doi.org/ 10.1103/PhysRevB.92.144402
http://dx.doi.org/ 10.1109/TMAG.2003.815450
http://dx.doi.org/10.1063/1.2197087
http://dx.doi.org/10.1063/1.2197087
http://dx.doi.org/ 10.1051/epjconf/20147502002
http://dx.doi.org/ 10.1103/PhysRevB.92.020403
http://dx.doi.org/ 10.1063/1.4914496


Supplementary Information: Dynamics of skyrmionic states in confined helimagnetic

nanostructures

Marijan Beg,1, ∗ Maximilian Albert,1 Marc-Antonio Bisotti,1 David Cortés-Ortuño,1

Weiwei Wang,1, 2 Rebecca Carey,1 Mark Vousden,1 Ondrej Hovorka,1 Chiara
Ciccarelli,3 Charles S. Spencer,4 Christopher H. Marrows,4 and Hans Fangohr1, †

1Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, United Kingdom

2Department of Physics, Ningbo University, Ningbo, 315211, China

3Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom

4School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, United Kingdom

I. SUPPLEMENTARY SECTION S1: TARGET (T) STATE

In this Supplementary Section, we study the dynamics of the Target (T) state. This state is characterised by the
scalar value Sa being in the [1, 2] range,1 because the magnetisation component mz covers the [−1, 1] range twice, plus
an additional magnetisation tilting at the boundary due to the specific boundary conditions.2 Although the T state
is never the ground state (global energy minimum) in the studied system, it is in an equilibrium1 for the disk sample
diameters 144 nm ≤ d ≤ 180 nm and the external magnetic bias field µ0H ≤ 0.24T. More precisely, for these d and
H values, target state is in the local and not global energy minimum state. We explore the target state dynamics in a
160 nm diameter disk sample with 10 nm thickness at zero external magnetic bias field. In order to obtain the target
state in the sample, the magnetisation is initialised with a state having similar configuration as explained in Ref. 1.

In the first step, we compute all existing eigenmodes below 50GHz. Using the ringdown method, we compute the
Spatially Averaged (SA) and Spatially Resolved (SR) Power Spectral Densities (PSDs) for an in-plane excitation,
overlaid with the eigenvalue results, and show them in Supplementary Fig. 1 (a) and Supplementary Fig. 1 (b),
respectively. In these power spectral densities, we observe eleven peaks (eigenmodes A, B, C, D, E, F, G, I, J, L, and
M) and show their schematic representations in Supplementary Fig. 1 (e). We identify the two lowest frequency peaks
at 0.72GHz and 0.89GHz, which correspond to the gyrotropic eigenmode A and lateral eigenmode B, respectively.
Similar to the incomplete skyrmion and isolated skyrmion states, the gyrotropic eigenmode A magnetisation dynamics
consists of a target state core (where mz = −1) gyrating around its equilibrium position in the CounterClockWise
(CCW) direction. The magnetisation dynamics of eigenmode B is composed of a magnetisation z component contour
ring revolving in the ClockWise (CW) direction around the sample centre. At 2.86GHz, we identify another dominant
eigenmode D, which consists of a T state core and a contour ring rotating in the CCW direction, but mutually out-
of-phase. In the case of the eigenmode F at 8.17GHz, the T state core is static, but two magnetisation contour rings
revolve mutually out-of-phase in the CW direction. The magnetisation dynamics of all other eigenmodes (G, I, J, L,
and M) present in the in-plane power spectral densities have significantly lower power. They are all lateral and consist
of different combinations of revolving contour rings and the T state core, and we show their schematic representations
in Supplementary Fig. 1 (e). All discussed eigenmodes so far are lateral (in-plane), but in the discussed in-plane
PSDs, two breathing eigenmodes C and E are also present with significantly lower power and we will discuss them
subsequently when an out-of-plane excitation is used to perturb the system. We show the magnetisation dynamics
of all eigenmodes computed using the eigenvalue method and in Supplementary Videos 4 and 5, and their schematic
representations in Supplementary Section S3.

Now, we excite the system with an out-of-plane excitation, compute the SA and SR PSDs, and show them in
Supplementary Fig. 1 (c) and Supplementary Fig. 1 (d), respectively. In this case, we observe five dominant breathing
eigenmodes (C, E, H, K, and N) and significantly weaker lateral eigenmodes (A, B, D, F, G, I, J, and L) discussed
previously. The lowest frequency breathing eigenmode C at 1.60GHz contains a single magnetisation z component
contour ring that shrinks and expands periodically. Another two dominant peaks in these PSDs correspond to
eigenmodes E and H at 5.59GHz and 18.93GHz, respectively. The eigenmode E magnetisation dynamics consists of
two contour rings breathing mutually out-of-phase. Similarly, the magnetisation dynamics of the eigenmode H consists
of three breathing contour rings where the middle contour ring breathes out-of-phase with respect to the inner and the
outer one. The eigenmodes K and N magnetisation dynamics consist of different combinations of breathing contours
and we show their schematic representations in Supplementary Fig. 1 (e).
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Supplementary Fig. 1. The Power Spectral Densities (PSDs) of a Target (T) equilibrium state in a 160 nm diameter FeGe
disk sample with 10 nm thickness at zero external magnetic bias field. (a) Spatially averaged and (b) spatially resolved PSDs
for an in-plane excitation, together with overlaid resonance frequencies computed using the eigenvalue method. The resonant
frequencies obtained using the eigenvalue method are marked with a triangle symbol (△) if they can be activated using a
particular excitation and with a circle symbol (◦) otherwise. (c) Spatially averaged and (d) spatially resolved PSDs computed
when the target state is perturbed from its equilibrium with an out-of-plane excitation. (e) Schematic representations of
magnetisation dynamics associated with the identified eigenmodes. Schematically, we represent the target state core with a
circle symbol, together with a directed loop if it gyrates around its equilibrium position. Contour rings represented using dashed
lines revolve/breathe out-of-phase with respect to the those marked with solid lines. The magnetisation dynamics animations
of all identified eigenmodes are provided in Supplementary Videos 4 and 5.

II. SUPPLEMENTARY SECTION S2: EXTERNAL MAGNETIC FIELD AND DISK SAMPLE
DIAMETER DEPENDENCE OF RESONANCE FREQUENCIES COMPUTED USING EIGENVALUE

METHOD

For every ringdown simulation in our study, we also carried out the eigenvalue computation. In the Power Spectral
Density (PSD) maps we discussed in the main text, some of the eigenmodes become invisible at certain values
of external magnetic field H and disk sample diameter d due to their small amplitude. In this Supplementary
Section, we show the H and d dependences computed using the eigenvalue method of all identified eigenmodes over
the entire range of studied H and d values. We show the dependences of incomplete Skyrmion (iSk) resonance
frequencies on H and d in Supplementary Fig. 2 (a) and Supplementary Fig. 2 (b), respectively. Similarly, we
show the dependences of isolated Skyrmion (Sk) resonance frequencies on H and d in Supplementary Fig. 3 (a)
and Supplementary Fig. 3 (b), respectively. We represent discrete eigenvalue computed resonance frequencies using
dots and emphasise the dependences of eigenmodes identified in the main text using a solid line. We find a perfect
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agreement between eigenvalue and ringdown methods in d and H ranges where eigenmodes are visible in PSD maps.

Supplementary Fig. 2. The external magnetic field H and disk sample diameter d dependence of incomplete Skyrmion (iSk)
state resonance frequencies computed using the eigenvalue method. Discrete eigenvalue computed resonance frequencies are
represented using dots and the dependences of eigenmodes identified in the main text are emphasised using a solid line.

Since we are now able to look at the resonance frequency dependences over the entire range of studied d and H
values, we can determine whether any crossings of eigenmodes occur. We observe many crossings between all existing
eigenmodes, but we focus only on the eigenmodes that can be excited using an experimentally feasible excitation. In
the iSk state, we identify two crossings between eigenmodes E and D in the plot shown in Supplementary Fig. 2 (a)
at approximately −0.13T and 0.27T with a green circle. On the other hand, there are no crossings in d dependence
plot shown in Supplementary Fig. 2 (b). In the Sk dynamics, we find three crossings in the plot shown in Fig. 3 (a).
The first one is between eigenmodes E and F at approximately 0.38T and the other two are between eigenmodes E
and F with eigenmode D near the switching field µ0Hs. Similarly, the eigenmode D crosses eigenmodes E and F at
approximately 105 nm and 100 nm, respectively, in the d dependence plot shown in Fig. 3 (b).

III. SUPPLEMENTARY SECTION S3: ALL EIGENMODES OF SKYRMIONIC STATES COMPUTED
USING THE EIGENVALUE METHOD

In this Supplementary Section, we show the schematic representations of all identified eigenmodes with frequencies
below 50GHz computed using the eigenvalue method. We show the incomplete Skyrmion (iSk) eigenmodes in Sup-
plementary Fig. 4, isolated Skyrmion (Sk) eigenmodes in Supplementary Figures 5 and 6, and Target (T) eigenmodes
in Supplementary Figures 7 and 8.
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Supplementary Fig. 3. The external magnetic field H and disk sample diameter d dependence of isolated Skyrmion (Sk)
state resonance frequencies computed using the eigenvalue method. Discrete eigenvalue computed resonance frequencies are
represented using dots and the dependences of eigenmodes identified in the main text are emphasised using a solid line.
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Supplementary Fig. 4. The schematic representation of magnetisation dynamics corresponding to the identified eigenmodes in
the 0− 50GHz frequency range for an incomplete Skyrmion (iSk) state, obtained using the eigenvalue method. The simulated
sample is a 80 nm diameter disk sample with 10 nm thickness at zero external magnetic bias field.
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Supplementary Fig. 5. The schematic representation of magnetisation dynamics corresponding to the identified eigenmodes in
the 0 − 27GHz frequency range for an isolated Skyrmion (Sk) state, obtained using the eigenvalue method. The simulated
sample is a 150 nm diameter disk sample with 10 nm thickness at zero external magnetic bias field.
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Supplementary Fig. 6. The schematic representation of magnetisation dynamics corresponding to the identified eigenmodes in
the 27 − 50GHz frequency range for an isolated Skyrmion (Sk) state, obtained using the eigenvalue method. The simulated
sample is a 150 nm diameter disk sample with 10 nm thickness at zero external magnetic bias field.



8

Supplementary Fig. 7. The schematic representation of magnetisation dynamics corresponding to the identified eigenmodes
in the 0 − 28GHz frequency range for a Target (T) state, obtained using the eigenvalue method. The simulated sample is a
160 nm diameter disk sample with 10 nm thickness at zero external magnetic bias field.
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Supplementary Fig. 8. The schematic representation of magnetisation dynamics corresponding to the identified eigenmodes
in the 28 − 50GHz frequency range for a Target (T) state, obtained using the eigenvalue method. The simulated sample is a
160 nm diameter disk sample with 10 nm thickness at zero external magnetic bias field.



10

∗ m.beg@soton.ac.uk
† h.fangohr@soton.ac.uk
1 M. Beg, R. Carey, W. Wang, D. Cortés-Ortuño, M. Vousden, M.-A. Bisotti, M. Albert, D. Chernyshenko, O. Hovorka, R. L.
Stamps, and H. Fangohr, Sci. Rep. 5, 17137 (2015).

2 S. Rohart and A. Thiaville, Phys. Rev. B 88, 184422 (2013).


	Dynamics of skyrmionic states in confined helimagnetic nanostructures
	Abstract
	I Introduction
	II Methods
	III Results
	A Incomplete skyrmion (iSk) state
	B Isolated skyrmion (Sk) state
	C Comparison of incomplete skyrmion and isolated skyrmion power spectral densities
	D Simulations with real FeGe damping
	E Demagnetisation energy and out-of-plane magnetisation variation effects

	IV Discussion and conclusion
	 Acknowledgments
	 References


