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Abstract: Colorectal cancer (CRC) is one of the leading causes of cancer mortality. Metastasis remains
the primary cause of CRC death. Predicting the possibility of metastatic relapse in early-stage CRC
is of paramount importance to target therapy for patients who really need it and spare those with
low-potential of metastasis. Ninety-six stage II CRC cases were stratified using high-resolution
array comparative genomic hybridization (aCGH) data based on a predictive survival algorithm and
supervised clustering. All genes included within the resultant copy number aberrations were each
interrogated independently at mRNA level using CRC expression datasets available from public
repositories, which included 1820 colon cancers, and 167 normal colon tissues. Reduced mRNA
expression driven by copy number losses and increased expression driven by copy number gains
revealed 42 altered transcripts (29 reduced and 13 increased transcripts) associated with metastatic
relapse, short disease-free or overall survival, and/or epithelial to mesenchymal transition (EMT).
Resultant genes were classified based on gene ontology (GO), which identified four functional
enrichment groups involved in growth regulation, genomic integrity, metabolism, and signal
transduction pathways. The identified 42 genes may be useful for predicting metastatic relapse
in stage II CRC. Further studies are necessary to validate these findings.

Keywords: colorectal cancer; microarray; stage II; copy number aberrations; disease free survival;
gene expression; metastasis

1. Introduction

Microarray comparative genomic hybridization (aCGH) has been extensively used to profile
colorectal cancer (CRC) for copy number aberrations. However, their direct relevance to prognosis and
therapeutic interventions has remained elusive [1,2]. Undoubtedly, early cancer detection contributes
to a better patient outcome. Fecal occult blood testing, fecal immunochemical/molecular testing,
and colonoscopy-based screening have become wide-spread in developed countries as a preventive
measure for the detection of CRC in its early stages. However, 10%–30% of early-stage CRC still relapse
with metastases within two years of surgical treatment [3,4]. To address this critical issue, various
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technologies such as aCGH, metaphase, and next-generation sequencing were employed in attempts
targeted towards the identification of suitable prognostic biomarkers in early stage CRC. Array-based
analysis of DNA copy number aberrations (CNAs), in particular, has proven to be very effective in
identifying recurrent CNAs in CRC. It is usually argued that CNAs of recurrent nature may imply their
evolutionary importance in driving CRC progression [5,6]. For this reason, large bodies of publications
have attempted to ascertain early stage CRC patients at risk of metastatic relapse based on the genomic
profiling of primary tumors. However, such attempts rarely identified reliable and replicable CNAs
or genes predictive of survival. Several predictive gene signatures have been reported for CRC [7,8].
Yet, these studies suffer limitations such as small sample size and lack of adequate expression-based
validation. This is not surprising given that most CNAs encompass large genomic aberrations that
usually harbor hundreds of bystander genes among which only few genes may be potentially useful
for prognostication [8]. Therefore, validation studies linking genomic aberrations at the DNA level
to transcription have been limited [7]. The two questions that need to be addressed are; first, how
can we identify key “driver” CNA events from the enormous amount of random “passenger” CNAs
that have no functional significance? Second, how can we pinpoint the few metastasis suppressor
genes residing within large areas of genomic deletions? Here, we attempted to address these questions.
Firstly, we identified CNAs exclusively found in stage II metastatic CRC using stringent experimental
and statistical algorithms. We then grouped the CNAs generated based on their significant effects on
disease survival. The resultant list of potential metastasis-associated genes (958 genes) residing within
CNA regions were each independently validated for aberrant expression in publicly available CRC
cohorts’ expression data. This validation identified 42 genes, potentially involved in metastasis.
Twenty-nine metastasis suppressor genes whose copy number deletions resulted in diminished
transcription, and reduced overall survival (OS) or disease-free survival (DFS), and 13 potentially
metastasis-enhancing genes whose copy number gains and overexpression associated with metastatic
relapse, short disease-free or overall survival or/and epithelial to mesenchymal transition (EMT).
A large and randomized study focused on the 42 genes to confirm our data and validate their clinical
utility is now warranted.

2. Results

2.1. CRC aCGH Profile

Table 1 illustrates the clinicopathological characteristics of 96 stage II CRC cases investigated in
our study. The data show that pathological classification alone has limited efficacy in distinguishing
subclasses of stage II CRC in terms of aggressiveness or prognosis.

Table 1. Clinicopathological characteristics of stage II CRC cohort.

Patients’
Characteristics

Stage II Who Stayed
Disease Free

Stage II with Local
Recurrences

Stage II Who Relapsed
with Distant Metastasis p Value a

Mean age in years 64.4 75.5 75.4 0.004 b

Sex
Male 41 2 5 0.43

Female 37 5 6

Total 78 7 11

Site

Right 19 2 1 0.16
Left 28 1 9

Rectum 16 1 1
Unknown 15 3 0

T-stage
T3 44 3 9 0.27
T4 19 4 2

Unknown 15 0 0

Differentiation

Well 10 1 1 0.8
Moderate 56 5 9

Poor 5 1 0
Unknown 7 0 1
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Table 1. Cont.

Patients’
Characteristics

Stage II Who Stayed
Disease Free

Stage II with Local
Recurrences

Stage II Who Relapsed
with Distant Metastasis p Value a

MMR status
MSI 14 1 0 0.45
MSS 59 5 9

Unknown 5 1 2

Follow-up Mean DFS 9.5 years 3.9 years 3.08 years
a Fisher’s exact test; b one-way ANOVA. DFS is disease free survival; MSI is microsatellite unstable; MSS is
microsatellite stable; MMR is mismatch repair.

To refine our search for genes involved in metastasis, we excluded seven cases that later presented
with local recurrence. Significance testing for aberrant copy number (STAC) analysis focused on
chromosomal CNAs of 89 CRC cases, which produced acceptable derivative of log ratio spread (DLRS)
values below 0.5. DLRS is defined as the spread of the log ratio differences between consecutive probes
along all chromosomes. Comparison using stringent criteria between CNAs found in 11 stage II CRC
with metastatic disease and CNAs found in 78 stage II CRC cases that remained disease-free resulted in
the identification of chromosomal CNAs significantly enriched in metastatic CRC (Figure 1a). The most
frequent copy number gains (CNGs) were in chromosomes seven (56%), 8q (56%), 13q11-q34 (61%),
and 20q11.1-q13.33 (79%). Other less frequent regional gains include; chromosomes 1q, 9p, and 17q.
The most frequent copy number losses (CNLs) were in chromosome arms 1p (71%), 8p (72%), 17p
(55%), 22q (60%), and chromosomes 14 (77%), 15 (66%), and 18 (80%). To narrow down genes with
predictive potential, a second analytical approach that is dependent solely on survival data and not
whether the case relapsed with metastases or not was utilized to point out CNAs shared by CRC
cases with reduced DFS (Figure 1b). The two approaches were compared to compile a common
CNA profile that may influence metastasis and DFS (Figure 1c). The most significant chromosomal
gains that are consistently associated with metastatic CRC recurrence and poor survival were gains in
chromosomes 1q, 9p, 13q11-q34, 17q, and 20q11.1-q13.33; and losses in chromosomes 5q12.1-q35.3,
8p12-p23.3, 9q33.1-q34.3, 11q23.3-q25, 14q11.2-q32.31, 15q21.1-q26.3, 18p11.31-q21.1, 20p12.1-p13, and
22q11.21-q13.31. There were 1099 genes located within significant CNAs that were further scrutinized
for their existence in normal healthy individuals [9,10]. CNAs frequent in healthy normal genomes
that overlapped 5%–100% with mapped CRC metastatic vs. non-metastatic chromosomal gains were
excluded from further analysis. Interestingly, all CNAs, except for 8p chromosomal region harboring
SPAG11A, had minimal overlap with common CNAs in normal healthy individuals. This elimination
step resulted in 958 candidate genes for further investigation (Table S1). While some of the CNAs
housed one to a few genes, larger CNAs contained many genes that may modify cancer progression
or are more likely “innocent passenger” CNAs that are of no functional significance. In addition,
CNA profiles segregated according to our cohort’s clinicopathological characteristics also resulted
in significant clustering into identifiable groups. Distinct CNAs were found between microsatellite
stable (MSS) and microsatellite instable (MSI) CRC, and other clinicopathological characteristics
(manuscripts submitted elsewhere). However, we chose to focus here on metastasis associated CNAs.
Consequently, the expression level of each of the 958 genes resultant from metastatic CRC CNAs
profile was interrogated independently using publicly available CRC datasets to validate their clinical
relevance based on; their differential expression in normal and CRC samples, association with grade,
microsatellite instability, stage, DFS, overall survival (OS), and EMT score.
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Figure 1. Copy number aberrations in CRC stage II using the first analytical approach STAC (A), 
which compares the chromosomal copy numbers found in metastatic CRC with non-metastatic CRC; 
and the second analytical approach; the survival predictive algorithm (B), which identifies chromosomal 
copy number gains associated with reduced disease-free survival; (C) shows the frequencies of the 
aberrations in the two approaches and identifies CNA common to both methods (100%). Each 
column represents a chromosome with blue bars indicating copy number gains and red bars copy 
number losses. 

2.2. Expression Analysis of Candidate Oncogenes 

Approximately 307 genes were not represented on the Affymetrix U133Plus2 platform (Santa 
Clara, CA, USA), of which 166 genes had probes on U133A platform. Genes without a probe on 
either platform were mostly miRNA genes and were excluded. At first, two categorical variables 
were considered, DFS and OS to select CNAs’ genes of altered expression. This was done to isolate 
genes of strong prognostic value. Interrogating gene expression changes driven by CNAs revealed 
42 altered transcripts (29 reduced and 13 increased) associated with metastatic relapse, short DFS, or 
OS (Table 2). 

Table 2. Cox regression for survival analysis of the 42 genes’ mRNA expression in meta-cohort 
(Affymetrix U133A, n = 1820; or U133Plus2, n = 1436) for overall survival (OS), and disease-free 
survival (DFS). A negative regression coefficient implies a better prognosis for patients if they retain 
the function of a given gene (worse prognosis when the cancer underexpresses the gene). 
Conversely, a positive regression coefficient means that the hazard is higher for a given gene’s 
overexpression and, thus, the prognosis worse. 

Gene Gene ID aCGH CNA Event 
%CNA Overlap 

with Normal 
Cox’s OS (p-Value) Cox’s DFS (p-Value) 

ADRA1A 148 Loss 0.42 −0.40185, (0.152322) −1.67582, (0.001948) 
ADRA1D 146 Loss 1.15 −0.5968, (0.020507) 0.066504, (0.880385) 
ADRB3 155 Loss 0 −1.21809, (0.002366) −1.12818, (0.08601) 

APOBEC3D 140564 Loss 0 −0.45803, (0.24853) −1.56085, (0.0224) 
BRF2 55290 Loss 0 −0.45526, (0.02013) 0.061887, (0.8515) 

C20orf202 400831 Loss 0.89 −0.80141, (0.000481) −0.19907, (0.628292) 
CABIN1 23523 Loss 4.02 −0.47782, (0.0210) −0.51601, (0.14935) 

CACNA1I 8911 Loss 0 −0.69524, (0.00404) −0.73386, (0.082677) 
CSMD1 64478 Loss 0 −0.01578, (0.956357) −1.30789, (0.01948) 

DIO3 1735 Loss 1.76 −0.32561, (0.041777) −0.00829, (0.973719) 
EPHX2 2053 Loss 0.42 0.036582, (0.61411) −0.30515, (0.0099) 

FAM83F 113828 Loss 0 −0.13746, (0.287004) −0.72925, (0.00085) 
GP1BB 2812 Loss 0 −0.56827, (0.000246) −0.19289, (0.495577) 

KIAA1656 85371 Loss 0 −0.60241, (0.01922) −1.02118, (0.032326)  
LOC339593 339593 Loss 0.17 0.29021, (0.385267) −1.12678, (0.047789) 

MCM8 84515 Loss 0 0.043419, (0.614947) −0.31948, (0.034203) 
NAT1 9 Loss 0 0.028159, (0.713606) −0.36337, (0.007197) 
NAT2 10 Loss 0 −0.09059, (0.160865) −0.30169, (0.003804) 

Figure 1. Copy number aberrations in CRC stage II using the first analytical approach STAC (A), which
compares the chromosomal copy numbers found in metastatic CRC with non-metastatic CRC; and
the second analytical approach; the survival predictive algorithm (B), which identifies chromosomal
copy number gains associated with reduced disease-free survival; (C) shows the frequencies of the
aberrations in the two approaches and identifies CNA common to both methods (100%). Each column
represents a chromosome with blue bars indicating copy number gains and red bars copy number losses.

2.2. Expression Analysis of Candidate Oncogenes

Approximately 307 genes were not represented on the Affymetrix U133Plus2 platform
(Santa Clara, CA, USA), of which 166 genes had probes on U133A platform. Genes without a probe on
either platform were mostly miRNA genes and were excluded. At first, two categorical variables were
considered, DFS and OS to select CNAs’ genes of altered expression. This was done to isolate genes of
strong prognostic value. Interrogating gene expression changes driven by CNAs revealed 42 altered
transcripts (29 reduced and 13 increased) associated with metastatic relapse, short DFS, or OS (Table 2).

Table 2. Cox regression for survival analysis of the 42 genes’ mRNA expression in meta-cohort
(Affymetrix U133A, n = 1820; or U133Plus2, n = 1436) for overall survival (OS), and disease-free
survival (DFS). A negative regression coefficient implies a better prognosis for patients if they retain
the function of a given gene (worse prognosis when the cancer underexpresses the gene). Conversely, a
positive regression coefficient means that the hazard is higher for a given gene’s overexpression and,
thus, the prognosis worse.

Gene Gene ID aCGH CNA Event %CNA Overlap
with Normal Cox’s OS (p-Value) Cox’s DFS (p-Value)

ADRA1A 148 Loss 0.42 ´0.40185, (0.152322) ´1.67582, (0.001948)
ADRA1D 146 Loss 1.15 ´0.5968, (0.020507) 0.066504, (0.880385)
ADRB3 155 Loss 0 ´1.21809, (0.002366) ´1.12818, (0.08601)

APOBEC3D 140564 Loss 0 ´0.45803, (0.24853) ´1.56085, (0.0224)
BRF2 55290 Loss 0 ´0.45526, (0.02013) 0.061887, (0.8515)

C20orf202 400831 Loss 0.89 ´0.80141, (0.000481) ´0.19907, (0.628292)
CABIN1 23523 Loss 4.02 ´0.47782, (0.0210) ´0.51601, (0.14935)

CACNA1I 8911 Loss 0 ´0.69524, (0.00404) ´0.73386, (0.082677)
CSMD1 64478 Loss 0 ´0.01578, (0.956357) ´1.30789, (0.01948)

DIO3 1735 Loss 1.76 ´0.32561, (0.041777) ´0.00829, (0.973719)
EPHX2 2053 Loss 0.42 0.036582, (0.61411) ´0.30515, (0.0099)
FAM83F 113828 Loss 0 ´0.13746, (0.287004) ´0.72925, (0.00085)
GP1BB 2812 Loss 0 ´0.56827, (0.000246) ´0.19289, (0.495577)

KIAA1656 85371 Loss 0 ´0.60241, (0.01922) ´1.02118, (0.032326)
LOC339593 339593 Loss 0.17 0.29021, (0.385267) ´1.12678, (0.047789)

MCM8 84515 Loss 0 0.043419, (0.614947) ´0.31948, (0.034203)
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Table 2. Cont.

Gene Gene ID aCGH CNA Event %CNA Overlap
with Normal Cox’s OS (p-Value) Cox’s DFS (p-Value)

NAT1 9 Loss 0 0.028159, (0.713606) ´0.36337, (0.007197)
NAT2 10 Loss 0 ´0.09059, (0.160865) ´0.30169, (0.003804)
HNF6 3175 Loss 0 ´0.66924, (0.017955) ´0.51152, (0.31)

PCDHGA11 56105 Loss 0 ´0.85799, (0.001447) ´0.577, (0.33928)
RAB11FIP1 80223 Loss 0 ´0.38036, (5.55ˆ 10´05) ´0.02196, (0.87)
SPAG11A 653423 Loss 68.65 ´0.81665, (0.001447) ´0.13298, (0.57)

SIRPD 128646 Loss 0.89 ´0.89166, (0.014166) ´0.13392, (0.82)
TEX43 389320 Loss 0 ´0.46611, (0.175471) ´0.19907, (0.01162)

TOP1P2 7152 Loss 0 ´1.13965, (0.005692) 0.599602, (0.32)
WDR5 11091 Loss 0 ´0.0007, (0.995962) ´0.52505, (0.024307)

ZNF366 167465 Loss 0.07 ´0.76274, (0.01779) ´0.93429, (0.09208)
ZNF703 80139 Loss 0 ´0.32601, (0.000744) ´0.14954, (0.366064)
ZNRF3 84133 Loss 0 ´0.03445, (0.605797) ´0.33884, (0.002065)

ANXA2P2 304 Gain 0 0.478663, (0.003259) 0.997702, (0.000504)
CDC42BPA 8476 Gain 0 0.032966, (0.690294) 0.401718, (0.005473)

DOK5 55816 Gain 0.57 0.105512, (0.1) 0.577502, (0.002218)
DUSP14 11072 Gain 0.70 0.207902, (0.047604) 0.709569, (0.000159)

GLIS3 169792 Gain 1.25 0.0916, (0.210004) 0.397791, (0.000566)
ING1 3621 Gain 0 0.461934, (0.020587) 0.127394, (0.710857)

MPDZ 8777 Gain 0 0.079568, (0.406857) 0.657405, (3.98 ˆ 10´5)
PITPNC1 26207 Gain 0 0.257758, (0.029048) 0.418362, (0.026674)

SCEL 8796 Gain 0 0.081094, (0.202236) 0.301113, (0.000357)
SEMG1 6406 Gain 0 0.098826, (0.043099) 0.153704, (0.061048)
SMU1 55234 Gain 0.73 0.36857, (0.008896) 0.016381, (0.942047)
USP32 84669 Gain 0 0.162429, (0.221638) 0.586012, (0.01236)
VLDLR 7436 Gain 0.14 ´0.00629, (0.92868) 0.323607, (0.004972)

Our findings show that several candidate oncogenes of significant prognostic potential reside
within regions of chromosomal gains and are overexpressed, most likely, under the influence of gene
amplification within these regions. Moreover, our results pinpointed metastasis-suppressor genes
of significant prognostic potential residing within chromosomal loss areas, and are underexpressed
due to genetic deletions. To further refine our list for genes with the greatest prognostic power, we
selected genes significantly associated with DFS or OS using a stringent criterion (p-value < 0.005), and
compared their expression levels in tumor against normal colon tissues. A total of 19 genes had highly
significant associations with DFS or OS, of which only 14 had significantly differential expression in
normal colon vs. CRC tissues (Figure S1). Therefore, these genes have the greatest discriminatory
application in clinical prognostication of stage II CRCs at risk of metastatic relapse. We next focused
on evaluating the combined potential of a set of deleted genes in relation to their combined effects on
DFS or OS. Our hypothesis was that double or more deletions of candidate tumor suppressor genes
will significantly increase their effect on DFS and OS in CRC patients. Combination analysis results
show that while single deleted gene reduced expression associated with a significant reduction in DFS
or OS, their combined underexpression analysis in CRC strengthened their prognostic potential in
association with reduced DFS/OS (Figure 2).

Lastly, we analyzed each of the 42 genes’ expression levels in relation to the clinicopathological
characteristics of analyzed CRC samples from the GEO database, which included; tumor grade, cancer
stage (stages I–IV), expression in MSS vs. MSI tumors, expression levels in tumors vs. normal colon
tissues, and their relationship to EMT in cancers. GEO database clinicopathological correlation data
for all of the 29 potentially metastasis-suppressor genes and the 13 potentially metastasis-enhancer
genes are shown in (Tables S2–S9).
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aggressive stages. Stage II CRC has 20%–30% risk of metastasis, whereas stage III CRC has a 
50%–80% risk of distant metastasis [11]. The genetic complexity of stage II CRC is reflected by its 
extensive CNA profile that presents an additional limitation of sifting the “culprit” genes from the 

Figure 2. Five different combinations (Combo 1-5) of candidate tumor suppressor genes consistently
consolidated their association with disease specific survival (OS), and disease free survival (DFS) in
CRC samples’ expression data. Q1–Q4 signify expression quartiles with Q1 being the lowest and Q4
the highest expression quartile.

3. Discussion

CRC represents a heterogeneous group of gastrointestinal neoplasia. Stage II CRC is the most
clinically challenging stage as it is the critical point between remission and progression into aggressive
stages. Stage II CRC has 20%–30% risk of metastasis, whereas stage III CRC has a 50%–80% risk of
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distant metastasis [11]. The genetic complexity of stage II CRC is reflected by its extensive CNA profile
that presents an additional limitation of sifting the “culprit” genes from the “innocent passenger”
ones. The ongoing theory is that cancer metastases arise due to the acquisition of the metastatic
phenotype, which appears to have an underlying metastatic genotype [12,13]. We generated genomic
CNA profiles for stage II CRCs, with and without subsequent metastatic disease to identify CNAs
associated with metastasis or reduced OS/DFS in stage II CRC. We then utilized publicly-available
high-density oligonucleotide-based microarray expression data to study the effect of these CNAs.
The use of well-defined expression profiles from sets of colorectal cancers may serve as reliable and
focused validation cohorts. Our resultant genes were individually scrutinized for association with
cancer biology. In addition, a stringent gene selection method was employed to exclude false positive
CNAs that occur in normal colon samples, and exclude genes whose expression levels in CRC were
comparable to normal colon tissues. All 42 genes’ expression had significant association in predicting
OS and/or DFS (Table 2). Functional annotation of each gene confirms that each of these genes partake
in key processes of cancer progression and metastasis, providing insights into the genetic mechanisms
driving metastatic CRC. The 42 genes were divided into genes deleted (29 genes) and genes amplified
(13 genes) of which 26 deleted genes and 13 amplified genes had specific known functions. Each gene
was literature-researched for reported evidence of known biological function(s) and involvement
in cancer.

In the deleted genes list several genes had known tumor suppressor and anti-metastatic
properties (Table S10). CSMD1, FAM83F, and EPHX2 are known to be silenced, mutated, or
deleted in gastrointestinal cancers though their precise functions remain unknown [14,15]. ADRA1A,
APOBEC3D, CABIN1, DIO3, GP1BB, HNF6, MCM8, PCDHGA11, WDR5, ZNRF3, and ZNF366
all have functional attributes that are known to control and affect the transition into metastatic
pathways. However, CABIN1 did not significantly associate with our EMT potential analysis
(p = 0.8), and associated with distinguishing MSS CRC (p < 0.05, Tables S4 and S5). CABIN1 is
a pro-apoptotic gene, which suggests that its reduced expression is an early marker for CRC’s
proliferation and genomic instability [16]. EMT fundamentally involves genomic and phenotypic
changes of epithelial cells into mesenchymal cells, loss of epithelial cell-cell contact, loss of cell
polarity, and acquisition of migratory characteristics facilitating metastasis [17]. ADRA1A and ZNF366
have proliferation regulatory functions that limit tumor cells from forming tumors/metastases in
response to stimulators [18,19]. Genomic instability and loss of epithelial genomic signatures are also a
requirement for EMT. Three deleted signature genes; APOBEC3D, MCM8 and WDR5 have genomic
stability, genomic fidelity, and epigenetic fidelity functions, respectively [20–22]. Downregulation of
cell-cell contact to facilitate EMT and tumor mass blood transport is achieved by deletion of epithelial
cell adhesion regulatory genes that include GP1BB and PCDHGA11 in our resultant deleted genes
list [23,24]. DIO3 is a metabolic suppressor, which has cancer growth rate-limiting properties and may
mitigate EMT [25]. Lastly, ZNRF3 and HNF6 are EMT and cell-differentiation regulators under normal
conditions and are tumor suppressor genes inhibiting the EMT pathway [26,27]. Four deleted genes
had contradictory functions to EMT inhibition but had a negative EMT score based on our analysis.
These genes associated with other characteristics of CRC based on their expression analysis. ADRA1D
was differentially expressed in stage IV compared to stages II and III. NAT1 and NAT2, drug metabolism
genes; whose expression was associated with stage I MSS CRC. BRF2, a pro-proliferation gene, had a
positive EMT score and its expression was associated with MSS CRC. Activation of EMT was shown
to reduce cell proliferation by targeting specific pro-proliferation genes [28,29]. It is possible that the
loss of BRF2 functions in the primary tumor would result in the activation of alternative proliferation
pathways in distant metastases during reversion of EMT. The remaining nine deleted genes were
of unknown functions, albeit associating with several characteristics of CRC (Tables S2–S5), which
warrants further functional studies of these genes.

All amplified genes had known functions, except for ANXA2P2, which is a pseudogene for the
mesenchymal marker Annexin A2. Most amplified genes had positive association with EMT except
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for SEMG1, SMU1 and ING1. SMU1 and ING1 regulate genomic integrity and cell growth and their
function could be altered by aberrant expression or gene structural changes that resulted in their
association with MSS CRC [30,31]. Similarly, SEMG1 expression, a negative regulator of calcium
import, is associated with MSS CRC. Metabolic advantage is a feature of metastatic tumors and might
be mediated by overexpression of VLDLR, USP32, and PITPINC1 [32–34]. Although PITPINC1 had a
non-significant EMT score, its expression was associated with MSS CRC. Five amplified genes were
involved in multiple signaling cascades that can have pleiotropic effects. Those genes were DOK5,
DUSP14, GLIS3, PITPNC1, and SEMG1. These genes are partly characterized for their involvement
in cancer and would require further studies. Two amplified genes had contradictory functions to
being overexpressed in metastatic cancer, SCEL (a keratinocyte differentiation factor), and MPDZ (a
cell adhesion factor). However, both genes are involved in recruitment and assembly of proteins to
cellular surfaces promoting protein-protein interactions. Aberrant expression of these proteins may be
involved in the formation of invadopodia, which facilitates invasion of the local extracellular matrix
and basement membranes [35,36]. Lastly, it should be noted that our study here is limited to estimating
copy number aberrations; it does not discern sequence mutations or epigenetic changes.

In conclusion, our study characterized the personal nature of stage II CRC CNAs highlighting key
genes involved in promoting CRC metastasis. Resultant genes were mostly involved in cell growth
regulation, metabolic regulation, and signaling pathways (Figure 3). We have identified some novel
candidate genes of possible prognostic value for both overall survival and DFS. As well as novel
genes that can be used for CRC classification. These genes can offer new targets for diagnostic and
therapeutic designs. We anticipate validating our findings in separate retrospective and prospective
studies for their efficiency in predicting metastatic stage II CRC.
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4. Materials and Methods

4.1. CRC Samples

DNA extracted from formalin-fixed paraffin-embedded (FFPE) tissues from 96 patients with
sporadic early stage II CRC were used for genomic profiling. Genomic DNA was isolated from
microdissected FFPE CRC tissues as described previously [37].

4.2. Microsatellite Instability Analysis

Microsatellite fragment analysis was performed on FFPE-extracted DNA using MSI Analysis
System Version 1.2 kit (Promega, Madison, WI, USA). Spectral calibration was carried out on the
Applied Biosystems 3130 genetic analyzer using the Powerplex Matrix Standards 3100/3130 kit
(Promega). Promega’s MSI Analysis System includes fluorescently labeled primers for amplification of
seven markers; five mononucleotide repeat markers (Bat-25, BAT-26, NR-21, NR-24, and MONO-27),
and two pentanucleotide repeat markers (Penta C and D). Mononucleotide markers are used to
determine the MSI status, whereas pentanucleotide markers are used to detect potential sample
mix-up by validating that tumor and matching normal samples are from the same individual.
DNA concentrations of 10–20 ng from normal and tumor samples were used for the fluorescent
PCR-based assay. Microsatellite instability was determined by comparing allelic profiles of
microsatellite markers generated by amplification of normal and tumor DNA. Internal lane size
standard ILS600 was added to amplified samples to ensure accurate sizing of alleles. A loading
cocktail was prepared by mixing the ILS600-PCR product with highly-deionized formamide, and
denatured prior to loading onto the 3130 Genetic Analyzer for capillary electrophoresis. The sample’s
fragment separation output data were analyzed using GeneMapper software version 4.0 (Applied
Biosystems, Foster City, CA, USA). CRC samples were classified as MSS if no marker showed any
length variation compared with its matching normal colon mucosa. When two or more of the markers
showed length mutation in CRC compared with its matching normal mucosa, the CRC sample was
labeled as MSI-high.

4.3. Genomic Landscaping Using aCGH

Array CGH was carried out on 96 CRC samples following our standard published protocol [38].
In summary, 2 µg of tumor DNA and sex-matched pooled reference DNA (Promega, Madison, WI, USA)
were sonicated in a water bath. The universal linkage system (ULS) Cy3 and Cy5 (Agilent Technologies,
Santa Clara, CA, USA) dyes were used to label DNA according to the manufacturer’s protocol.
Differentially-labeled DNA was purified by Agilent KREApure columns (Agilent Technologies,
Santa Clara, CA, USA). Purified labeled tumor and reference samples were hybridized onto Human
Genome CGH arrays 244A slides (Agilent Technologies, Santa Clara, CA, USA) in SureHyb chambers
(Agilent Technologies, Santa Clara, CA, USA) for 40 h at 60 ˝C. Washing and scanning were carried
out according to manufacturer’s protocol. Slides were scanned immediately on an Agilent microarray
scanner at 5 µm resolution to minimize the impact of environmental factors on signal intensities.
Data was extracted from microarray image files using Feature Extraction software (Version 9.5,
Agilent Technologies, Santa Clara, CA, USA) and analyzed using Nexus Copy Number™ software
(BioDiscovery, El Segundo, CA, USA). Quality values generated from data analysis ranged between
0.05–0.4, and to minimize false positive calls and random copy number variations BioDiscovery’s Fast
Adaptive State Segmentation Technique (FASST2) algorithm with a stringent significance threshold of
5.0 ˆ 10´6 was used to determine copy number states.

4.4. Data Clustering and Statistical Analysis

Traditional means of classifying the importance of cancer-related copy number gain or loss include
the frequency of their occurrence in different patients. However, cancer genomes are highly complex
and frequently harbor random “passenger” copy number aberrations of no functional significance.
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To minimize interference from these passenger events, a systematic statistical approach termed
significance testing for aberrant copy number (STAC) was employed [39]. The STAC-based algorithm
is a robust method, which identifies a set of aberrations that are stacked on top of each other from
different samples such that it would not occur by chance. To find these events, aberrations (usually
narrow regions) were permutated in each arm of each chromosome and the likelihood for an event
occurring at any location at a particular frequency was calibrated. Here, we used STAC to compare
CNAs from 11 stage II primary CRC cases with confirmed distant metastases based on a 10-year follow
up, and 78 stage II primary CRC relapse-free cases (Table 1). We defined metastatic CRC as distant
cancer recurrence away from the primary site. Disease/relapse-free status is defined as no distant
metastases (liver, brain, or bone) or local recurrence. We set the likelihood frequency stringently at
35% and a significance p-value of <0.05 [39]. To further refine the CNA to include clinically-relevant
aberrations, we reanalyzed the data using a survival predictive power statistical approach (SPPS). SPPS
correlates CNA with survival time. In this analysis samples with similar CNA regions are grouped
(In-Group) and their mean survival calculated and compared to samples without the named CNA
(Out-Group). The mean survival times were then compared using the log rank test. This approach
highlights CNAs that influence survival time and may be more clinically relevant. Such permutations
are not considered in the STAC analysis we used; therefore, the two methods may be considered
complementary. Results from both approaches were compared to narrow down the chromosomal
regions and resident genes associated with CRC metastasis and disease-free status.

4.5. Data Preprocessing of Affymetrix Microarray Gene Expression

Gene expression microarray data of colon cancer on U133A or U133Plus2 platform (Affymetrix,
Santa Clara, CA, USA) were downloaded from Gene Omnibus (GEO), including synchronous and
metachronous liver metastases from CRC (GSE10961, n = 18), primary colorectal tumors (GSE13067,
n = 74), primary CRCs (GSE13294, n = 155), primary CRCs (GSE14333, n = 290), colon adenomas and
CRCs (GSE15960, n = 12, normal = 6), CRCs (GSE17536, n = 177 of which 144 are stage II and III),
metastatic CRCs (GSE17537, n = 55), stage II CRCs (GSE18088, n = 53), stage II and III CRCs (GSE18105,
n = 77, normal = 34), colon adenomas and CRCs (GSE20916, n = 101, normal = 44), CRCs (GSE23878,
n = 35, normal = 24), MSI CRCs (GSE24514, n = 34, normal = 15), MSI CRCs (GSE26682, n = 331), stage
II and III CRCs (GSE31595, n = 37), primary stage II CRCs (GSE33113, n = 90), primary CRC tumors
(GSE35896, n = 62), serrated and conventional colorectal adenocarcinoma tumors (GSE4045, n = 37),
metastatic CRCs (GSE5851, n = 80), colorectal adenomas (GSE8671, n = 32, normal = 32), and early stage
CRC tumors (GSE9348, n = 70, normal = 12). Robust Multichip Average normalization was performed
on each dataset using R version 2.15.3, Bioconductor Affy package version 1.38.1 (Affymetrix, Santa
Clara, CA, USA). The normalized data was compiled and subsequently standardized using ComBat
to remove batch effects [40]. The standardized data yielded a meta-cohort of 1820 colon carcinoma,
and 167 normal colon tissues. Note that some of the genes are only available on Affymetrix U133Plus2
platform (n = 1436), a subset of the meta-cohort. To focus on the effect of tumor suppressor genes,
we co-analyzed different combinations of copy number deleted genes in relation to their effect on
OS and DFS. Deleted gene combinations depended on their co-presence of their probes in any of
the Affymetrix platforms used, and their co-underexpression in a given CRC sample. We stratified
expression levels into quartiles (Q) where the first quartile (Q1) is the expression level at the 25th
percentile; second quartile is the median or the 50th percentile; the third quartile is the 75th percentile;
and, the last quartile (Q4) is the expression levels of the highest 25 percentile.

4.6. Estimation of Epithelial-Mesenchymal Transition Score

Derivation of EMT signature and estimation of EMT score were described previously [41].
Briefly, a curated EMT gene set [42], after removing basal keratins genes [43,44], was used as an
initial selection of epithelial and mesenchymal cell lines. The first step was to establish an EMT
signature using binary regression (BinReg) 2.0 [45] comparing profiles of colon cell lines with low or
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high EMT enrichment score. Briefly, BinReg uses a Bayesian statistical analysis to fit a binary probit
regression model on training data given a set of genes that are most correlated with the EMT phenotype.
The regression coefficients of these genes indicate the discriminating power of the gene and are weights
for the overall meta-gene profile. The overall meta-gene profile is subsequently used for comparison
and predicts the status of the phenotype of the new sample or dataset. In the second step, the BinReg
colon cancer EMT signature was applied to predict the EMT status of colon cancer tumor or cell lines.
In the third step the extreme 25% samples with the highest probabilities for epithelial or mesenchymal
phenotype were used to obtain the epithelial or mesenchymal specific gene list for the colon cancer
tumors or cell lines using Significance Analysis of Microarray (SAM) q-value = 0 and receiver-operating
characteristics curve (ROC) value of 0.85. SAM computed the expression fold change of the genes
based on the EMT phenotype, and assessed the significance by comparing the observed fold change
against the background expression fold change estimated from 1000 permutations of the samples’
EMT phenotypes. On the other hand, ROC method constructs a ROC curve assessing the predictive
power of a gene with respect to the EMT phenotypes. In the fourth step, single-sample GSEA (ssGSEA)
was employed to compute the enrichment score of a tumor or cell line based on the expression of the
colon cancer tumor- or cell line-specific epithelial or mesenchymal signature genes [46]. In ssGSEA, a
Kolmogorov-Smirnov-based method, the enrichment of a signature is estimated by comparing the
empirical cumulative distribution function of genes defined by the signature, vs. the genes not in the
signature. EMT score is defined as the normalized subtraction of the mesenchymal from epithelial
enrichment scores. The EMT score is an estimate for the cell line status as epithelial or mesenchymal
phenotype with ´1.0 indicates fully epithelial and +1.0 fully mesenchymal.

4.7. Statistical Analysis

Statistical significance evaluation by Mann-Whitney and Spearman correlation tests were
computed using Matlab® R2012a (MathWorks, Natick, MA, USA). Dot plot and Kaplan-Meier analysis
were done using GraphPad Prism version 5.04 (GraphPad, La Jolla, CA, USA) or SPSS V6.5 (IBM,
New York City, NY, USA).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/
17/5/598/s1.
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