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Abstract—In this paper we look at the problem of estimating
traffic states within segments of road using a particle filter and
traffic measurements at the segment boundaries. When there are
missing measurements the estimation accuracy can decrease. We
propose two methods of solving this problem by estimating the
missing measurements by assuming the current measurements
will approach the mean of the historical measurements from a
suitable time period. The proposed solutions come in the form
of an l1 norm minimisation and a relevance vector machine type
optimisation. Test scenarios involving simulated and real data
verify that an accurate estimate of the traffic measurements can
be achieved. These estimated missing measurements can then be
used to help to improve traffic state estimation accuracy of the
particle filter without a significant increase in computation time.
For the real data used this can be up to a 23.44% improvement
in RMSE values.

I. INTRODUCTION

Due to the increasing number of vehicles on the roads traffic

state estimation and prediction is an important challenge that

has to be addressed. However, modelling the traffic along

stretches of motorways/roads is a complex problem with

many interacting components and random perturbations [1]–

[3]. For example, consider drivers in a traffic jam. As drivers

approaching an incident observe the congestion forming in

front of them they begin to slow down. The drivers following

them see this change in speed and react in turn, resulting in a

reduction in speed moving further up the road.

Models of varying levels of detail can be used. Microscopic

models, [4], deal with state of individual vehicles, whereas

macroscopic models, [3], [5]–[10], consider mean velocities

and densities aggregated over time. As a result, macroscopic

models are often employed in real time applications [2].

One such macroscopic model for motorways/freeways is the

cell transmission model (CTM) [11]. In the CTM a length of

road is split into a sequence of links. Each link can then be

further separated in segments of road known as cells. The

interactions between neighboring cells is then modelled by

sending and receiving functions, which along with a maximum

number of vehicles allowed in each cell controls the movement

of vehicles between cells.

In [1] a flexible stochastic compositional model (SCM) is

presented for online modelling of traffic flows. This is an

extension of CTM which uses a dynamic equation to describe

how traffic speeds evolve in each of the cells. The SCM

is flexible in terms of the time update step and cell sizes,

which can vary with time if required as long as no single

vehicle will miss the subsequent cell during a time step. In

this model the random nature of traffic state evolution can

also be explicitly accounted for via probability distributions

that govern the sending and receiving functions as well as

noise terms.

With such models it is possible to recursively estimate

the traffic states using Kalman filters (KFs) [12]–[15]. Al-

ternatively particle filters (PFs), [16], [17], have also been

successfully applied to traffic estimation problems [2], [4]

and shown to be powerful and scalable. In such work past

observations and the system dynamics are used to obtain

the conditional distribution of the traffic state. It has been

shown that when we do not have measurements available

at all of the road segment boundaries that the estimation

accuracy can decrease at the boundaries without measurements

[2]. This raises the question can we get an estimate of what

these measurements would be in order to improve the overall

estimation accuracy of the filter?

Compressive sensing (CS), [18], [19], and Bayesian com-

pressive sensing (BCS), [20], are methods that can be applied

to beat the Nyquist sampling rate. It has also been shown that

CS based approaches can be used for matrix completion in

order to fill in missing data entries [21]. This has been applied

in context of the traffic estimation problem [22], [23]. In these

works data from probe vehicles is used, i.e. taxis equipped

with global positioning system (GPS) to give their locations

and velocities. However, there is no way to control how many

taxis are on the roads or which roads they are on. As a result

the missing data problem for traffic state estimation arises.

In this work we make the assumption that the current traffic

state will approach the mean of the historical traffic states from

a suitable period of time (unlike for the previous work where

the missing data in time and space is directly estimated). As

a result the problem can be formulated as an l1 norm min-

imisation of the difference between this historical mean and

the current traffic state estimate. In order to ensure accurate

estimated measurement are achieved a constraint is added to

ensure that the estimated traffic state matches the traffic state

measurements that are available at given cell boundaries. This
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Fig. 1. Road segments and measurement points [2]. Qi,k is the number of
vehicles crossing the boundary between segments i and i+1 at time k, Ni,k

and vi,k the number of vehicles and average of the vehicles, respectively.

can then be further formulated in a relevance vector machine

(RVM) type framework, [24], for improved efficiency. Note,

the resulting algorithms require the historical measurements

(or an estimate of them). As missing measurements are then

estimated they can take the place of the missing measurements

in historical data. The resulting CS and BCS based algorithms

for estimating the missing measurements are tested with both

simulated and real data and integrated with a PF for traffic

state estimation.

The rest of this paper is structured in the following man-

ner: Firstly, the traffic flow model is introduced in Section

II (traffic model II-A and measurement model II-B). Then

Section III introduces the methods of estimating the missing

measurements. Two methods are considered, one based on CS

(Section III-A) and the second on BCS (Section III-B). Section

IV gives details of the PF used for traffic state estimation.

Finally a performance evaluation is provided in Section V and

conclusions are drawn in Section VI.

II. TRAFFIC FLOW MODEL

A. Traffic Model

In this work we make use of the SCM [1], where the

road is split into segments as shown in Figure 1 and Li

is the length of road segment i, where segment i consists

of li lanes. We are interested in estimates of the traffic

states at times t1, t2, ..., tk, .... The state vector is given by

xk = [xT
1,k, xT2,k, ..., xTn,k]

T , xi,k = [Ni,k, vi,k]
T , where Ni,k

and vi,k are the number of vehicles and their average speed,

respectively and n+1 is the fictitious last road segment. Finally

we assume vehicles have an average length of Al.

We can describe the evolution of the traffic states using the

following equations:

x1,k+1 = f1(Q
in
k , vink , x1,k, x2,k,η1,k), (1)

xi,k+1 = fi(xi−1,k, xi,k, xi+1,k,ηi,k), (2)

xn,k+1 = fn(xn−1,k, xn,k, Q
out
k , voutk ,ηn,k), (3)

where fi is specified by the traffic model and ηk allows for

random fluctuations and modelling error. In equations (1)-

(3) Qin
k and Qout

k , are the vehicles entering the first segment

and leaving the last segment within the time interval ∆tk =
tk+1−tk with average speeds vink and voutk , respectively. Note,

these are the boundary conditions and not traffic states to be

estimated. The traffic behaviour is modelled with forward and

backward propagation of traffic perturbations. This model is

summarised in Algorithm 1 and the interested reader can find

further details in [1]. Note, in Algorithm 1 Si,k and Ri,k are

the sending and receiving functions, respectively. The sending

functions determine the number of vehicles that can leave

a road segment, while the receiving function determines the

number that can enter. Finally, ρantici,k+1 is an anticipated traffic

density as a result of mixing densities from two neighbouring

cells, ρth is a threshold value for the road traffic density and

vintermi,k+1 is an intermediate traffic velocity (intermediate since

it can be seen as kind of mixing velocities from neighboring

cells).

B. Measurement model

There are then sensors, e.g. magnetic loops, radar or video

cameras, on the boundaries of various road segments. Mea-

surements of the number of vehicles crossing the segment

boundaries and their speeds are made at the discrete time

points of interest, given by ts. The result of this is the

measurement vector given by zs = [zT1,s, zT2,s, ..., zTm,s]
T where

there are measurements made at m boundaries and zj,s =
[Q̄j,s, v̄j,s]

T .

Given the measurement equation

zs = h(xs, ξs), (4)

where h(.) is determined by the measurement model used. If

we know the distribution of the initial state vector then the

traffic state estimation problem becomes a recursive Bayesian

estimation problem and can be solved with a PF (see Section

IV). In this work we assume ξs = [ξQj,s
, ξvj,s ]

T is a Gaussian

measurement noise giving:

zj,s =

(

Q̄j,s

v̄j,s

)

+ ξs. (5)

III. MISSING MEASUREMENT ESTIMATION

A. Compressive Sensing

At a given time ts, the actual measurements are given by

zs = [zT1,s, zT2,s, ..., zTn,s]
T , where n is the number of road

segment boundaries. However, not all of these measurements

will be available at time ts. Instead we can estimate these

missing measurements. Firstly, consider a measurement matrix

given by

ms = bs ◦ zs, (6)

where ◦ is the Hadamard product,

bs = [bs,1, bs,2, ..., bs,2n]
T (7)



Algorithm 1 The Traffic Model [2]

1: Forward wave:

For i = 1, 2, . . . , n

Si,k = max

(

Ni,k
vi,k.∆tk

Li
+ ηSi,k, Ni,k

vmin.∆tk
Li

)

and set Qi,k = Si,k.

End For

2: Backward wave:

For i = n, n− 1, . . . , 1

Ri,k = Nmax
i+1,k −Ni+1,k +Qi+1,k,

where

Nmax
i+1,k = (Li+1ℓi+1,k)/(Aℓ + vi+1,ktd),

if Si,k < Ri,k, Qi,k = Si,k else Qi,k = Ri,k,

vi,k = Qi,kLi/(Ni,k∆tk).
End For

3: Update the number of vehicles inside segments:

For i = 1, 2, . . . , n

Ni,k+1 = Ni,k +Qi−1,k −Qi,k.

End For

4: Update the density:

For i = 1, 2, . . . , n

ρi,k+1 = Ni,k+1/(Liℓi,k+1),

ρantici,k+1 = αρi,k+1 + (1− α)ρi+1,k+1.

End For

5: Update of the speed:

For i = 1, 2, . . . , n

vintermi,k+1 =
{

vi−1,kQi−1,k+vi,k(Ni,k−Qi,k)
Ni,k+1

, Ni,k+1 6= 0,

vf , otherwise,

vintermi,k+1 = max(vintermi,k+1 , vmin)

vi,k+1 = βk+1v
interm
i,k+1 + (1− βk+1)v

e(ρantici,k+1)

+ ηvi,k+1,

βk+1 =

{

βI , |ρantici+1,k+1 − ρantici,k+1| ≥ ρth,

βII otherwise.

End For

and

bs,i =

{

1, measurements available,

0 measurements unavailable.
(8)

This measurement matrix can now be used to gain an estimate

of the current measurements ẑs.

We assume that the current measurements at the segment

boundaries will be close to the mean of the historical mea-

surements (or corresponding estimates) over a suitable period

of time, defined by the length th. This is given by

z̃s = φ̃sθ̃s, (9)

where θ̃s = [1/th, 1/th, ..., 1/th]
T (θ̃s ∈ R

th×1) and φ̃s is

the relevant historical measurements/estimates, given by

φ̃s = [φs−th
,φs−th+1, ...,φs] (10)

and

φj = [φT
1,j ,φ

T
2,j , ...,φ

T
n,j ]

T , (11)

φi,j =

{

zi,j , measurements available,

ẑi,j measurements unavailable.
(12)

This gives us the following problem

min ||z̃s − ẑs||1, (13)

where ||.||1 is the l1 norm. Minimising the l0 norm would give

the smallest amount of non-zero values for z̃s − ẑs. However,

this can not be achieved in practice and the l1 norm is used as

an approximation [18], [19]. Note, ||z̃s − ẑs||1 can be written

as follows

||z̃s − ẑs||1 = ||φ̃sθ̃s − φ̃sθ̂s||1 (14)

= ||φ̃s(θ̃s − θ̂s)||1 = |φ̃s|||θ̃s − θ̂s||1.

Therefore, as |φ̃s| is constant at a given time the minimisation

in (13) can be achieved by min
θ̂s

||θ̃s − θ̂s||1.

However, this will always aim to have θ̃s = θ̂s. As

a result a constraint has to be added to ensure that the

estimated measurements do not disagree with the available

measurements matrix. In other words we want to place a

limit on ||ms − bs ◦ ẑs||2 = ||ms − (Bs ◦ φ̃s)θ̂s||2, where

B = [bs, bs, ..., bs] (B ∈ R
th×1). This results in:

min
θ̂s

||θ̃s− θ̂s||1 subject to ||ms− (Bs ◦ φ̃s)θ̂s||2 ≤ ε. (15)

Here the constant ε in the added constraint places a limit on

the error between the available measurement vector and the

corresponding estimated measurements. The final estimate is

then given by

ẑs,CS = φ̃sθ̂s. (16)

B. Bayesian Compressive Sensing

Alternatively, the problem can be formulated in a Bayesian

framework. Firstly, we know

ms = (Bs ◦ φ̃s)θ̂s + es, (17)

where we assume es to be Gaussian noise with a variance σ2.

The solution is then found by evaluating

θ̂s,BCS = maxP(θ̂s, σ
2, ps|ms, θ̃s), (18)

where ps = [ps,1, ps,2, ..., ps,2n]
T are hyperparameters to be

estimated.



As per (17) the likelihood is given by

P(ms|θ̂s, σ
2) = (2πσ2)−n exp

{

−
1

2σ2
||ms−(Bs◦φ̃s)θ̂s||

2
2

}

.

(19)

We further assume that the values of θ̂s will be likely to be

close to those of θ̃s, which gives us the prior distribution

P(θ̂s|ps, θ̃s) = (2π)−th/2|Ps|
1/2 (20)

× exp
{

−
1

2
(θ̂s − θ̃s)Ps(θ̂s − θ̃s)

T
}

.

Here, |Ps| is the of determinant Ps = diag(ps).

Now place independent Gamma priors on the hyperparam-

eters ps,i giving

P(ps) =

2n
∏

i=1

G(ps,i|a, b). (21)

A further Gamma prior can also be used for σ2

P(σ2) = G(σ−2|c, d), (22)

where a, b, c and d are scale and shape priors.

With these definitions we can now find the solution to (18)

by following a RVM type framework [24]. We know that

P(θ̂s, σ
2, ps|ms, θ̃s) = P(θ̂s|ms, σ

2, ps, θ̃s)P(ps, σ
2|ms)

(23)

and

P(θ̂s|ms, σ
2, ps, θ̃s) =

Ps(ms|θ̂s, σ
2)P(θ̂s|ps, θ̂s)

P(ms|ps, σ
2, θ̃s)

(24)

= (2π)−th/2|Σs|
−1/2 exp

{

−
1

2

× (θ̂s − µs)
T
Σ

−1
s (θ̂s − µs)

}

,

where Σs and µs are the covariance matrix and mean vector

given by

Σs = (σ−2(Bs ◦ φ̃s)
T (Bs ◦ φ̃s) + Ps)

−1, (25)

and

µs = Σs(σ
−2(Bs ◦ φ̃s)

T ms + Psθ̃s), (26)

respectively.

Following a similar method to [24] we have

P(σ2, ps|ms) ≈ P(ms|ps, σ
2, θ̃s)P(ps)P(σ

2), (27)

where if we have a = b = c = d = 10−4 then P(ps)
and P(σ2) are non-informative [24]. As a result, maximising

P(σ2, ps|Ms) is equivalent to maximising P(ms|ps, σ
2, θ̃s).

This can be achieved by maximising

L(ps, σ
2) = log

{

(2πσ2)−th/2|Σs|
1
2 |Ps|

1
2 exp

(

−
1

2

× (mT
s Cms + θ̃

T

s Dsθ̃s

− 2σ2mT
s (Bs ◦ φ̃s)ΣsPsθ̃s)

)

}

= −
1

2

(

th log(2π) + th log σ
2 − log |Σs| −

log |Ps|+ σ−2||ms − (Bs ◦ φs)µs||
2
2

+ µT
s Pµs + θ̃

T

s Psθ̃s − θ̃
T

s Psµs

)

, (28)

where Cs = (σ2I + (Bs ◦ φ̃)P
−1
s (Bs ◦ φ̃s)

T )−1 and Ds =
Ps − PT

s ΣsPs.

By differentiating (28) with respect to ps,i and σ−2 it

possible to get the update equations for the precision hyper-

parameters and variance, respectively. This gives us

pnews,i =
γs,i

µ2
s,i + θ̃s,i − θ̃s,iµs,i

, (29)

σ2
new =

||ms − (Bs ◦ φ̃s)µs||
2
2

th −
∑

i

γs,i
, (30)

where γs,i = 1 − ps,iΣs,ii, Σs,ii is the ith diagonal element

of Σs.

The optimisation is then achieved by iteratively finding Σs

and µs, followed by pnews,i and σ2
new until a convergence

criterion is met. To obtain the final estimates of θ̂s the

optimised values of ps and σ2 are put into (26) to give

ẑs,BCS =
( (Bs ◦ φ̃s)

T (Bs ◦ φ̃s)

σ2
opt

+ Ps,opt

)

−1

×
( (Bs ◦ φ̃)

T ms

σ2
opt

+ Ps,optθ̃s

)

. (31)

Either the estimates ẑs,CS or ẑs,BCS can then be used to

replace the available measurements used with in a PF. Such a

scheme is detailed in the next section.

IV. PARTICLE FILTERING FRAMEWORK FOR TRAFFIC

STATE ESTIMATION

Here the aim is to find the posterior probability density

function (PDF) of the state at time tk given a set of mea-

surements up to the same point in time. In other words we

want to evaluate p(xk|Ẑ
k
), where Ẑ

k
= [ẑ1, ...., ẑk] and ẑi for

i = 1, ..., k is estimated using (16) or (31). From Bayes rule

p(xk|Ẑ
k
) =

p(ẑk|xk)p(xk|Ẑ
k−1

)

p(ẑk|Ẑ
k−1

)
, (32)

where

p(xk|Ẑ
k−1

) =

∫

Rnx

p(xk|xk−1)p(xk−1|Ẑ
k−1

)dxk−1 (33)



 

Fig. 2. Schematic of Belgium freeway considered [2]. CLOF-CLO9 show
the locations of cameras used to make the traffic measurements

and p(ẑk|Ẑ
k−1

) is a normalising constant. This means

p(xk|Ẑ
k
) can be updated using the following proportionality

relationship:

p(xk|Ẑ
k
) ∝ p(ẑk|xk)p(xk|Ẑ

k−1
). (34)

This recursive estimation is computationally expensive

which is why PFs are used to give an approximate solution

[16], [17]. Algorithm 2 gives the PF (with Mpf ) for traffic

state estimation that is considered in this work. We refer

the interested reader to [2] for further details. The difference

between this work and the algorithm shown here is the

inclusion of the measurement estimation step which has been

detailed in the section above. Note the inclusion of tk ≡ ts
is to account for the fact that we do not necessarily have

measurements available at every time step within the particle

filter.

V. PERFORMANCE EVALUATION

In this section we will provide a performance evaluation of

the proposed algorithms. This will be formed of two parts:

Firstly simulated and real data will be used to test how well

(16) and (31) can fill in the missing measurements at road

segment boundaries. Note, (16) is solved using cvx [25], [26].

Then a PF with and without estimated measurements will

be used to estimate the traffic states for the real data. All

comparisons are implemented in Matlab on a computer with

an Intel Xeon CPU E3-1271 (3.60GHz) and 16GB of RAM.

The simulated data comes from the SUMO traffic simulator

[27]. We simulated two 1km lanes of traffic travelling in

one direction with a maximum speed of 25m/s. An induction

loop was placed every 0.5km to take the segment boundary

measurements every 30 seconds.

Figure 2 shows the section of freeway considered between

Ghent and Antwerp in Belgium. The labels CLOF-CLO9 refer

to the traffic cameras at road segment boundaries on the section

of road being considered. Theses cameras record the number

of vehicles passing the boundaries in 1 minute intervals and

their average speeds.

Algorithm 2 Particle Filter with CS/BCS Estimated Measure-

ments for Traffic State Estimation [2]

1: Initialization: k = 0
For l = 1, . . . ,Mpf

Generate samples {x
(l)
0 } from the initial distribution

p(x0) and initial weights w
(l)
0 = 1/Mpf .

End For

2: Prediction step:

For l = 1, . . . ,Mpf ,

sample x
(l)
k ∼ p(xk|x

(l)
k−1) according to (4)-(11) for

segments between two boundaries where

measurements arrive

End For

3: Missing measurement estimation (only for tk ≡ ts):

Obtain the estimated traffic measurements, using either

min
θ̂s

||θ̃s − θ̂s||1 subject to ||ms − (Bs ◦ φ̃s)θ̂s||2 ≤ ε,

ẑs = φ̃sθ̂s.

or

ẑs =
( (Bs ◦ φ̃s)

T (Bs ◦ φ̃s)

σ2
opt

+ Ps,opt

)

−1

×
( (Bs ◦ φ̃)

T ms

σ2
opt

+ Ps,optθ̃s

)

.

4: Estimated measurement processing step (only for tk ≡ ts)

compute the weights:

For l = 1, . . . ,Mpf

w(l)
s = w

(l)
s−1p(ẑs|x

(l)
s ),

End For

where the likelihood p(ẑs|x
(l)
s ) is calculated by the model

(5) from Section II-B.

For l = 1, . . . ,Mpf

Normalize the weights: ŵ
(l)
s = w

(l)
s /

∑Mpf

l=1 w
(l)
s .

End For

5: Output: x̂s =
∑Mpf

l=1 ŵ
(l)
s x

(l)
s ,

6: Selection step (resampling) only for tk ≡ ts:

Multiply/ Suppress samples x
(l)
s with high/ low importance

weights ŵ
(l)
s , in order to obtain M random samples

approximately distributed according to p(x
(l)
s |Ẑ

s
), e.g. by

residual resampling.

For l = 1, . . . ,Mpf ,

w
(l)
s = ŵ

(l)
s = 1/Mpf ,

End For

7: k ← k + 1 and return to step (1).

A. Evaluation of CS and BCS based measurement estimation

methods

For the SUMO simulator we assume that there are mea-

surements available at all of the loop locations for th = 25
time instances. After this we then assume that there only

measurements available at the first and last loop location.



TABLE I
Performance summary for the CS and BCS based measurement estimation

methods with simulated data.

Method CS BCS

Computation time (s)
total (per snapshot) 3.79 (0.39) 0.81 (0.04)

max(||z1,s − ẑ1,F,s||2) 6.14 5.08

||z1,s − ẑ1,F,s||2 1.89 2.21

max(||z2,s − ẑ2,F,s||2) 5.16 5.15

||z2,s − ẑ2,F,s||2 2.31 2.60

TABLE II
Performance summary for the CS and BCS based measurement estimation

methods with real data.

Method CS BCS

Computation time (s)
total (per snapshot) 6.44 (0.40) 0.70 (0.03)

max(||z1,s − ẑ1,F,s||2) 9.74 8.04

||z1,s − ẑ1,F,s||2 6.22 4.85

max(||z2,s − ẑ2,F,s||2) 28.56 24.43

||z2,s − ẑ2,F,s||2 15.56 9.62

For the real data we initially have measurements available at

CLOE-CLOB and start at a time of 5pm. When the estimates

have been found they can then replace the measurements at the

current time instance and the process repeated for the desired

length of time (20 time steps in total).

Firstly, 100 independent sets of estimates were found us-

ing (31) and a representative example selected. This was

achieved using initial estimates of the hyperparameters as

ps,i = (2n)−2, where 2n gives the number of measurements,

and initial estimate of the variance for the Gaussian noise as

σ2 = 0.1. Then from the representative sample a value of ε
for use in (16) can be found to allow fair comparison.

Table I summarises the performance of the two methods

for the simulated data, where ||z1,s − ẑ1,F,s||2 and ||z2,s −
ẑ2,F,s||2, for s = tinit, ..., tinit+th and F = {CS,BCS}, is

used to indicate the estimation accuracy. Note, the subscript

1 refers to the measurements related to vehicle speed and the

subscript 2 for the number of vehicles. From this we can see

that both methods give a comparable performance in terms of

estimation accuracy. For the CS based method this relates to

the speed estimate always being within 3.66 m/s of the actual

measurement and 3.54 of the actual vehicle count. Whereas,

for the BCS based method the estimates are within 4.12m/s

of the speed measurements and within 3.48 vehicles of the

actual vehicle count. However, Table I shows that the BCS

based method is computationally more efficient. This is also

for the case with real data shown in Table II, where we can

also see the BCS based method has also given an improved

estimation accuracy compared to the CS based method. In this

instance for the BCS based estimates are within 7.14km/h and

22.88 vehicles of the actual measurements. Whereas, for the

CS based method the estimates are within 6.85km/h and 25

vehicles of the actual traffic measurements.
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Fig. 3. Traffic density RMSE for CLOE, the solid line is for the PF using 2
measurements only and the dashed line with the BCS estimated measurements.

B. Evaluation of Traffic State Estimation performance

Now we will consider how using estimated measurements

effects the performance of estimating the traffic states within

the road segments using a PF with Mpf = 200 particles. As

we have previously shown that the BCS and CS based methods

have a similar measurement estimation accuracy but that the

BCS method is more efficient, we will only use the BCS based

measurement estimation method in what follows.

The performance will be tested using the real data from

Belgium over the period of an hour. We consider time steps of

10 seconds, where measurements are available every minute.

The following parameters where used in the traffic model

and PF: vfree = 120km/h, vmin = 7.4km/h, ρcrit =
20.89veh/km/lane, ρjam = 180veh/km, Al = 0.01km,

σ2
ξQj,s

= 1 and σ2
ξQj,s

= 3.24.

Note, r = 100 independent Monte Carlo runs are completed.

For a performance measure of the accuracy of the PF we

consider the root mean square error (RMSE) as calculated

in (35), where j = 1 for the speed related measurements

and j = 2 for the number of vehicles/density related mea-

surements. Here zi,k is the actual measurements and ẑi,k the

predicted measurements (found from traffic model and PF).

RMSEj,k =
1

r

r
∑

i=1

(zj,i,k − ẑj,i,k)
T (zj,i,k − ẑj,i,k). (35)

We compare the performance for CLOE and CLOC to

illustrate the effects on performance in segments were there

was originally measurements available and unavailable respec-

tively. Figures 3-6 show the changing RMSEs and Table III

summarises the performances along with computation times.

These show an improvement in estimation accuracy has been

achieved by using the BCS measurement estimation method.

This has been at the cost of a slight increase in computation

time. However, the increase has not been significant enough to
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Fig. 4. Traffic density RMSE for CLOC, the solid line is for the PF using 2
measurements only and the dashed line with the BCS estimated measurements.
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Fig. 5. Traffic velocity RMSE for CLOE, the solid line is for the PF using 2
measurements only and the dashed line with the BCS estimated measurements.

be a concern for real time implementation. The flow-density

diagrams are plotted for the estimates from the PF with 2

measurements available and the BCS measurements available

are shown in Figures 7-8. Both show the expected shape and

are similar in appearance, further validating the effectiveness

of the proposed method.

VI. CONCLUSIONS

In this paper we have proposed two solutions to the problem

of missing traffic measurements. We make the assumption

that the current traffic measurements will be similar to the

mean of the historical measurements from a suitable period of

time. This can be assured by formulating the problem as an

l1 norm minimisation which is carried out subject to ensuring

the estimates give an acceptable approximation of the available
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Fig. 6. Traffic velocity RMSE for CLOC, the solid line is for the PF using 2
measurements only and the dashed line with the BCS estimated measurements.

TABLE III
Performance summary for PF with 2 measurements available and the BCS

estimated measurements.

BCS estimated
Example 2 measurements measurements

Computation time (s)
total (per snapshot) 6.66 (0.11) 13.28 (0.47)

RMSEρ

CLOE (CLOC) 29.67 (39.53) 27.51 (37.55)

RMSEv

CLOE (CLOC) 38.11 (26.09) 37.46 (25.78)
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Fig. 7. Flow-density diagram for the PF with 2 measurements available.
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Fig. 8. Flow-density diagram for the PF with the BCS estimated measure-
ments.

traffic measurements. Then we further formulate the problem

in a Bayesian framework, deriving the a posterior distributions

and marginal likelihood that are optimised using an RVM

type framework. These methods can then be combined with

a PF and SCM for traffic. The proposed methods are tested

with simulated and real data to verify their effectiveness.

We show that it is possible to get accurate estimates of the

missing measurements which when used with the PF can

give improved accuracy in terms of state estimation accuracy

without a significant increase in computation time. For the real

data considered in this paper up to a 23.44% improvement in

RMSE values has been achieved.
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