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Abstract

Noise is a persistent feature in seismic data and so poses challenges in extracting increased accuracy in

seismic images and physical interpretation of the subsurface. In this paper, we analyse passive seismic

data from the Aquistore carbon capture and storage pilot project permanent seismic array to characterise,

classify and model seismic noise. We perform noise analysis for a three month subset of passive seismic data

from the array and provide conclusive evidence that the noise field is not white, stationary, or Gaussian;

characteristics commonly yet erroneously assumed in most conventional noise models. We introduce a novel

noise modelling method that provides a significantly more accurate characterisation of real seismic noise

compared to conventional methods, which is quantified using the Mann-Whitney-White statistical test. This

method is based on a statistical covariance modelling approach created through the modelling of individual

noise signals. The identification of individual noise signals, broadly classified as stationary, pseudo-stationary

and non-stationary, provides a basis on which to build an appropriate spatial and temporal noise field model.

Furthermore, we have developed a workflow to incorporate realistic noise models within synthetic seismic

datasets providing an opportunity to test and analyse detection and imaging algorithms under realistic noise

conditions.

1 Introduction

Noise is an inevitable feature of seismic data, given that the earth is dynamic, instruments are not perfect

and our understanding of physics is still not complete such that even signals originating from the desired



source can prove problematic for seismic processing (i.e. mulitples or ground roll) [e.g., Li et al., 1994; Kahrizi

et al., 2014]. For passive seismic data, noise is even more problematic due to the inherent uncertainty in the

temporal and spatial location of seismic events. Furthermore, the masking of relatively weak microseismic

events by noise leads to one of the main issues in passive seismic monitoring which is increased uncertainty in

identifying event arrivals [Bardainne et al., 2009; Maxwell, 2014]. The presence of coherent noise in seismic

imaging can result in the introduction of artefacts, while in seismic inversion it can lead to errors in the

estimated velocity model and predicted source parameters [Forghani-Arani, 2013]. Synthetic seismic datasets

provide a confidence limit under which passive seismic processing and imaging algorithms can be used to

accurately identify an event [e.g., Price et al., 2015] and its failure mechanism [e.g., Trifu et al., 2000], such

as fracture location, orientation and length. To provide more realistic synthetic seismic data, noise with

Gaussian characteristics is commonly added. Over the past few decades, the Gaussian noise assumption has

resulted in many techniques being developed specifically to suppress Gaussian noise [e.g., Green et al., 1966;

Berkner and Wells Jr, 1998; Bekara et al., 2003]. However, the choice of Gaussian noise is mainly to simplify

implementation or demonstrate mathematical properties such as optimality and unbiasedness, rather than

based upon physical principles. In many ways, Gaussian noise only serves to obscure seismic arrivals or

events rather than providing a sufficiently robust test of processing and imaging algorithms.

What is noise? For passive seismic monitoring scenarios, every recorded signal other than the first arrival

P and S waves is typically considered noise, such as ambient noise as well as seismic multiples and mode

conversions. Ambient noise, sometimes referred to as background noise, originates from a wide range of

sources that can be separated into natural processes and urban activities, dependent on their frequency

content [Gutenberg, 1958; Asten, 1978]. Noise below 1 Hz consists of microseisms created by large-scale

meteorological events and oceanic waves along the coast [Asten and Henstridge, 1984]. Between 1 and 5 Hz

noise sources are likely to be local meteorological events or urban activity and sources above 5 Hz sources are

likely to be urban in origin [Bonnefoy-Claudet et al., 2006]. Studies of meteorological noise suggest that wind

and rain can have a distinct effect on the noise signature of seismic data [e.g., Nørmark, 2011; Barajas-Olalde

and Jeffreys, 2014]. In terms of urban noise, Riahi and Gerstoft [2015] characterised the seismic footprint of

traffic and were able to distinguish sources such as trains, aircraft and road traffic. In addition to ambient

and urban noise in many oil and gas producing environments there is also production-induced noise resulting

from fluid extraction and injection processes. For hydraulic fracture monitoring pumping noise is pervalent,

where increased noise levels are observed at stations closer to treatment wells [e.g., Drew et al., 2012; Schilke

et al., 2014] broadly above the expected induced seismicity. It should be noted, however, that ambient noise

interferometry on passive seismic data has been used increasingly to image subsurface velocity distributions



[e.g., Draganov et al., 2004] and recently multiples are being used to improve event location algorithms [e.g.,

Belayouni et al., 2015].

Noise analyses have also focussed on noise characteristics (rather than their origin) by investigating the

stationarity and Gaussianity of the noise field. A stationary time series is defined to have a constant mean

and variance while a Gaussian time series must arise from a Gaussian distribution determined by the mean

and variance. In this paper, we note that the terms stationarity and ‘Gaussianity’ refer to a measure by which

a time series is stationary or Gaussian, respectively. It is commonly accepted that noise can only be assumed

stationary over a short time period [Riahi et al., 2013] due to contamination of stationary background noise

by transient phenomena that are non-stationary in both time and space, such as urban seismic noise [Groos

and Ritter, 2009]. Advancements in signal processing have led to the use of noise surrogates to test the

stationarity of a time series and provided an index on the strength of stationarity that a time-series exhibits

[Borgnat et al., 2010]. The use of surrogates has been applied to study background noise in land-seismic

prospecting by Zhong et al. [2015] who concluded that background noise is “not strictly stationary” and as

the length of time of the sample increases the stationarity decreases.

The assumption that background noise is Gaussian has gone relatively uncontested since White [1984] dis-

cussed the difficulty in testing unambiguously whether seismic noise is Gaussian. A recent investigation by

Zhong et al. [2015] used a higher-order spectral analysis method to investigate Gaussianity of background

noise with respect to time. They concluded that for periods over 20 seconds noise appears to be Gaussian

whereas for periods of the order of 1 second noise is non-Gaussian. Pierce [1997] proposed that seismic noise

is likely to have heavier tails than a Gaussian distribution and therefore may be more likely to follow an

alpha-stable distribution (note that Gaussian distribution is a subset of an alpha-stable distribution with

α “ 2).

Despite the evidence that noise does not conform to the white, Gaussian noise (WGN) assumption (see next

section for definitions), the majority of published approaches still use WGN to test the robustness of event

imaging and detection algorithms with respect to noise [e.g., Grion et al., 2015; Berkhout and Blacquière,

2015; Shao et al., 2015; Trojanowski and Eisner, 2015]. Pearce and Barley [1977] included the effect of noise

on synthetic seismograms by convolving a sample of recorded noise with broadband white noise creating

coloured, Gaussian noise as opposed to the simple WGN approach. However, this approach only serves to

produce a distorted signal by weighting the sampled recorded noise by a signal having Gaussian distribution

and so is not meaningful. A more deterministic noise modelling method is that of distributed surface sources

where source properties, such as direction, amplitude and source time functions, are randomly distributed

[e.g., Sylvette et al., 2006; Lunedei and Albarello, 2015; Dean et al., 2015]. While this modelling method



provides significant improvements on the WGN modelling assumption, it is a theoretical modelling method

independent of recorded noise and therefore has limitations to the extent to which it can model the complex

properties of recorded noise. This is discussed by Dean et al. [2015] who state “Although the modeled data

have the same characteristics as the field measurements, it is unlikely that models can be built with the

geologic, geographic, and meteorological detail required to create accurate models”. A recent advancement

in representing realistic noise in synthetic datasets is to directly incorporate a sample of recorded noise into

the synthetic dataset (referred to as a ‘cut-and-paste’ job). This technique leads to a so-called semi-synthetic

dataset and can be used for robustness tests as shown by Chambers et al. [2010] and Forghani-Arani et al.

[2012]. Although the semi-synthetic approach provides sufficient realism, it does not allow one to modify the

temporal and spatial statistical characteristics of noise in a methodological manner. Furthermore, it requires

having real noise recorded from the array, where in many cases it may be desirable to simulate noise levels

prior to acquisition.

Since processing and imaging algorithms tend to be tested under a WGN assumption, it is often unclear

how an algorithm will handle noise from a field dataset, leading to uncertainty in the accuracy of identified

events and their derived properties. In this paper we investigate statistical methods for analysing and

introduce a new modelling approach for seismic noise. We begin with a theoretical description of how noise

is characterised before describing three existing techniques for noise simulation. We also propose a new

modelling approach (ICOVA) based on the covariance modelling method. We then analyse and compare

noise models against observations from three months of passive seismic data collected at the Aquistore

carbon storage site. We observe and confirm that noise does not conform to the stationary, white, and

Gaussian assumptions typically used by traditional noise modelling methods. We find that whilst the existing

approaches fail to adequately simulate the noise characteristics due to their constraining assumptions the

new ICOVA modelling approach provides more faithful representations for the noise field. The results of

this study have possible implications for the design and implementation of noise cancellation and detection

algorithms, the development of more robust noise models as well as improved survey designs. The relevance

of more realistic noise modelling is potentially not limited to passive seismic applications and has potential

for active source surface reflection and time-lapse seismic applications.

2 Theory

The traditional WGN modelling method assumes noise conforms to all of the following statistical properties:

1. stationary requiring that the first and second mathematical moments (mean and variance, respec-



tively) are constant over the sample dimension in which stationarity is being determined,

2. exhibits a white power spectrum requiring the noise to have a constant power spectral density

(PSD), such that energy is distributed equally across all frequencies, and

3. Gaussian requiring the noise to have a probability density function equal to that of a single-variate

Gaussian distribution and therefore the distribution can be completely described by only the first and

second mathematical moments.

The first section discusses the methods used to investigate whether noise conforms to the aforementioned

assumptions. The second section details some of the common statistical noise modelling techniques, where

we introduce some new techniques to characterise the noise field.

2.1 Noise characterisation

If noise is spatially and temporally stationary, the signal should display a constant mean and variance in

both space and time coordinates. We compute the mean and variance using a sliding window analysis with a

window length of 5 seconds and a window overlap of half the window length. The analysis window is chosen

to correspond with those used in surface microseismic applications, which wish to contain a P-wave moveout

across the array (1-2 seconds ) and allow an additional buffer either side of the window. The window size

and overlap enables capturing of any rapid changes in mean and variance in the data. Although a short

window increases the computational expense, a longer window would smooth the results and lose important

spatial and temporal resolution at the expense of computational efficiency.

To consider whether the noise power spectrum is white, we compute the PSD over an hour period and a

short-time Fourier Transform (STFT) using the same sliding window analysis as done with the mean and

variance calculations. The PSD characterises the overall power spectrum over a full hour whereas the STFT

characterises any changes in the power spectrum over a much smaller time scale. To consider if the total

energy is distributed equally across the array, the seismic energy (i.e. the squared amplitude) is computed

using the same sliding window analysis as done with the STFT calculation.

The final noise property analysed is the extent to which the seismic noise is Gaussian. We consider only two

methods to determine the distribution shape of seismic noise. Both techniques are based on the third and

fourth mathematical moments that describe the skewness and kurtosis (i.e., ‘peakedness’) of a distribution,

respectively. The first technique is performed in the time domain and uses the mathematical moments

directly, while the second technique is performed in the frequency domain and uses cumulants.

The first technique is the conventional method of statistical moments. The first and second moments are the



well known mean and variance, respectively, and the third and fourth moments are skewness and kurtosis,

respectively. Skewness (γ1) and kurtosis (γ2) are defined:

γ1 “
µ3

σ3
“

Erpx ´ µq3s

Erpx ´ µq2s3{2
(1)

and

γ2 “
µ4

σ4
“

Erpx ´ µq4s

Erpx ´ µq2s2
, (2)

where x is a data point, µ is the first mathematical moment (i.e. mean), µi is the ith mathematical moment,

σ is the standard deviation and Er¨s denotes the expectation operator. For a Gaussian distribution, both

skewness and excess kurtosis are equal to zero, where excess kurtosis is defined as γ2ex “ γ2 ´ 3. The

moments are calculated using the same sliding window analysis as performed on the stationarity test for

mean and variance.

An extension to the conventional method of statistical moments is the analysis of cumulants and is performed

using Higher Order Spectral Analysis (HOSA) and are commonly used in statistical signal processing [e.g.,

Bartelt et al., 1984; Walden and Williams, 1993; Pflug, 2000]. The HOSA method applied here considers

the bispectrum and trispectrum, which are the Fourier transforms of the third- and fourth-order cumulants,

respectively. Cumulants are an alternative to mathematical moments and arise from the natural logarithm of

the mathematical moments [Fisher, 1930]. By using cumulants the dependence on lower order moments (i.e.,

mean and variance) is removed [Collis et al., 1998]. The squared magnitude of the normalised bispectrums

and trispectrums results in the bicoherence (b̂2) and tricoherence (t̂2), respectively:

b̂2pf1, f2q “ (3)

| 1

N

ř

N

i“1
rXipf1qXipf2qX˚

i
pf1 ` f2qs|2

P̂ pf1qP̂ pf2qP̂ pf1 ` f2q

and

t̂2pf1, f2, f3q “ (4)

| 1

N

ř

N

i“1
rXipf1qXipf2qXipf3qX˚

i
pf1 ` f2 ` f3qs|2

P̂ pf1qP̂ pf2qP̂ pf3qP̂ pf1 ` f2 ` f3q
,

where P̂ pfq “ ă XpfqX˚pfq ą (ăą denotes the expectation estimator), X is the Fourier transform of a

time-series x, and X˚ is the complex conjugate of X.

Both equations 3 and 4 are zero for Gaussian distributions and can reach a maximum of one for non-Gaussian



distributions [Chandran et al., 1994]. The coherence calculations require N realisations of the distribution

and compute a value for every possible frequency combination of f1 and f2 for bicoherence and f1, f2 and f3

for tricoherence. To get a single value of coherence with respect to space and time the full coherence array

for a time window at one position in space is averaged. The coherence analysis is computed on an hour of

data using a 2 second realisation window and 30 realisations per calculation (i.e., one coherence value per

minute of data). To provide a benchmark for the computed values, a Gaussian surrogate noise is created

using the mean and variance of each data sample used to compute the Gaussianity property. (Note that this

method of creating surrogates differs from that commonly used in communication theory which is performed

in the frequency domain, see for example Borgnat et al. [2010].)

2.2 Noise modelling procedures

In this section, we discuss five approaches to statistically model noise. The first two approaches are used

already in seismic noise modelling [for example O’Brien, 1974; Pearce and Barley, 1977] while the remaining

three approaches are novel applications to seismic noise modelling adapted from communication theory [for

example Massart et al., 1988; Scharf, 1991]. Excluding WGN, all acronyms of modelling methods are not

common acronyms and are only used by the authors.

WGN: The first noise model is a simple White Gaussian Noise (WGN) model. For the WGN model to

be comparable to the recorded noise and the other noise models, the amplitude is scaled to fit the expected

range of the recorded noise.

CONV: The second noise model, referred to as the CONVolution-based modelling method (CONV), is

similar to work by Pearce and Barley [1977] and Zhong et al. [2015], where a period of recorded noise (t)

is convolved (˚) with a random Gaussian trace (g) to create a modelled trace (n) with the same frequency

content as the original recorded trace:

n “ t ˚ g, (5)

(bold font indicates a vector quantity). Following Pearce and Barley [1977], noise is modelled on a station-

by-station basis with the recorded noise separated into 1 minute time segments. Zhong et al. [2015] have

used this method to create surrogate noise models as a test for stationarity.



COVA: The third modelling method is based on the statistical COVAriance modelling method (COVA)

which assumes that noise can be statistically represented as a multivariate Gaussian random field, defined

by only a mean and covariance matrix. A synthetic noise patch is created by drawing a random realization

from this multivariate Gaussian distribution as illustrated in the work flow in Figure 1. The data is divided

into recorded noise patches defined by a spatial group of Nx traces, over a finite time window, Nt, with patch

dimensions rNt ˆNxs. For computational purposes, this is reshaped to create a patch column vector, d, with

dimensions rNtNx ˆ 1s. To get a good approximation of the mean and covariance matrix, K realisations of

the noise are used (i.e. K patches). The patch vectors are horizontally concatenated to create a data matrix,

D, with dimensions rNtNx ˆ Ks:

D “ rd1 d2 . . . dK´1 dKs. (6)

Prior to computing the covariance matrix, the mean µ is calculated across the K realisations

µ “
D1

K ´ 1
, (7)

where 1 is a unit column vector of length K. The mean is removed from each patch (i.e. d̂ “ d ´ µ) and

the covariance matrix C is computed using

C “ D̂D̂T {K, (8)

where D̂ “ rd̂1 d̂2 . . . d̂K´1 d̂Ks and D̂T is the transpose of D̂. C is then decomposed into upper and

lower triangular matrices through a Cholesky decomposition

C “ C1{2CT {2. (9)

The lower triangular matrix C1{2 is the square root of the covariance matrix C which is the equivalent of

standard deviation for univariate normal distributions. A random vector b of Gaussian white noise with unit

variance and zero mean is generated to form the basis of the noise model. To recreate the spatio-temporal

correlation observed on the noise patches, d, the Gaussian noise vector is multiplied by the lower triangular

matrix, C1{2, and the product is summed with the mean vector, µ,

d̃ “ C{b ` µ. (10)



The modelled patch vector d̃ is then reshaped back to the original patch dimensions to produce a modelled

noise patch D̃ with the same first and second mathematical moments as a recorded patch d. Where the

noise field is considered as a single statistical phenomenon, as opposed to the sum of multiple noise signals,

the COVA approach uses time segments of the full-array data to make up the noise realisations.

ICOVA: Alternatively, the noise can be considered as the sum of multiple phenomena that can have their

signals isolated and modelled with spatial and temporal patch lengths varying to represent their statistical

properties. For each phenomenon (or noise type) we isolate the relevant data and perform a COVA simulation.

The final model is generated by summing the results from the different noise types with the final model

being referred to as the isolated COVA (ICOVA) model. The ICOVA method requires multiple realisations

of each type of noise signal, having the same statistical properties observed across the realisations. To

ensure this condition is met a minimum of 200 realisations were used for each identified noise signal model

and all realisations were required to have a ą 75% probability of arising from the same distribution. The

probability of arising from the same distribution was determined using a Mann-Whitney-White (MWW)

test [Bloomfield, 2014].

ICOVA-LPF: The final noise modelling method provides an alternative for modelling individual noise

signals where they do not arise from a multivariate Gaussian distribution. This method models a single

realisation through the use a Linear Prediction Filter (LPF), where the filter coefficients are determined

using the autocorrelation method of autoregressive modelling. The LPF method is used on noise signals

that were not accurately represented in the ICOVA model and therefore is the sum of noise signals modelled

using ICOVA and LPF methods, and is referred to as the ICOVA-LPF model.

3 Surface Array Passive Seismic Data

The seismic data analysed in this study comes from the Aquistore carbon dioxide (CO
2
) storage site, located

in South Saskatchewan, Canada in the northern part of the Williston Basin [Roach et al., 2015]. CO
2
is

captured at the Boundary Dam power plant to the east of the Aquistore storage site, where some of the

CO
2
is transported by pipeline to the site. The CO

2
is injected into a deep saline aquifer at a depth of

3150-3350m to study geological storage of CO
2
. Injection started in late April 2015 and the project has

injected up to 1000 tonnes per day over an initial injection period of six months.

The permanent passive seismic array consists of 51 buried, vertical component geophones having a cross-



shaped geometry as illustrated in Figure 2 and has been recording since 25 July 2012. The geophones are

10Hz instruments with a sampling frequency of 500Hz buried at a depth of 20m. A North-South (N-S) road

passes close to station 1 and an East-West (E-W) road passes close to station 14. A vertical injection and

a vertical observation well are located near the centre of the geophone array as illustrated by triangles in

Figure 2. Drilling and construction of the injection well occurred between July and September 2012, and

drilling and construction of the observation well occurred between September and December 2012. In this

study we analyse a subset of the data from 25 July to 5 October 2012. An example of the recorded data is

given in Figure 3. Where results are given for a week of data these are computed from 14 August whilst for

results computed for an hour these are computed from the Tuesday between 1p.m. and 2p.m.. These time

samples are chosen as they are representative of the full dataset. Since the array has been recording prior

to CO
2
injection, the recorded time series represents an excellent dataset on which to study non-injection

related noise signals. During injection periods, addition noise signals would be present in the data, however,

the techniques proposed in this study could easily be extended to include this type of noise. To preserve the

noise signals of interest, no preprocessing was performed on the data.

4 Noise Characterisation

4.1 Noise analysis

The stationarity results for a single week are illustrated in Figure 4. There is a clear trend of larger magnitude

mean and variance values around the centre of the array with an observable decrease in mean and variance

away from the array centre. Similar large magnitude mean and variance values are observed at station

1, where the large mean values are observed for shorter periods of time and are not observed during the

night-time. It is likely that the increased values observed at the centre of the array are associated with noise

originating from the well site and the increased values at station 1 are likely due to noise arising from road

traffic.

PSDs and STFTs for three stations across the EW geophone profile are shown in Figure 5. Comparison

of the three PSDs shows that the power spectrum varies significantly across the array, with station 42 in

particular experiencing higher energy content at higher frequencies than stations 1 and 51. Station 51 has

a constant power spectra across the hour (as shown in the STFT plots), station 1 experiences several spikes

across all frequencies, and station 42 experiences a break in the power spectral trend for about a minute

at approximately 46 minutes. Figure 6 illustrates the distribution of energy across the array, where higher



energy levels are observed around the well site. Therefore, not only are the individual power spectrums

non-white, but the energy across the array is also not equally distributed.

Figure 7 illustrates the distribution of raw amplitudes for three 5-seconds windows with varying levels of

Gaussianity. Each plot has a Gaussian probability density function overlain on it that has been computed

from the mean and variance of the amplitudes observed in the respective windows. Due to the finite sample

length of each window, numerically computed skewness and excess kurtosis values for the Gaussian surrogate

noise are non-zero (see Table 1). However, comparison of the Gaussian surrogate with the recorded Aquistore

values shows that the recorded noise variations are significantly higher. Table 1 illustrates that the average

skewness for the recorded noise is close to zero. Yet, the maximum and minimum values are substantially

higher than that of the Gaussian noise. For the excess kurtosis values of the recorded noise the mean is

noticeably less than zero and over 70% of the values are less than zero. For the Gaussian surrogates there

are no values for either skewness or kurtosis that have a magnitude greater than 1. For the recorded noise

4% of excess kurtosis values have a magnitude greater than one, demonstrating that values of kurtosis have

a higher variability in the recorded noise than the Gaussian surrogates. Despite the higher variations in both

skewness and excess kurtosis values for the recorded noise, the spatial and temporal trends are much less

clear than those observed for the mean and variance in the stationarity analysis, as shown in Figure 8.

Figure 8 shows the bicoherence and tricoherence values for the recorded noise and the Gaussian surrogate

noise (Figure 8e,f and 8g, h respectively). While the background trends for the bicoherence and tricoherence

analyses are reasonably similar in magnitude to the Gaussian surrogate noise values, there is an observable

spatio-temporal structure to the values. The areas of strongest non-Gaussianity are at stations 1 and 2 for

times between 13 and 16 minutes, at 35 minutes and between 56 and 58 minutes. At these points both

the bicoherence and tricoherence values of the recorded noise are double that of the Gaussian surrogate

noise. Other areas of significant non-Gaussianity occur for stations around the well site (i.e. stations 23 to

45), which have on average 20% higher bicoherence and tricoherence magnitudes than the reference Gaussian

values. Station 41 appears to display the least Gaussianity with respect to both bicoherence and tricoherence.

As well, there are 2 minutes of increased non-Gaussianity between 46 to 47 minutes across stations 23 to 45.

As with the method of statistical moments, the variations of kurtosis are greater than skewness.

4.2 Noise classification

Next we consider what noise sources may be present in the data and identify three separate noise signals,

as illustrated in Figure 9. The first signal (Figure 9a,d) is a constant 60 Hz signal recorded at station 51



to the far east of the array and is believed to be due to electrical interference between power cables and

the recording instruments. The second identified signal (Figure 9b,e) is observed on stations adjacent to

the roadside (stations 1 and 14), where the signal is characterised by a burst of energy that lasts about

one minute with peak energy around the middle of the signal duration. The signal consistently appears as

a broad-band burst and the wavelet shape in time is highly variable. In some instances the noise can be

observed on neighbouring stations. The final identified noise signal (Figure 9c,f) is characterised by a strong

frequency banding with intermittent pauses. The signal is centred around the well site, yet is observable on

stations up to 500 metres away with associated attenuation of higher frequency bands.

The presence of at least three broadly different noise signals across the array leads us to postulate that

instead of considering the noise field as a single statistical phenomenon, it is more realistic to consider it as

the sum of multiple phenomena, each with their own spatial, temporal, frequency and statistical distribution

properties as illustrated in the following equation:

npx, tq “ apx, tq ` bpx, tq ` cpx, tq ` . . . , (11)

where x is the spatial coordinate, t is time, n is the full noise field, and a, b, c, . . . are individual noise

sources. Similar to the work of Priestley [1988], we propose that, for modelling purposes, noise is split into

the following three classifications dependent on their temporal properties with respect to a specified event

detection window (EDW):

1. Stationary noise: a constant signal over the EDW, such as that observed at station 51,

2. Non-stationary noise: a signal that does not last for a significant period with respect to the EDW,

such as that observed at station 1, and

3. Pseudo-non-stationary noise: a constant signal for a significant period with respect to the EDW, yet

is not constant over the full EDW, such as that observed at station 41.

In this study the EDW is one hour.

5 Noise Modelling Results

Shown in Figure 10 are the noise modelling results and the recorded noise on which they were based. For

the CONV modelling, the hour of recorded noise is split into one minute time windows and modelled. These

models are then concatenated to represent the temporal location of the recorded noise window from which

they have been computed. The COVA method uses a spatial patch length (Nx) of 50, a temporal patch



length (Nt) of one second and 3600 realisations (K) while these parameters vary across individual models in

the ICOVA modelling method. For COVA and ICOVA modelling the modelled time lengths are shorter than

the recorded noise, therefore a Monte-Carlo simulation is performed to create multiple models from Gaussian

basis vectors that are concatenated to create the full time window. Figure 11 displays the modelled noise

signals (identified in Figure 9) for the first three noise models (WGN, CONV and COVA) in the time domain

and is based on considering the noise field as a whole. Figure 12 is the frequency domain representation of

the modelled noise signals shown in Figure 11.

Due to the WGN model being independent of the recorded noise, it is not surprising that this model has

little visual similarity with the recorded data. The CONV model shows a good visual correlation in the time

domain (Figure 10(c)). However, when analysing the power spectrum for the individual noise signals (i.e.,

in Figure 9), it is clear that the CONV model fails to characterise the traffic noise (Figure 11(e) and 12(e)).

This is expected as this method requires noise to be stationary over the modelling time window and this is

not the case for traffic noise. The COVA model also fails to accurately represent traffic noise (Figure 11(h)

and 12(h)) due to the modelling requirement that patches must have the same statistical properties. The

presence of traffic noise in a handful of patches has resulted in the inclusion of traffic noise in the covariance

matrix and therefore also into every modelled noise patch. This is also the case for well-site noise, where the

pause at around 46 minutes is not observed in the COVA model (Figure 11(i) and 12(i)).

Figure 10(e) shows the result of ICOVA modelling, where noise signals have been isolated and modelled

individually. Traffic noise events and the pause in well site noise reflect the times that they occur in the

recorded noise. Similar to Figure 9, the individual modelled noise signals are shown in Figure 13. The 60

Hz band-passed trace is of constant amplitude in time yet it is of lower magnitude in comparison to the

recorded 60 Hz noise. In the frequency domain, the modelling has resulted in a smearing of the 60 Hz noise

across nearby frequencies. The smearing of frequencies is observed on all noise signal models, particularly

on the well site noise which experiences strong frequency banding. The car signal model provides a good

approximation although the duration of the event is of slightly different shape and lasts longer than in the

identified traffic noise (Figure 9(b)).

To provide a quantitative measure of how accurately the ICOVA models represent the original noise model

realisations, MWW tests were performed to give a probability of the likelihood that the two datasets originate

from the same distribution. For each noise signal model the MWW tests were performed between recorded

noise and the modelled noise, over the modelling realisation parameters, with the results shown in Table 2.

All the noise models have over 65% of MWW results with a greater than 50% probability of arising from

the same distribution. The well site noise has the greatest likelihood of models and patches arising from the



same distribution with only 4% of MWW results having a probability of less than 25%. All models have less

than 12% of realisations with a low chance (P ă 25%) of arising from the same distribution therefore the

models provide a reasonable representation of the statistics of the recorded noise signals.

Figure 10(f) illustrates the result of the ICOVA-LPF model, where the LPF method has been used to

gain a more realistic representation of the traffic event. The stationary background noise and pseudo-non-

stationary well noise were modelling using the ICOVA method while the traffic noise, shown in Figure 14,

is modelled using the ICOVA-LPF method. Modelling traffic events using an ICOVA-LPF provides a closer

representation of the recorded noise signal and results in less frequency smearing, as is observable at 60Hz

on Figure 14. However, the full hour of recorded noise for modelling has seven different traffic events and to

fully represent the variability of traffic noise then each event must be modelled individually.

Figure 15 shows the skewness and excess kurtosis calculated across the realisations for each spatio-temporal

patch position. As seen in the initial Gaussianity analysis, kurtosis is the dominant property for identifying

non-Gaussianity. The well site noise realisations are the nearest to a multivariate Gaussian distribution

and this may explain their higher MWW results while the traffic noise is highly non-Gaussian. To provide

a constraint on the minimum number of patches required to get a stable estimation of the sample mean,

Figure 16 shows the convergence of the sample mean for increasing number of patches for each noise type.

It can be seen that for all noise types more than 200 realisations are required to get a near-convergence of

the sample mean. Beyond 200, the change in mean through the addition of patches still fluctuates however

they are of a significantly lower amplitude and so are considered negligible.

6 Discussion

Based on the noise analysis, it is evident that the spatial and temporal trends observed in the passive seismic

data contradict the assumption of stationary, white and Gaussian noise. For example, Figure 4 shows

considerable changes in the variance throughout the data. The figure also shows variance of the sample

mean which we believe could come from one of two sources. Firstly, the variation maybe an artefact of

long-period drift of the sensor system. The second possibility is that these variations are the imprint of

changes in the variability of trace amplitudes on the measurement of the sample means.

With respect to the Gaussianity of the full noise field, the method of statistical moments did not detect any

spatio-temporal trends in the recorded noise field. The excess kurtosis results displayed a significantly higher

variation than the skewness results implying that the fourth mathematical moment is likely to be the most



effective property for identifying non-Gaussianity of the noise distribution. While both the bicoherence and

tricoherence analyses highlight the same spatial and temporal zones as being non-Gaussian (i.e. around the

well site and the roadside stations), the amplification of the non-Gaussianity of these aspects observed on

the tricoherence analysis complements the observation that kurtosis is the dominant non-Gaussian property

of the noise. Based on the study by Groos and Ritter [2009], the negative excess kurtosis observed is likely

to be due to dominating periodic signals from anthropogenic seismic sources such as generators.

The ICOVA modelling method assumes that the noise field conforms to a multivariate Gaussian distribution

as opposed to the single Gaussian distribution assumed in WGN modelling. In other words, under the WGN

model the amplitude of noise behaves independently of space and time, whereas this is not the case for

the COVA and ICOVA model. This allows each index point on a single recorded patch to have a separate

mean and variance value (i.e. each index point can originate from a different Gaussian distribution). This

condition requires that each index point across the patch realisations must arise from the same Gaussian

distribution.

A significant benefit of modelling realistic noise, as opposed to directly incorporating recorded noise, is

the ability to build a noise database of individual noise signals covariance matrix and mean vector. A

database containing the necessary parameters for modelling a number of different noise signals provides the

opportunity for creating ‘tailor-made’ noise models without any data collection or analysis required. This

would provide flexibility around the occurrence of noise signals that is not possible when using recorded noise.

The automation of noise signal identification and modelling which will significantly reduce manual labour

time. From this study, there is the possibility for the incorporation of realistic noise into synthetic seismic

datasets to test the robustness of detection and imaging algorithms against the different noise signals and

magnitude. Furthermore, the identification of these noise signals and characteristics within the recorded data

provides the possibility that the statistical properties of noise can be exploited for noise removal purposes.

7 Conclusions

This paper has introduced a novel method for improved realism of modelling noise observed in seismic

data. The noise analysis determined that the noise field is not white or stationary and does not conform

to a single Gaussian distribution, contrary to conventional assumptions in noise modelling techniques. We

have shown that noise is made up of multiple signals that should be modelled separately to maintain their

individual properties. We propose doing this using the isolated covariance modelling method, where the

noise is assumed to arise from a multi-variate Gaussian distribution. Linear prediction filter modelling was



demonstrated as an alternative modelling technique when the assumptions for isolated covariance modelling

are not met. We have developed a workflow to incorporate realistic noise models within synthetic seismic

datasets. In the future this will provide a more robust opportunity to test and analyse how detection and

imaging algorithms respond under realistic noise conditions. Furthermore, the developed workflow can be

used to classify individual noise signals and their properties (for example, 9) which could possibly be used to

guide noise removal techniques. This is becoming increasingly important given recent interest in stochastic

interferometric methods for passive seismic data that are based on the assumption that noise (i.e., sources)

have random distribution and amplitude characteristics (i.e., not coherent) [Schuster, 2009].
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Figure 1: Covariance-based modelling method work flow

Figures



Figure 2: Aquistore permanent seismic array survey geometry. Geophones are denoted by red dots alongside the
station number, while the observation and injection wells are illustrated by yellow triangles.



Figure 3: Example of raw data used in the noise analysis for time periods of: (a) a week, (b) an hour and (c) ten
seconds. Top row represents geophones on N-S profile and lower row represents geophones on E-W profile. Absent
data is portrayed by a grey box.

Figure 4: (a) Mean and (b) variance results from sliding window analysis on a week of data from E-W geophone
profile. Bottom inserts are zoomed in on roadside station (station 1) with daytime illustrated by the red boxes.



Figure 5: Top row is the power spectral density from one hour of data at (a) station 1, (b) 42 and (c) 51. Lower
row represents amplitude spectra calculated from a STFT for the same stations. Prior to converting to dB, each
spectrum has been normalised to allow easy comparisons of the shapes of the spectra, this is required due to the uneven
distribution of energy across the array as illustrated in Figure 6.

Figure 6: Seismic energy (i.e. amplitude squared) across array for an hour of data from (a) N-S and (b) E-W profiles.



Figure 7: Examples of three amplitude distributions and their skewness and excess kurtosis values for five seconds of
data recorded from (a) station 45 at about 2 minutes, (b) station 42 at about 30 minutes, and, (c) station 12 at about
12 minutes. Overlain on each histogram is their respective Gaussian distribution.

Table 1: Calculated skewness and excess kurtosis values for an hour of recorded Aquistore data and Gaussian surrogate
values.

Skewness Excess kurtosis

Aquistore Gaussian Aquistore Gaussian
Mean -0.002 0.000 -0.109 -0.002
Maximum 49.98 0.27 2496.00 0.80
Minimum -19.58 -0.26 -1.65 -0.41
% >0 49.71 50.00 26.45 47.15
% <0 50.29 50.00 73.55 52.85
% >1 0.01 0.00 2.68 0.00
% <-1 0.04 0.00 2.71 0.00

Tables

Table 2: Percent of patch to model realisations likely to arise from the same distributions based on MWW tests

Noise Signal
Models

Percent of
realisations with

P ą 75%

Percent of
realisations with
75% ą P ă 50%

Percent of
realisations with
50% ą P ă 25%

Percent of
realisations with

P ă 25%
Background 34.5 30.6 23.3 11.7
Well site 41.9 34.2 19.2 4.4
Traffic 36.4 30.1 22.5 10.4



Figure 8: (a),(b) Skewness for Aquistore and Gaussian surrogate noise respectively and (c),(d) kurtosis for Aquistore
and Gaussian surrogate noise respectively, all calculated from sliding window analysis. (e),(f) Bicoherence for Aqui-
store and surrogate Gaussian noise respectively, and (g),(h) tricoherence for Aquistore and surrogate Gaussian noise
respectively of an hour of data.



Figure 9: Individual noise signals, (a),(d) stationary electrical interference observed at station 51 with red-trace
denoting 60Hz band passed trace, (b),(e) non-stationary traffic signal observed at station one, and (c),(f) pseudo-
non-stationary well site noise observed at station 42. Top row shows signals in time domain while portrays signals in
the frequency domain.



Figure 10: (a) Hour of noise data from E-W profile used for modelling, where the red boxes indicate non-stationary
traffic events at station 1 and the blue boxes indicate a pause in well site noise across the middle of the array. (b)
WGN model, (c) CONV noise model, (d) single COVA noise field model and (e) sum of multiple COVA noise signal
models.



Figure 11: Individual noise signals traces of stationary electrical interference (a,d,g), non-stationary traffic noise
(b,e,h) and pseudo-non-stationary well site noise (c,f,i). The top row has traces from WGN model, the middle row
has traces from the CONV model and the bottom row has traces from the COVA model. The red traces on the first
column denote a 60Hz bandpassed trace.



Figure 12: Individual noise signals amplitude spectrum’s of stationary electrical interference (a,d,g), non-stationary
traffic noise (b,e,h) and pseudo-non-stationary well site noise (c,f,i). The top row has spectra from WGN model, the
middle row has spectra from the CONV model and the bottom row has spectra from the COVA model.



Figure 13: Individual noise signals modelled by a sum of COVA models, (a),(d) stationary electrical interference
observed at station 51 with red-trace denoting 60Hz band passed trace, (b),(e) non-stationary traffic signal observed
at station 1, and (c),(f) pseudo-non-stationary well site noise observed at station 42. Top row shows signals in time
domain while portrays signals in the frequency domain.

Figure 14: A single traffic event, in time (a) and frequency (b), modelled using the autocorrelation method of AR
modelling with background noise added from COVA noise model.



Figure 15: Skewness (top row) and kurtosis (bottom row) of patch index points for (a) ICOVA stationary background
noise model, (b) ICOVA pseudo-non-stationary well site noise model, and (c) ICOVA non-stationary traffic noise
model.

Figure 16: Sample mean convergence over increasing number of noise patches for (a) ICOVA stationary background
noise model, (b) ICOVA pseudo-non-stationary well site noise model, and (c) ICOVA non-stationary traffic noise
model.


