
This is a repository copy of Synthesis of stoichiometrically controlled reactive 
aluminosilicate and calcium-aluminosilicate powders.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/100036/

Version: Accepted Version

Article:

Walkley, B., San Nicolas, R., Sani, M.A. et al. (3 more authors) (2016) Synthesis of 
stoichiometrically controlled reactive aluminosilicate and calcium-aluminosilicate powders. 
Powder Technology, 297. pp. 17-33. ISSN 0032-5910 

https://doi.org/10.1016/j.powtec.2016.04.006

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Postprint of a paper published in Powder Technology, 29(2016):17-33. Version of record is available 

at http://dx.doi.org/10.1016/j.powtec.2016.04.006  

1 

Synthesis of stoichiometrically controlled reactive aluminosilicate and 
calcium-aluminosilicate powders  

Brant Walkley1, Rackel San Nicolas1, 2, Marc-Antoine Sani3, John D. Gehman3,4, Jannie S.J. 
van Deventer1, 5, John L. Provis6,* 

1 Department of Chemical and Biomolecular Engineering, The University of Melbourne, Victoria 3010, Australia 

2 Department of Infrastructure Engineering, The University of Melbourne, Victoria 3010, Australia 

3 School of Chemistry and Bio21 Institute, The University of Melbourne, Victoria 3010, Australia 

4GehmanLab, Woodend, Victoria 3442, Australia 

5 Zeobond Pty Ltd, P.O. Box 23450, Docklands, Victoria 8012, Australia 

6 Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, United 

Kingdom 

* Corresponding author. Email: j.provis@sheffield.ac.uk, phone: +44 114 222 5490 

Abstract 

Aluminosilicate and calcium-aluminosilicate powders are synthesised via an organic steric entrapment 

route under conditions permitting strict stoichiometric control, utilising polyvinyl alcohol and 

polyethylene glycol as polymeric carriers. Polyethylene glycol is superior to polyvinyl alcohol for 

synthesis of calcium-aluminosilicate powders via this method, producing a more controllable product 

which generated less fine ash during calcination. This paper presents detailed description of synthesis 

and characterisation of the powders produced through this approach, including new insight into the 

nanostructures within the calcined powders. Aluminium environments are a mixture of 4-, 5- and 6-

coordinated, while silicon is tetrahedral and shows a broad range of connectivity states. The powders 

are X-ray amorphous, display a high degree of homogeneity, and thus offer potential for utilisation as 

precursors for synthesis of hydrous aluminosilicates in the quaternary CaO�Na2O�Al2O3�SiO2 system. 
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1. Introduction 

In recent years, the production of ceramic powders via chemical synthesis routes has gained significant 

attention in academia and industry as a method of increasing energy efficiency when compared with 

production by traditional high-temperature solid-state reactions, as well as offering scope for 

production of chemical or phase compositions which are difficult to achieve via solid state routes. The 

Pechini process [1], for example, is a solution-polymerisation route which allows the production of 

homogeneous single phase mixed oxide powders by the use of an organic acid to chelate metal ions, 

and has been key to the development of ceramic synthesis via chemical routes. 

A number of studies have used variations of the Pechini process to synthesise calcium, silicon or 

aluminium-containing mixed oxides by employing an organic polymeric steric entrapment solution-

polymerisation route [2-6]. This method utilises a long chain organic polymer, most commonly 

polyvinyl alcohol (PVA), to sterically inhibit the movement of the metal cations during solution 

polymerisation, forming a homogeneous single phase mixed oxide powder upon drying and moderate-

temperature calcination to remove the organic component [2, 5, 7]. Of the studies utilising the organic 

polymeric steric entrapment solution-polymerisation route, most focus on the synthesis of mixed 

oxides for ceramic applications [2-4, 6], others describe synthesis of an apparently �metakaolin-like� 

powder which can be subsequently activated to form a geopolymeric binder [8, 9], while one study 

described the use of this route to individually synthesise each of the reactive phases which are present 

in Portland cement (PC) [5]. 

Geopolymers, or alkali-activated binders, are produced by chemical reaction of an aluminosilicate or 

calcium-aluminosilicate powder with an alkaline solution to form a solid binder with properties 

comparable to those of hardened PC [10, 11]. These materials offer a viable environmentally friendly 

replacement for PC, with a reduction in the associated CO2 emissions of between 50% and 80% when 

compared to PC binders [12]. Furthermore, as the raw materials used to produce geopolymers are 

often industrial by-products such as blast furnace slag and fly ash, or readily available aluminosilicate 

clay-based products such as metakaolin (calcined kaolinite), they present an avenue for the use of, 

and add value to, these materials. 

Geopolymer formulations must be carefully designed to obtain desirable rheological, chemical and 

physical properties, and this can only be achieved through a detailed understanding of complex 

particle interactions occurring within the packed geopolymer mortar and concrete systems [13-16]. 

This can be particularly challenging due to the wide variation of chemical and physical characteristics 

exhibited by commercial geopolymer precursors where a range of chemical reactivity is observed, 

http://dx.doi.org/10.1016/j.powtec.2016.04.006
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meaning it is often difficult to distinguish reactive from inert species. This is further complicated by 

the introduction of alkali-reactive aggregates in geopolymer concrete systems [17, 18]. 

A large number of studies are focused on understanding the chemistry of geopolymers and alkali-

activated binders, however the literature is often conflicting and experimental analysis involves a large 

number of unconstrained parameters. To gain insight into the effect of precursor chemical 

composition on the chemical and physical interactions occurring within the complex particulate 

system formed during geopolymer synthesis, a method of studying geopolymers which permits strict 

stoichiometric control must be developed. This, in turn, can only be achieved through synthesis of 

aluminosilicate and calcium-aluminosilicate powders via a route through which strict control of the 

chemistry is obtained.  

The present study applies the knowledge gained through development of the aforementioned 

chemical synthesis routes for ceramic powder production. Specifically, the organic polymeric steric 

entrapment solution-polymerisation route is refined and adjusted, including the use of PEG rather 

than PVA for calcium-containing systems, to develop a novel class of laboratory synthesised, 

stoichiometrically controlled reactive high-purity geopolymer precursor powders. 

 

2. Experimental 

2.1 Powder synthesis 

2.1.1 Aluminosilicates 

A 5 wt.% polyvinyl alcohol (PVA) solution was made by adding 98-99% hydrolysed PVA (Sigma Aldrich, 

molecular weight 31 - 50 kDa) to distilled water. PVA of this molecular weight has been shown to 

produce more reactive calcium silicate and calcium aluminate powders with higher specific surface 

areas, compared to longer-chain PVA [5]. The polymer was added to distilled water in small increments 

over heat and the resulting solution was stirred at 60 ºC for 1 hour. Aluminium nitrate nonahydrate, 

Al(NO3)3·9H2O (Sigma Aldrich 98.5 wt. %) was added to distilled water to produce a 40 wt.% solution, 

which was then added to the 5 wt. % PVA solution and stirred at 60 ºC for one hour before addition of 

colloidal silica (Sigma Aldrich Ludox HS-40 colloidal silica (SiO2), 40 wt. % in water). The stoichiometry 

was designed to achieve the elemental ratios outlined in Table 1, as well as ensuring that the number 

of metal cations (Mx+) in solution was significantly more than the number that the PVA could 

chemically bind through its OH groups (Mx+/OH = 4) [2, 5]. Water was evaporated from the resulting 

solution by stirring over heat at 80 ºC, to form a viscous aerated gel. A portion of each aerated gel was 

http://dx.doi.org/10.1016/j.powtec.2016.04.006
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kept for analysis by differential thermogravimetric analysis (DTG), while the remaining dry aerated gel 

was calcined by heating at 3 ºC/min to 550 ºC in a laboratory muffle furnace, with a 1 hour hold time 

at 550 ºC and then cooling in air, to produce a fine white powder which was subsequently ground by 

hand before characterisation. 

 

Table 1: Molar ratios, polymer carrier and metal valence (Mx+) to hydroxyl functionality (OH) ratio for each sample 

Sample Empirical formula Ca/(Al+Si) Al/Si Polymer Mx+/OH 

A 2SiO2·Al2O3 0.000 1.000 PVA 4 

B 4SiO2·Al2O3 0.000 0.500 PVA 4 

C 0.800CaO·SiO2·0.078Al2O3 0.692 0.156 PEG 2 

D 1.214CaO·SiO2·0.078Al2O3 1.050 0.156 PEG 2 

E 0.709CaO·SiO2·0.026Al2O3 0.675 0.051 PEG 2 

F 1.104CaO·SiO2·0.026Al2O3 1.050 0.051 PEG 2 

 

 

2.1.2 Calcium-aluminosilicates 

A 5 wt. % polyethylene glycol (PEG) solution was produced by adding PEG (Sigma Aldrich, MW 20 kDa) 

to distilled water. The requirement for the use of PEG instead of PVA is due to the presence of the 

calcium, and will be discussed in more detail below (section 2.2). The polymer was added to distilled 

water in small increments over heat, and the resultant solution was stirred at 60 ºC for 1 hour. 

Aluminium nitrate nonahydrate, Al(NO3)3·9H2O (Sigma Aldrich, 98.5 wt. %) and calcium nitrate 

tetrahydrate, Ca(NO3)2·4H2O (BDH Prolabo, VRW International, 99.0 wt. %) were each added to 

distilled water to produce 40 wt.% solutions by mass of anhydrous salt, and these solutions were 

subsequently added to the 5 wt. % PEG solution and stirred at 60 ºC for one hour before addition of 

colloidal silica (Sigma Aldrich Ludox HS-40 colloidal silica (SiO2), 40 wt.% in water). As in the 

aluminosilicate powder synthesis, the stoichiometry was designed to achieve the elemental ratios 

outlined in Table 1, as well as ensuring that the number of metal cations (Mx+) in solution was 

significantly more than the number that PEG polymer carrier could chemically bind through its OH 

groups (Mx+/OH = 2). Water was evaporated from the resulting solution by stirring over heat at 80 ºC 

to form a viscous aerated gel which was then placed in a drying oven at 100 ºC overnight to remove 

any remaining water. A portion of each aerated gel was kept for analysis by differential 

thermogravimetric analysis (DTG), while the remaining dry aerated gel was calcined at 3 ºC/min to 900 

http://dx.doi.org/10.1016/j.powtec.2016.04.006
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ºC in a laboratory muffle furnace, with a 1 hour hold time at 900 ºC and then cooling in air, producing 

a fine white powder which was subsequently ground by hand before characterisation. 

The stoichiometric ratios for these samples were chosen to provide a chemically simplified model 

system for aluminosilicate and calcium-aluminosilicate alkali-activated binder precursors. Samples A 

and B (empirical formulas 2SiO2·Al2O3 and 4SiO2·Al2O3, respectively) were chosen to represent the 

range of bulk silicon and aluminium content typically found in fly ashes, with A also representing the 

approximate composition of metakaolin (see Figure 1) [19]. Samples C, D, E and F (empirical formulas 

0.800CaO·SiO2·0.078Al2O3, 1.214CaO·SiO2·0.078Al2O3, 0.709CaO·SiO2·0.026Al2O3 and 

1.104CaO·SiO2·0.026Al2O3, respectively) were chosen to enable synthesis of binders exhibiting 

chemistry in regions of the quaternary CaO � Na2O � Al2O3 � SiO2 system which are important for the 

study of sodium- and aluminium-substituted calcium silicate hydrate gels, the main reaction product 

present in alkali-activated slag binders [11, 20]. 

 

 

Figure 1: Projection of powder chemistry onto the ternary Ca � Al � Si system showing elemental composition (mass basis) 

of each powder, as well as the compositional range for common supplementary cementitious materials based on [21] 

 

2.2 Practical considerations 

An organic steric entrapment solution-polymerisation route utilising PVA has been previously 

reported to enable synthesis of a range of cementitious phases including dicalcium silicate, tricalcium 

silicate, tricalcium aluminate and tetracalcium aluminoferrite, as well as other mixed oxides [2-6], 

http://dx.doi.org/10.1016/j.powtec.2016.04.006
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however we observed polyvinyl alcohol to be unsuitable as a polymer carrier in the synthesis of 

calcium-aluminosilicate powders. In the calcium-free systems A and B here, calcination of the 

precursor at 550ºC to remove PVA yielded fine white powders with greater than 96 wt.% yield. 

However, when PVA was used as the polymer carrier for synthesis of calcium-aluminosilicate powders, 

calcination at 550ºC resulted instead in the formation of a very fine ash which could not be recovered. 

The calcination temperature for the calcium-aluminosilicate powders was increased to 900 ºC to avoid 

formation of CaCO3 or charring of PVA, but this was unsuccessful, and unrecoverable fine ash was 

again produced. Replacing PVA with PEG as the polymer carrier, it became possible to calcine the 

calcium-aluminosilicate powders for complete removal of the polymer carrier, producing a highly 

reactive, predominantly amorphous product. It was important to take significant care to maintain the 

temperature at 80 ºC during evaporation of water from the aerated PEG gels, to avoid rapid 

combustion and charring of the PEG polymer. This was achieved by measuring temperature using a 

standard laboratory thermometer and adjusting the amount of heat provided by the hotplate as 

required. Calcination of all of the samples produced a fine white powder, homogeneous and with no 

visible residual carbon. To elucidate the chemical and physical interactions occurring between the 

polymer and ceramic powder the aluminosilicate powders were also synthesised utilising PEG as the 

polymer carrier, using the same method as outlined in section 2.1.2. 

2.3 Characterisation 

Chemical composition data were obtained by energy dispersive X-ray Fluorescence (XRF) 

spectrometry using a Spectro 'Xepos' instrument. Sample preparation involved fusion with a 12:22 

lithium tetraborate:metaborate flux in platinum crucibles at 1050ºC for 15 minutes to produce a glass 

bead.  

The Brunauer-Emmett-Teller (BET) surface area [22] of each powder was determined by nitrogen 

sorption on a Micromeritics (Norcross, GA) ASAP2010 instrument. Barrett-Joyner-Halenda (BJH) 

desorption pore size and volume analysis [23] were applied to determine the pore size distribution of 

the mesopores, while the Horvath-Kawazoe method [24] with Saito-Foley modification [25] was 

applied to determine the micropore distribution, with interaction parameters for N2 adsorbate taken 

from [24] and aluminosilicate adsorbent from [25]. 

The particle size distribution of the powders was determined using a Malvern Mastersizer 2000 laser 

diffraction particle size analyser employing ultrasonic dispersion and assuming a refractive index of 

1.53 for aluminosilicate powders and 1.62 for calcium-aluminosilicate powders [26, 27]. Samples were 

ground by hand using a mortar and pestle. 

http://dx.doi.org/10.1016/j.powtec.2016.04.006
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Differential thermogravimetric (DTG) analysis was performed on powdered samples of approximately 

30 mg in an alumina crucible using a Perkin Elmer Diamond instrument, at a heating rate of 10 ºC/min 

between 30 ºC and 1000 ºC with a nitrogen purge at 200 mL/min for aluminosilicate powders, and a 

heating rate of 3 ºC/min between 30 ºC and 1000 ºC in ambient air for calcium-aluminosilicate 

powders. To ensure consistency between the initial states of each sample, the samples were held in 

the instrument at 30°C for 20 minutes prior to the commencement of heating.  

Combined differential thermogravimetric-mass spectrometry (DTG-MS) analysis was performed using 

a Perkin Elmer TGA4000 coupled to a Hiden Analytical Mass Spectrometer for gas analysis, at a heating 

rate of 10 ºC/min between 30 ºC and 1000 ºC in ambient air for aluminosilicate precursors and a 

heating rate of 3 ºC/min between 30 ºC and 1000 ºC in ambient air for calcium-aluminosilicate 

precursors. To ensure consistency between the initial states of each sample, the samples were held in 

the instrument at 30°C for 20 minutes prior to the commencement of heating. Nitrogen, oxygen, water 

vapour, carbon monoxide, carbon dioxide, methane and hydrogen were analysed. Deconvolution of 

the mass spectrometry data was performed using industry standard relative sensitivities and fragment 

ratios. 

X-ray diffraction (XRD) experiments were performed using a Bruker D8 Advance instrument with Ni-

filtered CƵ Kɲ ƌĂĚŝĂƚŝŽŶ͕ Ă ƐƚĞƉ ƐŝǌĞ ŽĨ Ϭ͘ϬϮϬº͕ ĚǁĞůů ƚŝŵĞ ŽĨ ϯ ƐĞĐŽŶĚƐ ĂŶĚ Ă Ϯɽ ƌĂŶŐĞ ŽĨ ϯ - 70º.  

Solid state 29Si MAS NMR spectra were collected at 119.141 MHz on an Agilent (Varian) VNMRS-600 

(14.1 T) spectrometer using a probe for 4 mm outer diameter zirconia rotors and a spinning speed of 

10.0 kHz. The 29Si MAS NMR experiments for aluminosilicate powders (samples A and B) employed a 

pulse width of 4 µs, a pulse angle of 47º, a relaxation delay of 45 s, and 1024 scans, while 29Si MAS 

NMR experiments for calcium-aluminosilicate powders (samples C, D, E and F) employed a pulse width 

of 7 µs, a pulse angle of 90º, a relaxation delay of 120 s, and 1024 scans. Solid state 27Al MAS NMR 

spectra were acquired on the same instrument at 156.261 MHz and a spinning speed of 10.0 kHz, with 

a pulse width of 4 µs, a pulse angle of 90º, a relaxation delay of 2 s and 1024 scans. 29Si and 27Al 

chemical shifts were referenced to external samples of tetramethylsilane (TMS) and aluminium 

chloride hexahydrate, AlCl3·6H2O, as a 1.0 M aqueous solution or as a powder, for aluminosilicate 

powders and calcium-aluminosilicate powders respectively, at 0 ppm. All data were processed using 

NMRPipe [28]. Deconvolution of the 29Si MAS NMR spectra was performed using Gaussian peak 

profiles [29]. A single Gaussian peak was used to represent each expected Qn(mAl) species, and these 

peaks were used to develop a simulation of the 29Si MAS NMR spectra using a least squares fitting 

method. Peak assignments were made with reference to the literature, and references are provided 

in the main text. The minimum possible number of peaks was used to enable an accurate and 

http://dx.doi.org/10.1016/j.powtec.2016.04.006
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meaningful interpretation of the spectra, with the requirement that the intensities of adjacent peaks 

vary smoothly, consistent with the thermodynamics of a statistical distribution of Si and Al sites within 

an aluminosilicate network [30, 31]. 

Transmission electron microscopy (TEM) was performed using an FEI Tecnai F20 instrument fitted with 

an Apollo Silicon Drift Detector (EDAX instruments) for energy dispersive X-ray analysis and a spot size 

of 100nm. Samples were ground by hand in isopropyl alcohol (IPA) using a mortar and pestle. The fines 

were separated by ultrasonic dispersion and density separation, followed by removal of the top layer 

of fluid with a pipette. A single drop of IPA containing the fine particle dispersion was placed onto 

holey carbon film on a 300 µm mesh Cu grid (Agar Scientific) and allowed to dry before analysis. 

 

3. Results and Discussion 

 

3.1 Chemical and physical characterisation of powders 

The bulk oxide composition of each powder formulation as determined by X-ray fluorescence analysis 

is presented in Table 2. Each powder is measured to be within 1 wt. % of its target composition, which 

is approximately the expected uncertainty associated with the XRF measurements. The BET surface 

areas (determined from N2 adsorption isotherms, Figure 2) and the D50
 particle size as determined by 

laser diffraction analysis of the calcined powder for each sample are given in Table 3. 

 

Table 2: Bulk oxide composition of each powder formulation as determined by X-ray fluorescence analysis. An error of 

approximately 1 wt % is expected. 

 Mol % (target) Mol % (measured) 

Sample CaO SiO2 Al2O3 CaO SiO2 Al2O3 

A 0.0 66.7 33.3 0.0 66.4 33.6 

B 0.0 80.0 20.0 0.0 79.1 20.9 

C 41.6 53.2 4.2 42.1 53.8 4.1 

D 53.0 43.6 3.4 53.2 43.3 3.4 

E 40.1 57.6 1.5 40.3 58.2 1.5 

F 51.8 47.0 1.2 51.9 46.8 1.3 

 

http://dx.doi.org/10.1016/j.powtec.2016.04.006
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Figure 2: N2 adsorption (black) and desorption (red) isotherms for each sample (A-F as marked) 
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Table 3: Brunauer-Emmet-Teller surface area and D50 of each calcined powder 

 
A B C D E F 

Surface area 

(m2/g) 
142 147 2.9 3.8 6.4 3.6 

D50 (µm) 10.6 12.8 23.7 40.1 31.1 36.7 

 

 

The surface areas measured for the aluminosilicate powders are an order of magnitude higher than 

those typically found for fly ash, which are on the order of 0.1 - 10 m2/g [32-34]. The pore size 

distribution as determined by Barrett-Joyner-Halenda (BJH) desorption pore size and volume analysis 

(for mesopores) and by the Horvath-Kawazoe method with Saito-Foley modification (for micropores) 

showed three distinct pore sizes of approximately 1 nm, 4 nm and 7 nm (Figure 3). These pores are 

likely due to removal of the organic component from the powder during calcination, and are 

responsible for the high surface area. It is likely that any unburnt carbon present within the powders 

as a result of partial pyrolysis of the polymers will contribute significantly to the surface area and may 

also be a factor here. 

The surface areas measured for the calcium-aluminosilicate powders an order of magnitude higher 

than those typically observed for ground granulated blast furnace slag (typically 0.2 - 0.8 m2/g) [11, 

35], while the pore size distribution data for all calcium-aluminosilicate powders indicate a distribution 

of pore sizes centred at approximately 60 - 70 nm for low-Ca samples C and E, and 20 - 50 nm for high-

Ca samples D and F. 

Calcination temperature will also control the surface area of ceramic oxide particles, with increasing 

temperature causing a decrease in particle surface area due to increased particle growth. The 

difference in calcination temperatures between the aluminosilicate (samples A and B) and calcium 

aluminosilicate powders (samples C-F) will then also contribute to the large difference in surfaces 

areas. 

http://dx.doi.org/10.1016/j.powtec.2016.04.006
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Figure 3: Pore size distribution curves for each sample A-F as marked determined using Barrett-Joyner-Halenda (BJH) 

desorption pore size and volume analysis [23] for mesopores (solid lines) and the Horvath-Kawazoe method [24] with Saito-

Foley modification [25] for micropores (dashed lines). Interaction parameters for N2 adsorbate taken from [24] and 

aluminosilicate adsorbent from [25]. Filled black arrows indicate the relevant axis for each curve. 

 

3.2 Combined differential thermogravimetry � mass spectrometry 

 

http://dx.doi.org/10.1016/j.powtec.2016.04.006
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Differential thermogravimetric (DTG) data for the uncalcined precursors and calcined powders, as well 

as pure polyethylene glycol and pure polyvinyl alcohol, are presented in Figure 4 while combined DTG-

MS curves for the uncalcined precursor in each sample are presented in Figure 5. The DTG curve for 

pure polyethylene glycol shows a single sharp peak at approximately 250ºC, while that of pure 

polyvinyl alcohol shows two broad mass loss peaks at 275ºC and 425ºC and a sharp mass loss peak at 

515ºC.  

For the uncalcined aluminosilicate precursors synthesised using PVA as the polymer carrier (samples 

A and B) mass loss takes place predominantly below 550 ºC. The DTG curves of both samples obtained 

during combined DTG-MS experiments exhibit small mass loss peaks at 100 - 200 ºC (coinciding with 

an increase in concentration of H2O gas) and a larger mass loss peak between 250 � 400 ºC (centred 

at approximately 330 � 340 ºC) (coinciding with an increase in concentration of CO and CO2 gas and a 

decrease in concentration of O2). An increase in concentration indicates production of these gases 

during each respective mass loss peak. The mass loss and gas evolution profiles for samples A and B 

are consistent with the loss of unbound (evaporable) water and adsorbed water present as condensed 

hydroxyl groups on the surface of the polymeric precursor (occurring between 100 � 200 ºC) and 

dehydroxylation and pyrolysis of the PVA polymer (occurring between 250 � 400 ºC) [30, 36, 37]. No 

significant changes in mass are observed above 550 ºC, indicating that this calcination temperature is 

sufficient for complete removal of the organic phases present in the polymeric precursor. 

Mass loss peaks observed at approximately 100 � 200 ºC in the DTG data for the calcined powders for 

sample A and B are attributed to the loss of the small amount of adsorbed water which has been taken 

up from the ambient air. The sharp mass loss peak at 250 � 350 ºC seen in the DTG curves of the 

uncalcined precursors is not present in the DTG curves of calcined powders for samples A and B, 

indicating the complete removal of PVA from the aluminosilicate powder by calcination.  

DTG curves for the uncalcined precursor for samples A and B synthesised using PEG as the polymer 

carrier (Figure 5i and j) each display mass loss peaks at 127 ºC (coinciding with an increase in 

concentration of H2O gas) and 345 � 352 ºC (coinciding with an increase in concentration of CO, CO2 

and H2O gas as well as a decrease in concentration of O2) which are attributed to the removal of 

adsorbed and evaporable water and dehydroxylation and combustion of the PEG polymer. The DTG 

curve for sample B synthesised using PEG as the polymer carrier obtained during DTG-MS experiments 

also displays a mass loss peak at 268 ºC (coinciding with an increase in concentration of H2O, CO and 

CO2 gas as well as a decrease in concentration of O2) which is attributed to early stages of PEG 

dehydroxylation and combustion. In all cases the mass loss peaks vary smoothly. 

http://dx.doi.org/10.1016/j.powtec.2016.04.006
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The DTG curves for the uncalcined calcium-aluminosilicate precursors (samples C � F) (synthesised 

using PEG as the polymer carrier) obtained during combined DTG-MS experiments (Figure 5c - f) each 

display a mass loss peak at 120 � 150 ºC which coincides with an increase in concentration of H2O gas 

and is attributed to the removal of evaporable and adsorbed water, consistent with the observations 

in the isolated DTG experiments for these samples. Each sample also displays a mass loss peak at 220 

ºC which coincides with an increase in concentration of H2O, CO and CO2 gas, as well as a decrease in 

concentration of O2, and is attributed to the beginning of dehydroxylation and combustion of the PEG 

polymer. Samples C and E exhibit a very sharp mass loss peak at 282 ºC which coincide with very 

intense MS peaks due to an increase in concentration of CO, CO2, H2O and H2 gas, as well as a MS peak 

due to a decrease in concentration of O2 which mirrors that attributed to increased CO concentration. 

Consequently, this mass loss peak is attributed to the rapid combustion of PEG. Examining rescaled 

DTG-MS plots for these samples (Figure 5g and h) it is clear that for both samples H2O gas production 

occurs at a temperature 1-2 ºC lower than the production of CO gas, suggesting that dehydroxylation 

takes place immediately before rapid combustion of the dehydroxylated polymer. The mirroring of 

the MS peaks attributed to CO production and O2 consumption suggests that combustion of PEG is 

occurring predominantly via the reaction 2C(s) + O2(g) ї ϮCO(g), although the production of CO2 suggests 

that the reaction C(s) + O2(g) ї CO2(g) is also occurring. Samples D and F exhibit less intense, smoother 

mass loss peaks at 291 ºC and 285 ºC, respectively, which coincide with an increase in concentration 

of H2O CO and CO2 gas and a decrease in concentration of O2, and thus are attributed to 

dehydroxylation and combustion of PEG. It is interesting to note that although the peak for each of 

these samples is much broader and less intense than that observed in the DTG-MS plots for samples 

C and E, H2O gas production in these samples also occurs at a temperature 1-2 ºC lower than the 

production of CO gas, suggesting that the same mechanism of PEG combustion occurs in each calcium-

aluminosilicate precursor. Intermediate products formed by reactions between the uncalcined 

precursor and components or degradation products of the PEG during combustion will give rise to 

mass loss peaks at different temperatures to that observed for pure PEG combustion (Figure 4h), as 

will residual PEG which requires additional thermal energy for combustion due to its dispersion within 

the ceramic powder. It is likely that both of these situations are contributing to the differing 

temperatures of PEG combustion between each calcium-aluminosilicate precursor and pure PEG.  

The combustion of the PEG polymer in calcium-aluminosilicate precursors appears to produce a 

greater amount of H2O gas than CO and CO2 gas, suggesting that significant quantities of tightly bound 

water are still present within the PEG polymer until rapid combustion occurs. Conversely, 

dehydroxylation and removal of water from the PEG polymer in the aluminosilicate precursors 

(synthesised with PEG � see Figure 5i and j) occur much less rapidly and across a larger temperature 

http://dx.doi.org/10.1016/j.powtec.2016.04.006


Postprint of a paper published in Powder Technology, 29(2016):17-33. Version of record is available 

at http://dx.doi.org/10.1016/j.powtec.2016.04.006  

14 

range (from 200 � 360 ºC), and the main stage of PEG combustion produces significantly more CO gas 

than H2O and CO2 gas (which are produced in approximately equal amounts). The presence of calcium 

in the precursors appears to alter the way in which water is held, causing it to be more tightly bound 

and requiring greater heat input to facilitate its removal. Once sufficient heat has been supplied to 

facilitate dehydroxylation, water is rapidly released immediately before combustion of the remnant 

organics. Rapid dehydroxylation will require significant heat input, and a sudden drop in temperature 

may occur. This is consistent with the observation of a rapid decrease in temperature (ǻT = 25ºC) 

during combustion of samples E and F by isolated TGA experiments (Figure 6). 

Oxygen atoms are present in PVA ([CH2CH(OH)]n) solely within hydroxyl groups (one hydroxyl group 

per monomer), however PEG (H[OCH2CH2]nOH) contains oxygen atoms throughout the carbon 

backbone, as well as in two terminal hydroxyl groups. Consequently, in calcium-aluminosilicate 

precursors where water is more tightly bound, during calcination PVA will undergo rapid 

dehydroxylation resulting in a complete loss of oxygen from the polymer backbone and leaving solid 

carbon (char). After PEG undergoes dehydroxylation, however, one atom of oxygen for every two 

atoms of carbon still remains in the polymer backbone. This, along with oxygen present in the 

immediate atmosphere, appears to be sufficient to enable complete combustion of carbon via the 

reactions discussed above. This mechanism is consistent with observations of pyrolysis of PEG (of 

varying molecular weights) by mass spectrometry, where at lower temperatures homolytic cleavage 

of C-O bonds occurs during the onset of pyrolysis, followed by homolytic cleavage of C-C bonds at 

higher temperatures [38, 39]. The ratio CO(g)/CO2(g) is a strict function of the residual O2(g) pressure in 

the system, and consequently by altering this pressure it is possible to manipulate the extent of 

combustion.   

The DTG curves for the uncalcined precursor for samples D and F (Ca/(Al+Si) = 1.214 and 1.104; Figure 

5d and f) also display small mass loss peaks at 705 ºC and 686 ºC, respectively, which coincide with the 

production of CO and CO2 gas without any alteration in the MS signal due to O2. This peak is attributed 

to the decomposition of calcite (produced by the reaction of the CaO present in the precursor with 

CO2 released during combustion of PEG [37]) to free lime via the reaction CaCO3(s) ї CĂO н CO2(g).  

The DTG curve of the calcined powder for samples C, D, E and F is relatively flat and does not display 

any of the peaks observed in the DTG curves of the precursor or pure PEG, indicating that complete 

removal of PEG from the powder has been achieved during calcination at 900°C, as expected. 

Calcination has also facilitated the removal of CaCO3 from the calcined powders, as indicated by the 

absence of the peak at 680ºC from the DTG curves of the calcined powder for these samples. The 
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relative amount of polymer retained by the solid in each sample (before calcination) is calculated from 

the TG curves (Figure 6) and detailed in Table 4. 

 

Figure 4: Differential thermogravimetric curves of the uncalcined precursor and calcined powder for: (A-F) samples A-F as 

marked, G) pure polyvinyl alcohol powder and H) pure polyethylene glycol powder. Successive curves are offset by 0.015 

units for clarity. 
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Figure 5: Combined differential thermogravimetric-mass spectrometry curves of the uncalcined precursor for: (A-F) samples 

A-F as marked, G) rescaled plot for sample C, H) rescaled plot for sample E, I) 2SiO2.Al2O3 synthesised using PEG as the 

polymer carrier and J) 4SiO2.Al2O3 synthesised using PEG as the polymer carrier. Filled black arrows indicate relevant axis for 

each curve. 

 

Table 4: Relative total mass loss during calcination for each sample 

Sample A B D D E F 

Polymer PVA PVA PEG PEG PEG PEG 

Mass loss (%) 49.1 39.4 63.0 65.0 63.8 69.2 
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Figure 6: Thermogravimetric curves of the uncalcined precursor and calcined powder for samples A-F as marked. 
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3.3 X-ray Diffraction 

 

X-ray diffraction data collected for the calcined aluminosilicate powders are presented in Figure 7. The 

X-ray diffractograms for samples A and B (empirical formulae 2SiO2·Al2O3 and 4SiO2·Al2O3, 

respectively) each display a broad featureless hump at about 20 � 25º Ϯɽ, typical of amorphous 

aluminosilicates [30, 40, 41]. No crystalline phases are detected in samples A and B, indicating (in 

conjunction with the DTG data presented in Figure 4) that the calcination temperature of 550ºC is 

sufficient to remove all organic material while preventing the crystallisation processes that may 

otherwise reduce the reactivity of the aluminosilicate powders.  

The X-ray diffractograms of samples C, D, E and F (empirical formulae 0.800CaO·SiO2·0.078Al2O3, 

1.214CaO·SiO2·0.078Al2O3, 0.709CaO·SiO2·0.026Al2O3 and 0.104CaO·SiO2·0.026Al2O3, respectively) 

display broad, featureless humps centred at approximately 29º Ϯɽ͕ again indicating a predominantly 

amorphous material [30, 42]. Two polymorphs of Ca2SiO4 (β polymorph Powder Diffraction File (PDF) 

# 33-0302 and α�L polymorph PDF # 36-0642)) are identified in the calcined powder for each of these 

samples, while small amounts of Ca3Al2O6 (PDF # 33-0251) are identified in samples C and D and a 

small amount of free lime (CaO, PDF # 48-1467) is also identified in sample D. Small amounts of 

clinozoisite (Ca2Al3(Si2O7)(SiO4)O(OH), PDF # 44-1400), wollastonite (CaSiO3, PDF # 42-0547) and 

pavlovskyite (Ca8Si5O18,PDF # 29-0368) are present in samples E and F. Calcination of the precursor to 

900ºC is necessary to remove any calcium carbonate present in the sample (converting it to free lime), 

however it is evident from the X-ray diffractograms in Figure 7 that the calcination process has caused 

some devitrification of the amorphous material and subsequent formation of small amounts of these 

crystalline phases. Higher levels of aluminium (as found in sample C and D) result in formation of small 

amounts of C3A, as well as the crystalline calcium silicate phases which are also found in samples E 

and F without the formation of C3A. 

The broad low intensity hump which appears at approximately 10-15º Ϯɽ ŝŶ ƚŚĞ X-ray diffractograms 

of the calcium aluminosilicate precursors (samples C-F) results from subtraction of the sample holder 

background. This was done manually (using the diffractogram of an empty sample holder) in order to 

preserve any diffraction intensity from the amorphous content of the powders, however  this 

introduces a small broad hump at lower angles due to differences in diffraction plane height between 

full and empty sample holders.  
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Figure 7: X-ray diffractograms of the calcined powders for each sample 

 

3.4 Solid state magic angle spinning nuclear magnetic resonance 

 

3.4.1 27Al MAS NMR 

The 27Al MAS NMR spectra for each of the calcined powders are presented in Figure 8. The spectra of 

samples A and B are typical of those commonly observed for aluminosilicate glasses, displaying three 

broad peaks exhibiting chemical shifts (įobs) of approximately 3, 31 and 57 ppm which are assigned to 

octahedral, pentahedral and tetrahedral aluminium, respectively [43-45]. Due to the broad nature of 

the peaks, none of the resonances can be assigned directly to a single well defined Al environment. 

The resonance assigned to octahedral Al is approximately twice the intensity of the tetrahedral and 5-

coordinated Al resonances in the spectrum of sample A, while the spectrum of Sample B exhibits 

similar intensities for each resonance, with slightly more 5-coordinated Al and slightly less octahedrally 

coordinated Al than was observed for sample A. The resonance attributed to Al(IV) in both samples A 

and B (įobs ~ 57 ppm) is within the region of q4 environments (Al bonded to four Si atoms via oxygen 

bridges) in aluminosilicate solutions [46, 47], zeolites [48] and mullite [49]. Al(V) and Al(IV) are 

commonly observed in mullite-like structures in aluminosilicate glasses where charge balancing 

cations are not in excess [43], and as such any Al existing as Al(V) and Al(VI) in samples A and B is likely 

to provide some charge balancing to the negative charge associated with tetrahedral Al sites.  
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It should be noted that the resonance at 31 ppm, assigned here predominantly to Al(V), is also within 

the region in which resonances due to highly distorted Al(IV) within aluminium tetrahedra triclusters 

in mullite have been observed, which also exhibit a resonance at approximately 3 ppm due to Al(VI) 

[50]. The broad peak at approximately 3 ppm in the spectra of samples A and B suggests the presence 

of mullite-like structures within these samples [49], and consequently the peak at 31 ppm is likely due 

to a contribution of resonances from both Al(V) and highly-distorted Al(IV) species. The broad nature 

of the peak at 3 ppm suggests that the Al(VI) within these powders displays only short-range ordering, 

and is consistent with the lack of any identifiable crystalline phases in the X-ray diffractograms. The 

fact that the peak at 31 ppm has significantly less intensity in the spectrum of sample A than in sample 

B is indicative of a greater amount of mullite-like structures in sample A and is consistent with the fact 

that the composition of sample A (2SiO2·Al2O3) is much closer to mullite (between 2SiO2·3Al2O3 and 

SiO2·2Al2O3) than sample B (4SiO2·Al2O3). 

The 27Al MAS NMR spectra of the calcined calcium-aluminosilicate powders (samples C, D, E and F) are 

very similar, all displaying a broad tetrahedral Al resonance centred at approximately 54 ppm with the 

exception of sample D, in which the tetrahedral Al resonance is centred at approximately 56 ppm. 

These resonances are assigned to disordered Al(IV) within q4 environments within a highly 

polymerised aluminosilicate glass. The Al(IV) resonance of the calcium-aluminosilicate powders 

(samples C � F) is observed at a slightly lower frequency (ǻįobs у 3 ppm) than in the aluminosilicate 

powders (samples A and B). This difference in įobs is likely due to the fact that Al(IV) within the calcium-

aluminosilicate powders will be charge balanced by Ca2+, while in the aluminosilicate powders the 

Al(IV) exists in mostly mullite-like structures and is charge balanced by Al(VI). The breadth of this 

resonance indicates that there is a distribution of disordered Al(IV) environments rather than a single 

well defined site. This resonance is attributed to the glassy phase responsible for the broad amorphous 

hump in the X-ray diffractograms of these samples and is similar to that observed for granulated blast 

furnace slag [30, 42].  

Each of the four calcined calcium-aluminosilicate powders displays a low intensity broad resonance 

centred at approximately 0 ppm, partly overlapping the upfield spinning side band of the main Al(IV) 

peak, attributed to octahedral Al. Al(VI) in C3A has been observed in this chemical shift region [51], 

and the presence of this resonance is consistent with the small amount of C3A identified in each of 

samples C and D. A small amount of Al(VI) within a glassy phase has also been observed in ground 

granulated blast furnace slag (GGBFS) [30], and given the absence of any peaks which can be attributed 

to C3A within samples E and F in the XRD diffractograms, the broad peak at 0 ppm in the spectra of 

these samples containing reduced Al content is likely to be due to a similar Al(VI) environment. The 
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spectra of samples C, D, E and F do not contain any peaks within the regions assigned to Al(V) or highly-

distorted Al(IV) in mullite-like structures in the spectra of samples A and B, consistent with the low Al 

concentrations in these powders. 

 

Figure 8: 27Al MAS NMR spectra for each sample. Regions in which spinning sidebands contribute to the overall spectra are 

indicated by * 
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3.4.2 29Si MAS NMR 

The 29Si MAS NMR spectra of the calcined powders, along with the associated deconvolutions, are 

presented in Figure 9. The high intensity peak appearing in the spectra of the aluminosilicate powders 

(sample A and B) at -110.5 ppm can be attributed to Q4(0Al) environments [44, 52]. Peaks of lower 

intensity at -85.4, -88.8, -96 and -101 ppm also contribute to the overall spectra. The 27Al MAS NMR 

spectra for these samples indicate that a significant proportion of Al within the powders exists in a 

tetrahedral coordination and consequently it is unexpected that the 29Si MAS NMR spectra for these 

samples indicates silicon exists so predominantly in a Q4(0Al) environment. It is likely that during 

calcination these samples have undergone spinodal decomposition into a highly polymerised Si-rich 

phase and a phase containing mullite-like structures which, according to the literature, are expected 

to contribute resonances to the overall spectra at approximately -87, -90, -94 and -106 ppm [34, 53, 

54]. The broad nature of the spectra presented here is similar to that observed for aluminosilicate 

powders synthesised via a sol-gel method [55]. 

The dependence of chemical shift on Al substitution within Q4(mAl) environments has been widely 

reported [44, 56], and is commonly used for identification of Si environments within 29Si MAS NMR 

spectra, however this implicitly assumes that these phases consist solely of Si(IV) � O � Al(IV) linkages. 

The presence of lower coordination Si species (Q1, Q2(mAl) or Q3(mAl)) is uncommon in aluminosilicate 

glasses with no alkalis or alkali earths; these sites are generally present in over-charge-balanced 

silicates such as ground granulated blast furnace slag (GGBFS) [30, 42, 57], and as such these 

environments are not expected in samples A and B. It is likely that the apparently lower coordination 

Si species contributing to the 29Si MAS NMR spectra of these samples are instead those which 

participate in Si(IV) � O - Al(V,VI) bonding. This will significantly alter the observed chemical shift of 

the Q4(mAl) environments compared to the situation when all Al is tetrahedral [44] and consequently 

each peak within the -85 ppm to -105 ppm cannot be straightforwardly assigned to a single Si 

environment.  

29Si MAS NMR spectra for the calcined calcium-aluminosilicate powders (samples C, D, E and F) display 

a broad resonance centred at approximately -82 ppm. The spectrum of each sample can be 

deconvoluted into resonances at -78 ppm, -82.7 ppm, -88 ppm and -94 ppm, as well as smaller 

contributions to the overall spectra at -70.5 ppm, -74.5 ppm, -101.5 ppm and -110 ppm. Network 

modifying cations alter the chemical shifts exhibited by Qn(mAl) species, particularly for more strongly 

polarising cations such as calcium [58, 59], which will cause additional overlapping of the individual 

Qn(mAl) environments. The presence of Al(V) and Al(VI) species further complicates peak assignment 

in the 29Si MAS NMR spectra, as discussed above. A small contribution to the overall spectra in the 
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region of Q0 species (around -70 ppm) is also expected for each of samples C, D, E and F due to the 

presence of dicalcium silicate polymorphs as identified by XRD [60, 61], and the sorosilicate 

clinozoisite is expected to contribute to the overall 29Si spectra of samples E and F in the Q0 and Q1 

regions, around -70 to -77 ppm [52]. Wollastonite exhibits a resonance at approximately -88 ppm [62], 

and is therefore expected to contribute to the resonance observed within the Q2 region of the 29Si 

spectra of sample F. 

The glassy phase present within the calcium-aluminosilicate powders is likely to contain a 

heterogeneous mixture of a depolymerised calcium silicate and a highly polymerised aluminosilicate 

with calcium to charge balance the tetrahedral Al, as observed in numerous multicomponent oxide 

glasses [63-65]. Aluminium in the highly polymerised aluminosilicate region of this glassy phase is likely 

to be largely in tetrahedral coordination, as identified by 27Al MAS NMR, and the low aluminium 

content of these powders (Al/Si = 0.156 or 0.051) dictates that this region will contain Si/Al > 1. As 

such, the highly polymerised aluminosilicate region is expected to contain each of the Q4(mAl) (m = 1 

� 4) species while the depolymerised calcium silicate region is expected to contain Q1, Q2 and Q3 

silicate species. Due to the inherently overlapping chemical shifts of the 15 possible Qn(mAl) species, 

it is expected that low-coordinated Si species without links to Al, and high-coordinated species 

connected to several Al atoms, will contribute resonances to the same regions of the 29Si NMR spectra 

[44]. Consequently it is not possible to assign each peak to an individual Si environment at this time. 

The increased calcium content of samples D and F (Ca/(Al+Si) = 1.214 and 1.104, respectively) seems 

to have promoted the formation of either lower coordinated Si environments or highly coordinated, 

highly aluminium substituted silicon environments. This is particularly evident from the significantly 

larger intensity in the region -78 to -88 ppm, compared to the region -94 to -110 ppm, in the spectra 

of each sample. Increased aluminium content in samples C and D (Al/Si = 0.156) when compared to 

sample E and F (Al/Si = 0.05) has also resulted in similar changes to the spectra. These observations 

are consistent with the formation of the heterogeneous mixture described above. During powder 

synthesis, increased calcium content will promote formation of a greater amount of the 

depolymerised calcium silicate phase (containing Q1, Q2 and Q3 silicate species), while increased 

aluminium content will promote formation of a greater amount of the highly polymerised 

aluminosilicate phase (containing highly-coordinated highly-aluminium substituted silicate species). 

Consequently, an increase in intensity within the same region of the spectra is observed in both 

situations. 
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Figure 9: 29Si MAS NMR spectra for each sample. For each plot the fit is the sum of the deconvoluted peaks. Regions where 

resonances due to each Qn (n = 1, 2, 3, 4) species are expected are indicated. Each additional substitution of Al for Si in the 

Qn sites is expected to shift the associated resonance approximately 5 ppm higher [44].  
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3.5 Transmission electron microscopy/energy dispersive X-ray spectroscopy 

 

The chemistry of each ceramic powder as measured by TEM-EDX is presented in Figure 10. The 

chemistry of the aluminosilicate powders (samples A and B) is clustered around the stoichiometric 

design suggesting a significant degree of homogeneity in each case. The chemistry of sample A is 

clustered around two distinct regions, one which is Si-rich and another which is Al-rich and exhibits 

chemistry close to that of mullite, consistent with spinodal decomposition into a highly polymerised 

Si-rich phase and a phase containing mullite-like structures as discussed previously. The chemistry of 

sample B is clustered much more tightly around the stoichiometric design. The observations by 29Si 

MAS NMR discussed above (section 3.4.2) suggest it is highly likely that spinodal decomposition into 

an Al-rich phase and a Si-rich phase has occurred during calcination of sample B, however the inability 

to observe two distinct compositional regions for this sample in Figure 10b suggests that any phase 

segregation has occurred on a sub-100nm scale. 

The chemistry of the calcium-aluminosilicate powders (samples C, D, E and F) is clustered tightly 

around the designed Al/Si ratio but each sample displays a large range of values for the Ca/Si ratio. 

The composition of sample C is clustered around three distinct regions; a Ca-rich, Al-deficient region 

containing moderate amounts of Si (close to the composition of dicalcium silicate), a Ca-deficient 

aluminosilicate region, and a region exhibiting chemistry in between both of these extremes. In 

addition to solid state MAS NMR observations discussed above (section 3.4) the chemistry for this 

sample suggests the presence of a heterogeneous mixture of a depolymerised calcium silicate and a 

highly polymerised aluminosilicate phase. It is likely that the region exhibiting chemistry in between 

these two phases is not due to a distinct phase but actually a mixture of the two segregated on a sub-

100 nm scale. Samples D, E and F do not display any clearly distinct separate regions of chemical 

composition. In each of these samples a wide range of values for the Ca/Si ratio is observed, the 

average of which is consistent with the stoichiometric design in each case. The low Al content and high 

Ca content of these samples (when compared to sample C) appears to have impeded the formation 

of the highly-polymerised aluminosilicate phase, resulting in a ceramic powders comprising 

predominantly of a calcium silicate phase, consistent with the Si coordination environments in these 

samples observed by 29Si MAS NMR. 
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Figure 10: Projection of ceramic powder chemistry onto the ternary Al � Si � O system for samples A and B as marked and 

onto the CaO � Al2O3 � SiO2 system for samples C, D, E and F as marked showing elemental composition as determined by 

TEM-EDX analysis. 

 

http://dx.doi.org/10.1016/j.powtec.2016.04.006


Postprint of a paper published in Powder Technology, 29(2016):17-33. Version of record is available 

at http://dx.doi.org/10.1016/j.powtec.2016.04.006  

28 

 
Figure 11: TEM bright-field images of samples A and B as marked. Different magnifications are indicated by i) � iv). 

Diffraction patterns (DP), Fourier transforms (FT) and associated regions within the relevant TEM bright-field image are 

indicated by numbers 1-4 for each sample, where applicable. 

 

Bright-field TEM images for each of the ceramic powders, along with associated diffraction patterns 

and Fourier transforms are presented in Figure 11. Bright-field images of the aluminosilicate particles 

(samples A and B) exhibit a granular morphology, a high degree of homogeneity and a high porosity 

(consistent with observations by nitrogen gas adsorption). Diffraction patterns and Fourier transforms 

of the bright-field images for these samples indicate that they are amorphous, consistent with 

observations by X-ray diffraction. Diffraction patterns for different particles within the same 

aluminosilicate powder do not show any clearly observable differences on the scale examined here, 

suggesting that particles within these powders display a high degree of physical homogeneity. 
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Figure 12: TEM bright-field images of samples C-F as marked. Different magnifications are indicated by i) � iv). Diffraction 

patterns (DP), Fourier transforms (FT) and associated regions within the relevant TEM bright-field image are indicated by 

numbers 1-4 for each sample, where applicable. 

 

Bright-field images of the calcium-aluminosilicate particles (samples C - F) show that two distinct types 

of particle morphologies are present within these precursors; one which appears highly porous and 

granular and displays similarity with that of the aluminosilicate particles (indicated in Figure 12c-iii in 

the region marked 2), and another which appears much less porous and with a much smoother surface 

(indicated in Figure 12c-iii region 1). Diffraction patterns and Fourier transforms of these two 
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morphologies indicate that the first is amorphous, while the second displays varying degrees of 

crystallinity ranging from polycrystallinity to longer range crystallinity (Figure 12c-iii, d-iii, e-iii and f-

iii). These two morphologies are consistent with the heterogeneous mixture observed by 29Si MAS 

NMR. The degree of crystallinity is also observed to vary significantly within individual particles, 

ranging from amorphous to polycrystalline with no clearly defined transition region observable (Figure 

12c-iii, d-ii, e-i, f-ii) suggesting that these powders display some degree of physical heterogeneity on 

the scale examined here. Regions displaying differing extents of crystallinity are observed to be as 

small as 10 nm2 (Figure 12d-i and f-i). These observations are consistent with the XRD data for the 

calcium-aluminosilicate powders and suggest that the crystalline phases in these particles do not 

necessarily display long range order, but exhibit short range ordered nanocrystalline phases as well. 

Comparing the bright-field images in Figure 12e-i and ii it can be seen that a region of the particle 

which appears homogeneous on a scale of 150 nm2 actually contains nanocrystalline phases displaying 

short range order when examined on a scale of 15 nm2. This indicates that nanocrystalline phases may 

also be present within the vitreous phase identified in the X-ray diffractograms for the calcium-

aluminosilicate powders. 

The results presented in this study indicate that the chemistry of the aqueous precursors and polymer 

carrier significantly influences the chemical and physical characteristics of the product obtained during 

synthesis of ceramic powders via an organic steric entrapment solution-polymerisation route. 

Controlling these parameters allows production of ceramic powders of specific stoichiometry and 

physical characteristics and provides a means to readily produce a large array of high-purity powders 

useful for many applications within inorganic chemistry and materials science fields. More specifically, 

these powders provide chemically simplified precursors for the production of model silicate gels 

exhibiting chemistry in key regions of the quaternary CaO�Na2O�Al2O3�SiO2 system, and constitute an 

important tool for the study of these materials. 
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4. Conclusions 

Stoichiometrically controlled reactive aluminosilicate and calcium-aluminosilicate powders were 

successfully synthesised via an organic steric entrapment solution-polymerisation route. Polyethylene 

glycol was found to be superior to polyvinyl alcohol for the synthesis of calcium-aluminosilicate 

powders due to the increased oxygen content in the polymer backbone, which allows complete 

combustion of the polymer during calcination. Organics were successfully removed via calcination 

leaving powders that were predominantly X-ray amorphous and possessed a high surface area. 

Aluminosilicate powders exhibited a highly porous, granular morphology displaying a high degree of 

homogeneity and consisted predominantly of low Al-substituted tetrahedrally coordinated Si and 

roughly equal amounts of tetrahedral, pentahedral and octahedral Al in mullite-like structures. 

Calcium-aluminosilicate powders exhibited two distinct morphologies; one which is amorphous and 

exhibits a high degree of porosity and one which displays varying degrees of crystallinity and a low 

porosity. The amorphous, highly porous phase corresponds to a polymerised aluminosilicate region 

containing Al in a distorted tetrahedral environment and Si in a high-coordinated, high Al-substituted 

Si environments, with calcium in a charge balancing role, while partially crystalline phase displaying 

low porosity corresponds to a depolymerised calcium silicate region containing low-coordinated Si 

environments. The powders synthesised in this study possess a high purity and exhibit chemical and 

physical characteristics which are likely to be useful for the synthesis of model silicate gels exhibiting 

chemistry in key regions of the quaternary CaO�Na2O�Al2O3�SiO2 system. The refined organic steric 

entrapment solution-polymerisation method presented provides a fast, reproducible means for 

synthesising high-purity aluminosilicate and calcium-aluminosilicate ceramic powders which 

constitute an important tool for studying particle interactions within complex geopolymer systems. 
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