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Arterial growth and remodelling (G&R) is mediated by vascular cells in response to their chemical and
mechanical environment. To date, mechanical and biochemical stimuli tend to be modelled separately,
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however this ignores their complex interplay. Here, we present a novel mathematical model of arterial
chemo-mechano-biology. We illustrate its application to the development of an inflammatory aneurysm
in the descending human aorta.

The arterial wall is modelled as a bilayer cylindrical non-linear elastic membrane, which is internally
pressurised and axially stretched. The medial degradation that accompanies aneurysm development is
driven by an inflammatory response. Collagen remodelling is simulated by adaption of the natural
reference configuration of constituents; growth is simulated by changes in normalised mass-densities.
We account for the distribution of attachment stretches that collagen fibres are configured to the matrix
and, innovatively, allow this distribution to remodel. This enables the changing functional role of the
adventitia to be simulated. Fibroblast-mediated collagen growth is represented using a biochemical
pathway model: a system of coupled non-linear ODEs governs the evolution of fibroblast properties and
levels of key biomolecules under the regulation of Transforming Growth Factor (TGF)-β, a key promoter
of matrix deposition.

Given physiologically realistic targets, different modes of aneurysm development can be captured,
while the predicted evolution of biochemical variables is qualitatively consistent with trends observed
experimentally. Interestingly, we observe that increasing the levels of collagen-promoting TGF-β results
in arrest of aneurysm growth, which seems to be consistent with experimental evidence. We conclude
that this novel Chemo-Mechano-Biological (CMB) mathematical model has the potential to provide new
mechanobiological insight into vascular disease progression and therapy.

& 2016 Published by Elsevier Ltd.
1. Introduction

The arterial wall is a highly dynamic tissue. In response to
changing environmental conditions, its properties can change in
an attempt to restore a healthy/homeostatic state (Humphrey,
2008). Understanding the responses of vascular cells to such per-
turbations is essential to understand the growth and remodelling
(G&R) of tissue and thus predict the evolution of vascular diseases
such as genetic hereditary conditions (Lindsay and Dietz, 2011),
atherosclerosis (Montecucco and Mach, 2009) or aneurysms
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(Sakalihasan et al., 2005). For instance, fibroblasts in the adventi-
tia, and smooth muscle cells in the media, are highly sensitive to
the properties of their surrounding environment: the fibrous,
load-bearing matrix is a channel for transmission of mechanical
stimuli (Chiquet et al., 2003); in the interstitial fluid, biochemical
signals are relayed via diffusible signalling molecules (Leask,
2010).

Several computational models of arterial adaption during dis-
ease evolution have been developed (Baek et al., 2006; Volokh and
Vorp, 2008; Watton et al., 2009). To date, such models have
focussed on predicting the geometrical evolution of the arterial
wall by coupling altered vascular mechanics to microstructural
changes (Wilson et al., 2012; Balakhovsky et al., 2014). However,
the chemo-biological mechanisms behind homeostasis main-
tenance or impairment in disease are not explicitly modelled.
Conversely, in the cell biology and biochemistry communities,
no-biological model of arterial tissue growth and remodelling.
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numerous models of the signalling pathways governing cell-to-cell
communication and production of active species exist, e.g.
McDougall et al. (2006) and Warsinske et al. (2015). However,
these models do not consider mechanical stimuli.

We propose a novel Chemo-Mechano-Biological (CMB) math-
ematical model to describe the interdependent chemical,
mechanical and biological states of the arterial wall. Our model
builds on the mechanobiological model of Watton et al. (2009) by
coupling it with a representation of the biochemical signalling
networks of collagenous tissue G&R based on the model of Dale
et al. (1996). Moreover, we explicitly model the changing func-
tional role of the adventitia from a protective sheath to playing a
load bearing role in aneurysms. This is achieved by modelling a
distribution of collagen attachment stretches and proposing that
the (homeostatic) distribution can adapt, Section 2. The model is
parameterised to the descending human aorta (Appendix A.3). We
illustrate the application of the model (Section 3) to simulate the
evolution of an inflammatory aneurysm (Study 1), and its response
to pharmacological intervention, i.e. the effects of applying a
collagen-promoting drug to an enlarging aneurysm (Study 2). Our
coupled CMB model is a first step towards investigating the evo-
lution of diseased arteries on both mechanical and biochemical
levels, as well as their response to pharmacological therapy.
2. Methods

Our CMB model integrates two published mathematical models, i.e. Watton
et al. (2009) and Dale et al. (1996); see Fig. 1. The biochemical model of Dale et al.
(1996) focusses on the temporal variation of cellular and molecular species relevant
to collagen synthesis and degradation in the context of wound healing, however
without considering the influence of system biomechanics on cell response. The
signalling pathways biochemical model component formulated in Section 2.2 is an
adaptation and extension of this model, cf. Fig. 1 (left).

2.1. Model formulation I: Biomechanical model

We model the artery as a two layered cylindrical non-linear elastic membrane.
The derivation of the force-balance equation (FBE) governing the system's
mechanics follows Watton et al. (2009). Let subscripts L¼M;A denote medial and
adventitial layers, resp., and let superscripts p¼ E;C denote elastin and collagen
constituents, resp. Considering that the only load-bearing constituents are elastin
and collagen in the media, and collagen in the adventitia, it follows

p¼ 1
Rλλz

HM � PE
MðλÞþPC

MðλCMÞ
� �

þHA � PC
AðλCAÞ

h i
; ð1Þ

where R is the unloaded inner radius; HM,HA the unloaded layer thicknesses; λz ;λ
the axial and circumferential stretches, resp.; p the internal pressure; and Pp

L ; λ
p
L the
Fig. 1. Model components. Regulatory signalling pathways biochemical model
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1st Piola–Kirchhoff stress term and stretch, resp., ofconstituent p in layer L. The
medial elastinous constituent is modelled as a neo-Hookean material, and thus

PE
MðλÞ ¼mE

M � KE
M � λ � 1� 1

λ2z � λ4

 !
ð2Þ

where KM
E is a stiffness-like material constant and mE

MðtÞ is the (dimensionless)
normalised mass density of elastin.

We assume that collagen fibres have a distribution of recruitment stretches
(see Watton et al., 2004, 2009 for details), with each fibre displaying a linear
mechanical response, i.e.

~Ψ
C
L ðλCL Þ ¼

0 λCL o1

KC
L

2
� λCL �1
� �2

λCL Z1

8><
>: ; ð3Þ

where KL
C are stiffness-like material constants. In this study, for simplicity, we

consider all collagen fibres to be circumferentially aligned. The strain energy
density function (SEDF) for the entire collagenous tissue is obtained by integrating
the fibre SEDF over the distribution of fibre recruitment stretches (Hill et al., 2012),

Ψ C
L ðλÞ ¼

Z λ

1

~Ψ
C
L ðλCL Þ � ρ λRL

� �
dλRL ; ð4Þ

where circumferential (λ), collagen fibre (λLC) and collagen recruitment (λLR)
stretches are related by λ¼ λCL � λRL , and ρ λRL

� �
is the probability density function

(pdf) characterising the distribution of collagen recruitment stretches in the
population of fibres. We use a triangular distribution function (Chen, 2014), see
Fig. 2,

ρ λRL
� �

¼

0 λRL oλR;min
L

2 λRL �λR;min
L

� �
λR;max
L �λR;min

L

� �
λR;mode
L �λR;min

L

� � λR;min
L oλRL oλR;mode

L

2 λR;max
L �λRL

� �
λR;max
L �λR;min

L

� �
λR;max
L �λR;mode

L

� � λR;mode
L oλRL oλR;max

L

0 λRL 4λR;max
L

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

: ð5Þ

where λR;min
L and λR;max

L define the minimum and maximum collagen recruitment
stretches for the distribution resp., i.e. minimum/maximum factors’ tissue much be
stretch for collagen fibres of maximum/minimum undulation to begin to bear load;
λR;mode
L relates to the modal recruitment stretch of the distribution.

The stress term for the entire distribution of collagenous fibres in each layer L is
obtained by multiplying the SEDF (Eq. (4)) by the respective normalised mass
density term and subsequent partial differentiation with respect to λ, i.e.

PC
L ðλCL Þ ¼

∂mC
LΨ

C
L

∂λ
¼mC

L � ∂
∂λ

Z λ

1

~Ψ
C
L ðλÞ � ρ λRL

� �
dλRL

 !
ð6Þ

where mL
C denote collagen normalised mass densities in layer L. The derivation of

the explicit form of Eq. (6) can be found in Appendix A.1. The normalised mass
densities of the structural constituents medial elastin mM

E, medial collagen mM
C

and adventitial collagen mA
C are computed by Eqs. (8) and (12), resp., in the sig-

nalling pathways model component below.
component, left, interfacing with biomechanical model component, right.

no-biological model of arterial tissue growth and remodelling.
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Fig. 2. Illustrative triangular probability density functions for adventitial collagen attachment stretch λA
AT (left) and corresponding adventitial collagen recruitment stretch

λA
R (right) assuming a systolic circumferential stretch of 1.3.
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2.2. Model formulation II: Signalling pathways biochemical model

The temporal evolution of cellular and molecular species involved in arterial
connective tissue metabolism is modelled in this signalling pathways’ biochemical
model component, see diagram in Fig. 3. A system of coupled non-linear constant
rate ODEs governs the cellular number densities n, molecular concentrations c and
mass densities m normalised to the beginning of simulation (hereafter “normalised
densities”). The arterial wall is reduced biochemically to two compartments: the
media, constituted of fibrillar elastin and collagen; and the adventitia, where col-
lagen metabolism is mediated by resident fibroblasts and the active molecular
species they secrete. Parameter definitions, values and supporting references can
be found in Appendix A.3.

2.2.1. Medial degeneration
Infiltrating immune cells such as macrophages or neutrophils are common

findings within the wall of aneurysms (Rizas et al., 2009). The level of immune cells
ni
MðtÞ in our model is prescribed, i.e.

ni
MðtÞ ¼

i0 toti0

i0þ
t�ti0

kiþ t�ti0ð Þ

� �
� imax tZti0

8><
>: : ð7Þ

The inflammatory response mediated by these cells is known to be involved in the
degradation of medial elastin (mM

E) and collagen (mM
C) (Frösen et al., 2012). This

process is simulated in the model by the dependence on immune cell-produced
elastin-degrading proteases (elastases) cM

pe and collagen-degrading proteases
(collagenases) cMpc in the sink terms of the governing ODEs below:

dmE
M

dt
¼ �re � cpeM �mE

M
dmC

M

dt
¼ �rcm � cpcM �mC

M ð8Þ

The governing ODEs for protease concentration are

dcpcM
dt

¼ rpc1 � ni
M�rpc2 � cpcM

dcpeM
dt

¼ rpe1 � ni
M�rpe2 � cpeM : ð9Þ

2.2.2. Adventitial collagen growth
The main cells responsible for collagen maintenance in the adventitia are fibro-

blasts; we denote their normalised number density as nAF. Fibroblasts produce
(adventitial) procollagen (cAP) and zymogen (cAz) which are subsequently converted
into active forms, i.e. collagen mA

C and collagenase cA
ca, respectively (Shoulders and

Raines, 2009; Siefert and Sarkar, 2012). Tissue Inhibitors of MetalloProteinases (TIMPs),
denoted (cAI), are common collagenase inhibitors secreted by fibroblasts, which form an
irreversible inhibitory complex with the enzymes and suppress their action (Brew et al.,
2000). Collagen maintenance is a tightly regulated process. For instance, TGF-β is a
signalling molecule with a collagen-promoting (i.e., profibrotic) action in the adventitia:
it promotes procollagen synthesis (Lindahl et al., 2002); it stimulates fibroblast popu-
lation expansion via increased migration (Martin et al., 1992), proliferation (Streuli et al.,
1993; Akhurst and Hata, 2012) and differentiation (McAnulty, 2007); it suppresses
zymogen secretion (Akhurst and Hata, 2012); it upregulates TIMP secretion (Akhurst
and Hata, 2012). This molecule is secreted by fibroblasts in an inactive latent form cβlA ,
which is then activated to cβA . The system of ODEs governing collagen regulation is:

dnF
A

dt
¼ rf 1 þrf 2 � c

β
A

� �
� nF

A�rf 3 � nF
A ð10Þ

dcPA
dt

¼ rp1 þrp2 � c
β
A

� �
� nF

A�rp3 � cPA ð11Þ
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dmC
A

dt
¼ rc1 � cPA�rc2 � ccaA �mC

A ð12Þ

dczA
dt

¼ rz1
1þrz2 � cβA

 !
� nF

A�rz3 � czA ð13Þ

dccaA
dt

¼ rca1 � czA� rca2 þrca3 � cIA
� � � ccaA ð14Þ

dcIA
dt

¼ rI1 þrI2 � cβA
� �

� nF
A� rI3 þrI4 � ccaA
� � � cIA ð15Þ

2.2.3. Regulatory signalling: TGF-β
TGF-β is one of the most significant regulators of collagen metabolism and

matrix deposition in the arterial wall (Streuli et al., 1993). There is no baseline
production of latent TGF-β by fibroblasts (Shi et al., 1996). Instead of being con-
tinuously present, it transiently acts as a link in fibroblast mechanotransduction
regulatory signalling pathways, by coupling deviations from mechanical home-
ostasis to altered arterial collagen metabolism (Lindahl et al., 2002). We model the
latent (cβlA ) and active (cβA) forms of TGF-β as follows:

dcβlA
dt

¼
rβl1 � c

β
Aþrβl2 � f λF

� �
1þrβl3 �mC

A

0
@

1
A � nF

A� rβl4 þrβl5 � f λF
� �

� nF
A

� �
� cβlA ð16Þ

dcβA
dt

¼ rβ1
þrβ2

� f λF
� �

� nF
A

� �
� cβlA �rβ3

� cβA ð17Þ

TGF-β-mediated mechanotransduction is considered to take place at two
levels. First, increased stretch of fibroblast cells above homeostatic values (λF 4λFh)
leads to the increased production of latent TGF-β (O'Callaghan and Williams, 2000).
Secondly, latent TGF-β is activated not only by endogenous and immune cell-driven
proteolysis but also by a strain-dependent mechanism (Shi et al., 2011). To simulate
this, for illustration, we consider f λF

� �
¼ ðλF �λFhÞ=λFh and, here, further assume that

(i) the stretch fibroblasts transduce and respond to is equal to the stretch of the
surrounding collagen fibres, and in particular λF ¼ λC;max

A ; (ii) the homeostatic
stretch target for fibroblasts λFh is equal to the stretch target for the collagen fibres
they remodel, the attachment stretch, λFh ¼ λAT ;max

A .

2.2.4. Collagen remodelling I: the attachment stretch distribution
During aneurysm enlargement, the adventitial collagen matrix may change its role

from a protective sheath to playing a load-bearing role. The evolution of this tissue-
level property is necessarily mediated by vascular cells, which compact newly depos-
ited collagen into a strained state (Alberts et al., 1994), the “attachment” (Watton et al.,
2004) or “deposition” (Bellini et al., 2014) stretch. We assume that (1) fibroblast cells
continuously transduce the mechanical state of the collagen fibres (Chiquet et al.,
2003); (2) fibroblast cell properties gradually change in response to changes in the
mechanical properties of their surroundings; (3) cells have a finite memory, and thus
the history of change in the mechanical condition of their surrounding tissue will
influence their properties back to a certain time. Following from the previous
assumptions, modelling the maximum attachment stretch as a running temporal
average of the maximum collagen fibre stretch is a natural choice,

λAT ;max
A tð Þ ¼ 1

TAT
�
Z t

t�TAT

λC;max
A j sys τð Þ dτ

� �
; ð18Þ

where TAT is the length of the time interval over which the maximum adventitial
collagen fibre stretch (at systole), λC;max

A ∣sys , is averaged. We then suppose that the
no-biological model of arterial tissue growth and remodelling.
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Fig. 3. Signalling pathways biochemical model diagram. All links between species included are based on published experimental observations. Variable symbols used in the
governing equations can be found within circles next to the name of each species in the diagram. For details see text. (For interpretation of the references to colour in this
figure caption, the reader is referred to the web version of this paper.)
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minimal attachment stretch evolves according to

λAT ;min
A tð Þ ¼ λAT ;max

A tð Þ�w tð Þ ; ð19Þ

where w(t) relates to the width of the attachment stretch distribution, which may
narrow over time. Lastly, the modal attachment stretch evolves as

λAT ;mode
A tð Þ ¼ λAT ;min

A tð Þþs tð Þ � λAT ;max
A tð Þ�λAT ;min

A tð Þ
� �

; ð20Þ

where s(t) relates to the skew of the distribution, which may also evolve over time. In
the examples presented in this paper and for simplicity, we take wðtÞ ¼ 0:1 and
sðtÞ ¼ 0:5.
Please cite this article as: Aparício, P., et al., A novel chemo-mecha
Journal of Biomechanics (2016), http://dx.doi.org/10.1016/j.jbiomech.
2.2.5. Collagen remodelling II: the recruitment stretch distribution
The distribution of collagen recruitment stretch in the adventitia λAR evolves to

maintain the collagen stretch distribution towards the collagen attachment stretch
distribution. Following Watton et al. (2004), the rate of evolution of minimum/
mode and maximum recruitment stretches is driven by deviations of collagen
stretch from homeostatic values (which are dynamic, cf. Eqs. (18)–(20)), i.e.

dλR;min
A

dt
¼ αC

AðnF
A;m

C
A ; c

ca
A Þ � λC;max

A ∣sys�λAT ;max
A

λAT ;max
A

 !
ð21Þ

dλR;max
A

dt
¼ αC

AðnF
A;m

C
A ; c

ca
A Þ � λC;min

A ∣sys�λAT ;min
A

λAT ;min
A

 !
ð22Þ
no-biological model of arterial tissue growth and remodelling.
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dλR;mode
A

dt
¼ αCA nF

A;m
C
A ; c

ca
A

� � � λC;mode
A j sys�λAT ;mode

A

λAT ;mode
A

 !
; ð23Þ

where αC
AðnF

A;m
C
A ; c

ca
A Þ is a rate parameter proportional to: the ratio of the levels of

fibroblasts nA
F (which remodel the tissue) to collagen mC

A being remodelled; the
geometric mean of the levels of mural collagenases cAca (metabolising collagen) and
the collagen being metabolised, i.e.

αCA nF
A;m

C
A ; c

ca
A

� �¼ αCA0
� nF

A

mC
A

 !
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mC

A � ccaA
q

; ð24Þ

where αC
A0

is a constant. The collagen recruitment stretch distribution in the media
follows the same G&R laws, with corresponding parameter αC

M ¼ αC
M0

being con-
stant, as collagen, collagenase and fibroblasts levels are not modelled in this layer.

2.3. Computational implementation

2.3.1. Parameter value selection
Parameter definitions and values can be found in Appendix A.3. They are

chosen to qualitatively reflect experimental observations and balancing of source/
sink terms at unperturbed conditions. The simulation time scale loosely resembles
the life time of a human being; values for parameters controlling the G&R dynamics
of the system (αM0

C, αA0
C, TAT) are determined such that mechanical and bio-

chemical variables achieve physiologically consistent steady states, e.g. 2rλsysr3
and λC;max

A r1:1 (λsys: circumferential stretch at systole).
Initial conditions for the mechanical variables are as follows. Circumferential

stretch at systole λ0sys is initialised to 1.3 and the axial stretch is taken to be λz ¼ 1:3
(constant throughout simulation). The initial attachment stretch distributions are
prescribed; this implies initial values for the recruitment stretch distributions.
More specifically, the adventitia is assumed to bear no load at systole λAT ;max

A ¼ 1.
Furthermore, the distribution is assumed to be symmetric and with width
wðtÞ ¼ 0:1, so that λAT ;min

A ¼ 0:9 and λAT ;mode
A ¼ 0:95. It is assumed that the medial

collagen bears load during the cardiac cycle and we suppose λAT ;max
M ¼ 1:1, the

distribution is assumed to be symmetric and with width wðtÞ ¼ 0:1 so that λAT ;min
M

¼ 1 and λAT ;mode
M ¼ 1:05. Determination of other material constants follows Watton

et al. (2004). The densities of cellular and molecular species are normalised to their
initial value. However, for species normally absent from arteries under baseline
conditions, i.e. both forms of TGF-β (cβlA , c

β
A) and infiltrating immune cells (nMi), the

initial values are set to zero.

2.3.2. Simulation loop
The general CMB model was implemented in Matlab R2013a (The Mathworks,

Nattick, Ma, USA). The system of coupled equations was iteratively solved by a fully
explicit approach: the system of ODEs (Eqs. (8)–(17) and Eqs. (21)–(23)) was solved by a
backward finite differences Euler method using a fixed step length of 0.0069 years (at
which step independence was achieved), while the algebraic force-balance
equation (FBE) (Eq. (1)) was solved by fzero. Once system variables are initialised,
simulation is started. The FBE is solved at systolic pressure for tissue and collagen fibre
stretches; these mechanical quantities are passed to the mechanotransduction func-
tionals, which are used to generate updated estimates of the cellular and biochemical
variables and structural fibre distributions by means of the signalling pathways set of
coupled ODEs. The updated estimates for the masses of load-bearing constituents and
collagen recruitment stretches are input back into the FBE, which is solved again,
iteratively. For comparison with previously published models, the conceptual model of
Watton et al. (2009) is also implemented and simulated. See Appendix A.2 for details.
3. Results

We illustrate the application of the model to simulate the evolu-
tion of inflammatory aneurysms (IAs), Study 1, and the effects of a
collagen-promoting drug on the development of this disease, Study 2.
An initially healthy model of an artery is subject to a prescribed
immune cell infiltration, Eq. (7). The ability of the model to simulate a
return to a stable (homeostatic) state is then assessed.

3.1. Study 1: Inflammatory arterial aneurysm modelling

3.1.1. Mechanical variables
Fig. 4 displays the biomechanical evolution of an idealised

aneurysm in response to prescribed infiltration of immune cells
starting at t¼40 years. The production of proteolytic enzymes by
these cells, Eq. (9), results in medial elastin degradation and arterial
enlargement, as can be seen by the increase in circumferential stretch,
Fig. 4a. Increasingly more of the load previously borne by medial
Please cite this article as: Aparício, P., et al., A novel chemo-mecha
Journal of Biomechanics (2016), http://dx.doi.org/10.1016/j.jbiomech.
elastin is now borne by adventitial collagen, leading to an increase in
adventitial collagen stretch, Fig. 4c. The adventitia responds to this
aneurysmal expansion by growth, increasing collagen mass (Fig. 4b),
and remodelling, a change in attachment stretch distribution. This
adaptive response of the adventitia slows down the enlargement of
the artery, cf. reducing slope of each curve in Fig. 4a. At the end of the
simulation, the circumferential stretch increases by a factor of 2–3
(Fig. 4a), and the collagen density increases by up to 50% (Fig. 4b).
Notably, the adventitia changes its role from a protective sheath to
bearing load (Fig. 4c), i.e. λC;max

A ¼ 1 at t¼0 shifts to λC;max
A 41 as the

aneurysm converges to a new homeostasis. This adventitial adapta-
tion was a result of the time-varying collagen attachment stretch law
implemented in our model, Eq. (18), and emerges naturally from the
underlying evolution of the collagen stretch distribution.

3.1.2. Target behaviours
Different rates of mechanical to biochemical mechan-

otransduction (mechanotransduction sensitivity) were simulated for
the coupled CMB model. Each blue line (no markers) in Fig. 4
corresponds to a different value of rate constant rβl2 in Eq. (16), the
rate of production of latent TGF-β by fibroblasts as a result of a
deviation of collagen fibre stretch from its homeostatic target (the
attachment stretch). It is clear that faster rates of mechan-
otransduction (solid and dashed lines) lead to faster and ultimately
larger collagen production as a result of arterial expansion
(Fig. 4b). Such fast re-enforcement of the adventitia halts further
expansion, and results in stable domains (later time points in
Fig. 4a and c). On the other hand, in the two slower mechan-
otransduction cases (dotted and dash-dotted lines) there are only
very modest collagen increases in the adventitia (Fig. 4b), which
cannot stop the continuous enlargement of the artery (later time
points in Fig. 4a and c).

3.1.3. Cellular and molecular variables
Fig. 5 displays the predicted evolution of the cellular and bio-

molecular variables for simulation case rβl2 ¼ 5. The rates of
change of these species are given by the equations in Section 2.2, a
mathematical implementation of the biochemical network in
Fig. 3. The prescribed immune cell infiltration (thick red line, circle
markers) is followed by a similar increase in proteases (thin red
line, circle markers). These proteolytic enzymes lead to degrada-
tion of medial elastin and collagen (dot-dashed brown line, no
markers) and the artery enlarges, see Fig. 4a. Adventitial fibro-
blasts respond via TGF-β signalling, increasing the levels of its
latent form (dashed green line, square markers) that is then con-
verted into the active form (solid green line, square markers). As
described in Section 2.2, TGF-β promotes collagen deposition by
its multiple actions on fibroblasts: increase in fibroblast numbers
(thick brown line, no markers), down-regulation of endomural
collagenases (solid magenta line, upward triangle markers) and
increase in inhibitors of collagenases or TIMPs (yellow line,
downward triangle markers). The overall effect is an increase in
collagen (thin brown line, no markers), also seen in Fig. 4b; such
significant collagen growth leads to stabilisation of the aneurysm.
This new mechanical homeostasis is perceived by fibroblasts,
which reduce their TGF-β secretion. Finally and in the absence of
this active agent, all biomolecules achieve a new steady-state,
which is characterised by: an approximately 50% increase in
fibroblasts, inhibitors, zymogen and procollagen; an approxi-
mately 25% increase in mature collagen and collagenase; a return
of TGF-β levels to zero, which thus behaves as a transient
mechanotransducer.
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Fig. 4. IA modelling – parameter study results, mechanical variables. Infiltration of immune cells starts at t ¼ 40 years (vertical black dashed line), follows Eq. (7) and results
in almost complete degradation of medial elastin and collagen at t ¼ 50 years (vertical black dotted line). The natural evolution of the mechanical variables characterising the
system in response to such perturbation is plotted. Signalling pathways-coupled model (blue, no markers) rβl2 ¼ 0:1 (dotted), 1 (dash-dotted), 5 (solid), 10 (dashed) vs.
Watton et al. (2009) (red, circle markers). (For interpretation of the references to colour in this figure caption, the reader is referred to the web version of this paper.)

Fig. 5. IA modelling – parameter study results, cellular and biochemical variables. Infiltration of immune cells starts at t ¼ 40 years (vertical black dashed line), follows Eq. (7)
and results in almost complete degradation of medial elastin and collagen at t ¼ 50 years (vertical black dotted line). The natural evolution of the cellular and biochemical
quantities characterising the system in response to such perturbation is plotted until t¼75 years for the simulation case rβl2 ¼ 5. Key: immune cells (thick red solid line, circle
markers), immune cell elastases/collagenases (thin red solid line, circle markers), fibroblasts and procollagen (thick brown solid line, no markers), adventitial collagen (thin
brown solid line, no markers), medial collagen and elastin (brown dotted line, no markers), endogenous zymogenic/active collagenases (magenta dashed/solid lines, upward
triangle markers), TIMP (yellow solid line, downward triangle markers), latent/active TGF-β (green dashed/solid lines, square markers). (For interpretation of the references
to colour in this figure caption, the reader is referred to the web version of this paper.)
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3.2. Study 2: Model application – TGF-beta therapy

Study 2 is identical to the previous study, except that a step
increase in active TGF-β levels is introduced at tTreat ¼ 45 years.
Please cite this article as: Aparício, P., et al., A novel chemo-mecha
Journal of Biomechanics (2016), http://dx.doi.org/10.1016/j.jbiomech.
This collagen-promoting therapeutic strategy simulating TGF-β
application by local delivery or gene-therapy has been suggested
in the literature as potentially protective against aneurysm
development (Ruddy et al., 2008).
no-biological model of arterial tissue growth and remodelling.
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3.2.1. Mechanical variables
The introduction of a TGF-β step has a dramatic effect on the

evolution of system biomechanical variables, Fig. 6. Shortly after TGF-β
is supplied at t¼45 years, there is a very large increase in adventitial
Fig. 6. TGF-β therapy – parameter study results, mechanical variables. Infiltration of imm
in almost complete degradation of medial elastin and collagen at t ¼ 50 years (vertical bl
following the application of a therapeutic step increase in active TGF-β normalised dens
rβl2 ¼ 0.1 (dotted), 1 (dash-dotted), 5 (solid), 10 (dashed) vs. Watton et al. (2009) (red, circ
reader is referred to the web version of this paper.)

Fig. 7. TGF-β therapy – parameter study results, cellular and biochemical variables. Infilt
(7) and results in almost complete degradation of medial elastin and collagen at t ¼ 5
quantities characterising the system following the application of a therapeutic step increa
for the simulation case rβl2 ¼ 5. Key: immune cells (thick red solid line, circle markers),
and procollagen (thick brown solid line, no markers), adventitial collagen (thin brown so
endogenous zymogenic/active collagenases (magenta dashed/solid lines, upward triangle
(green dashed/solid lines, square markers). (For interpretation of the references to colo
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collagen levels, Fig. 6b, which over-shoots and then converges to 1.8–
2.7 times initial levels. This large additional increase in adventitial
collagen significantly constrains the expansion of the artery, with all
simulation cases reaching stabilisation, Fig. 6, at much lower collagen
une cells starts at t ¼ 40 years (vertical black dashed line), follows Eq. (7) and results
ack dotted line). The response of the mechanical variables characterising the system
ity at t¼45 years is plotted. Signalling pathways-coupled model (blue, no markers)
le markers). (For interpretation of the references to colour in this figure caption, the

ration of immune cells starts at t ¼ 40 years (vertical black dashed line), follows Eq.
0 years (vertical black dotted line). The response of the cellular and biochemical
se in active TGF-β normalised density at tTreat ¼ 45 years is plotted until t¼75 years
immune cell elastases/collagenases (thin red solid line, circle markers), fibroblasts
lid line, no markers), medial collagen and elastin (brown dotted line, no markers),
markers), TIMP (yellow solid line, downward triangle markers), latent/active TGF-β
ur in this figure caption, the reader is referred to the web version of this paper.)
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stretches, Fig. 6c. When compared to the previous study, Fig. 6a, our
coupled CMB model seems to suggest that a pharmacological-based
collagen-promoting therapy leads to stabilisation of otherwise enlar-
ging arteries (slower mechanotransduction cases), and faster stabili-
sation at lower stretches of already stabilising arteries (faster
mechanotransduction cases).

3.2.2. Cellular and molecular variables
Fig. 7 shows the predicted evolution of cellular and biochemical

quantities. As in the previous study, the increase in immune cells is
prescribed (thick red curve, circle markers), leading to increased
proteolytic enzymes (thin red curve, circle markers) and elastin
degradation (dotted brown curve, no markers). A step in active
TGF-β is introduced at tTreat ¼ 45 years (vertical solid green curve,
square markers). The collagen-promoting actions of this signalling
molecule take place as before (upregulation of fibroblast numbers,
procollagen and inhibitors, downregulation of zymogen col-
lagenase), but now to a much larger extent. As mechanical
homeostasis is quickly reached (Fig. 6a), the levels of active TGF-β
drop back to zero. A biochemical steady-state follows, char-
acterised by a particularly large normalised density of fibroblasts
(4 times larger than baseline), inhibitors (3.3 times) and collagen
(over 2 times), as would be expected in a fibrotic tissue.
4. Discussion

4.1. Model insight

We have developed a novel Chemo-Mechano-Biological (CMB)
mathematical model of arterial growth and remodelling (G&R) by
coupling the conceptual aneurysm model of Watton et al. (2009)
with the biochemical model of Dale et al. (1996). The underlying
biological mechanisms included in the signalling pathways model
component (Section 2.2), all of which supported or informed by
experimental observations, have as their most significant compo-
nents: (a) active molecules responsible for collagen metabolism
(proteases and enzymatic inhibitors); (b) TGF-β, a potent regulator
of fibroblast phenotype and matrix deposition that acts as a
mechanotransduction signal for vascular cells; (c) fibroblasts, the
dominant cell population in the adventitial layer and responsible
for collagen metabolism; and (d) infiltrating immune cells, com-
monly found within the arterial wall in inflammatory aneurysms
and atherosclerosis. Including this additional biological complexity
allows our CMB model to capture arterial properties that emerge
from the close bidirectional coupling between mechanics and
chemo-biology, such as the effects of pharmacological therapy on
the mechanical and biochemical condition of diseased arteries.

Aneurysms are known to display two distinct behaviours: sta-
bilisation versus enlargement (sometimes alternating over time)
(Sakalihasan et al., 2005). Understanding which arteries stabilise
and should be left untreated vs. which vessels progressively
enlarge and require intervention is of great clinical relevance. As
was seen in Study 1, Fig. 6a in Section 3.1, our CMB model was able
to capture both a return to mechanical and biochemical steady
state (stabilisation), and a continuous enlargement for different
rates of mechanotransduction. Aneurysm enlargement is extre-
mely complex and multi-factorial; in any case, both experimental
(Frösen et al., 2012) and computational (Wilson et al., 2013) stu-
dies suggest that the dynamics of collagen G&R and those of
aneurysm enlargement are closely related. Furthermore, the new
steady state achieved after the prescribed perturbation (immune
cell infiltration) was characterised by trends qualitatively con-
sistent with those seen in aneurysmal tissue: increased immune
cell (Rizas et al., 2009) and (myo)fibroblast (Maiellaro and Taylor,
2007) numbers; reduced medial elastin (Sakalihasan et al., 2005)
Please cite this article as: Aparício, P., et al., A novel chemo-mecha
Journal of Biomechanics (2016), http://dx.doi.org/10.1016/j.jbiomech.
and increased adventitial collagen (Sakalihasan et al., 2005;
Hobeika et al., 2007); increased TGF-β levels (Ruddy et al., 2008;
Rizas et al., 2009); increased collagenase levels (Hobeika et al.,
2007; Maiellaro and Taylor, 2007; Rizas et al., 2009); and increased
TIMP concentration (Ruddy et al., 2008).

Promisingly, the model predicts that introducing a pharmaco-
logical collagen-promoting “therapy” in Study 2, i.e. applying a
step increase in active TGF-β, acts to stabilise aneurysms; this is
consistent with some experimental observations in animal models
of abdominal aneurysm (Dai et al., 2005, 2011), thus supporting
the clinical hypothesis that administering TGF-βmay be protective
against aneurysm development under some conditions. The ability
to capture the dynamics of pharmacological agents and their
effects on arterial mechanobiological evolution is a valuable
insight offered by our CMB model. In the future, we envisage that
coupled models of this kind may be used to simulate in silico the
effect of drugs on the mechanical condition of a diseased artery,
thus assisting medical decision-making.

4.2. Limitations and future directions

We modelled the arterial wall as a bilayered non-linear elastic
cylindrical membrane. The choice of parameter values used in our
studies was illustrative to reproduce different target behaviours of
arterial tissue evolution (stabilisation vs. continuous enlargement),
subject to conditions for realistic results. Extension to a full 3-
Dimensional model of the arterial wall, e.g. Aparicio et al. (2014),
Grytsan et al. (2015), and Eriksson et al. (2014), is a natural
development.

Biochemical complexity was simplified by grouping together
many different biomolecular types into a few representative
variables: the only signalling molecule considered was TGF-β, and
in particular isoform 1, which is known to be one of the most
significant regulators of ECM deposition (Streuli et al., 1993); cIA
specifically represents TIMP-1; over 30 different types of MMPs
(Rizas et al., 2009) were grouped into three representative cate-
gories; fibrillar collagen types I and III were treated together.
Furthermore, not all actions of such molecules were modelled. In
particular, TGF-β is an important regulator of inflammation: it is
secreted by immune cells, acting on them by increasing their
migration and promoting secretion of proteases (Rizas et al., 2009;
Akhurst and Hata, 2012).

From the many cell types populating the arterial wall, our
model only considered fibroblasts (which populate the increas-
ingly important adventitial layer, Humphrey and Canham, 2000),
and immune cells. Other cell types are also present in the arterial
wall. Intimal Endothelial Cells (ECs) transduce wall shear stress,
thus regulating both luminal permeability to immune cells (Con-
way and Schwartz, 2012) and wall tonus via medial vascular
smooth muscle cells (VSMCs) active stress generation (Humphrey
et al., 2007). An interesting conceptual model of VSMC stress
generation coupled to EC vasoconstrictor/vasodilator activity
exists in the literature (Baek et al., 2007); coupling this EC/VSCM
model to our Chemo-Mechano-Biological model would be rela-
tively straightforward, providing a comprehensive and integrated
description of arterial wall mechanobiology. Finally, in the pre-
sence of TGF-β and mechanical tension, adventitial fibroblasts may
differentiate into myofibroblasts, a highly secretory, contractile
and migratory cell type recently implicated in the development of
vascular diseases such as thoracic aortic aneurysms (Forte et al.,
2010).

Several particular choices were made when coupling arterial
mechanics to biochemistry in our model. First, distributions of
collagen fibre (λC) and attachment (λAT) stretch were modelled by
triangular pdfs, Eq. (5). Second, the attachment stretch distribution
was made to evolve over time according to Eqs. (18)–(20). This was
no-biological model of arterial tissue growth and remodelling.
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based on the observations that the adventitia progressively
changes its role in disease from a protective straitjacket to the
main load-bearer, and that fibroblasts depositing and stretching
collagen are highly plastic cells (Stenmark et al., 2006; McAnulty,
2007). Here and for the first time, the hypothesised change in
collagen attachment stretch was not prescribed (Chen, 2014), but
rather emerged from the evolution of the system. Third, deviations
from mechanical homeostasis were coupled to fibroblast
mechanotransduction by the stretch-based functional f λC;max

A

� �
;

alternative, e.g. stress-based (Baek et al., 2006) functionals could
easily be accommodated by our model.

A major shortcoming in this model is admittedly the lack of
quantitative validation, which is partially due to the current lack of
experimental data suitable to fit mechanobiological models (Hum-
phrey, 2008). Future model development will benefit from data from
both in vitro models of vascular cell–matrix interaction (Bai et al.,
2014) and animal models of vascular disease (Li et al., 2014).
5. Summary

We propose a novel Chemo-Mechano-Biological (CMB) math-
ematical model of arterial Growth and Remodelling, which fea-
tures an innovative coupling between regulatory signalling path-
ways and tissue biomechanics. Our CMB model is able to simulate
both stabilisation and continuous enlargement of arterial aneur-
ysms. It is a model prediction that the application of a collagen-
promoting drug is able to arrest aneurysm growth, which is con-
sistent with experimental observations. We envisage that such in
silico models have the potential to provide insight into the effects
of pharmacological therapy on vascular disease and guide perso-
nalised treatment strategies.
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