# Browse by Academic Unit (A-Z)

Up a level |

- White Rose Consortium (9)
- The University of Leeds (9)
- Faculty of Maths and Physical Sciences (Leeds) (9)
- School of Mathematics (Leeds) (9)
**Pure Mathematics (Leeds)**(9)

- School of Mathematics (Leeds) (9)

- Faculty of Maths and Physical Sciences (Leeds) (9)

- The University of Leeds (9)

**9**.

## B

Bertrand, D and Pillay, A
(2010)
*A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields.*
Journal of the American Mathematical Society, 23 (2).
491 - 533 .
ISSN 0894-0347

## C

Chen, R-M and Rathjen, M
(2012)
*Lifschitz realizability for intuitionistic Zermelo-Fraenkel set theory.*
Archive for Mathematical Logic, 51 (7-8).
789 - 818 (20).
ISSN 0933-5846

## F

Friedman, S-D, Rathjen, M and Weiermann, A
(2013)
*Slow consistency.*
Annals of Pure and Applied Logic, 164 (3).
382 - 393 (12).
ISSN 0168-0072

## G

Gallardo-Gutierrez, E.A. and Partington, J.R.
(2008)
*Common hypercyclic vectors for families of operators.*
Proceedings of the American Mathematical Society, 136 (1).
pp. 119-126.
ISSN 0002-9939

## K

Kirk, V. and Rucklidge, A.M.
(2008)
*The effect of symmetry breaking on the dynamics near a structurally stable heteroclinic cycle between equilibria and a periodic orbit.*
Dynamical Systems, 23 (1).
pp. 43-74.
ISSN 1468-9367

## R

Rathjen, M
(2012)
*Constructive Zermelo-Fraenkel Set Theory, Power Set, and the Calculus of Constructions.*
In:
Epistemology versus ontology: Essays on the philosophy and foundations of mathematics in honour of Per Martin-Löf.
Logic, Epistemology, and the Unity of Science, 27
.
Springer
, Dordrecht, Netherlands
, 313 - 343 (31).
ISBN 9789400744356
(In Press)

Rathjen, M
(2012)
*From the weak to the strong existence property.*
Annals of Pure and Applied Logic, 163 (10).
1400 - 1418 (19).
ISSN 0168-0072

Rathjen, M and Leigh, GE
(2012)
*The Friedman-Sheard programme in intuitionistic logic.*
The Journal of Symbolic Logic, 77 (3).
777 - 806 (30).
ISSN 0022-4812

Rathjen, M and Lubarsky, RS
(2008)
*On the constructive Dedekind reals.*
Logic and Analysis, 1 (1).
131 - 152 (23).
ISSN 1759-9008