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Homeostatic Fault Tolerance in Spiking Neural

Networks: A Dynamic Hardware Perspective
Anju P. Johnson, Member, IEEE, Junxiu Liu, Member, IEEE, Alan G. Millard, Shvan Karim,

Andy M. Tyrrell, Senior Member, IEEE, Jim Harkin, Member, IEEE,

Jon Timmis, Senior Member, IEEE, Liam J. McDaid, and David M. Halliday

Abstract— Fault tolerance is a remarkable feature of biolog-
ical systems and their self-repair capability influence modern
electronic systems. In this paper, we propose a novel plastic
neural network model, which establishes homeostasis in a spiking
neural network. Combined with this plasticity and the inspira-
tion from inhibitory interneurons, we develop a fault-resilient
robotic controller implemented on an FPGA establishing obstacle
avoidance task. We demonstrate the proposed methodology on
a spiking neural network implemented on Xilinx Artix-7 FPGA.
The system is able to maintain stable firing (tolerance ±10%)
with a loss of up to 75% of the original synaptic inputs
to a neuron. Our repair mechanism has minimal hardware
overhead with a tuning circuit (repair unit) which consumes
only three slices/neuron for implementing a threshold voltage-
based homeostatic fault-tolerant unit. The overall architecture
has a minimal impact on power consumption and, therefore,
supports scalable implementations. This paper opens a novel way
of implementing the behavior of natural fault tolerant system in
hardware establishing homeostatic self-repair behavior.

Index Terms— Self-repair, homeostasis, fault tolerance, FPGA,
dynamic partial reconfiguration, bio-inspired engineering,
mixed-mode clock manager, phase locked loop.

I. INTRODUCTION

B
IO-INSPIRED solutions are playing an important role in

solving real-world engineering problems [1]. Healing is a

remarkable feature of the brain which leads to the restoration

of cognitive function following stroke or injury. Additionally,

the human brain is continuously undergoing modifications

to adapt to changes in its environment [2]. This follows

from the fact that the brain is capable of assessing its own

activity levels and performing adjustments to maintain a stable

operation. This work is based on the inspiration derived from

robust biological systems, which can detect and correct errors.
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Homeostasis is a property of a system to maintain relatively

stable equilibrium when subjected to continuous change. The

mechanisms that monitor excitation and maintain the func-

tional properties of neurons are by definition homeostatic [3].

Homeostasis can be established in two ways: one in which

neurons alter their intrinsic electrical properties and the other

by modifying synaptic properties to maintain a target level of

electrical activity. Recent work has shown that destabilizing

influences (e.g. decaying synapses) are counterbalanced by

homeostatic plasticity mechanisms that act to stabilize neural

and circuit activity [3], [4]. Synapses connecting between

neurons are the most vital information processing unit in

an Artificial Neural Network (ANN) system [5]. Any faulty

behavior in synapses affects the performance of the entire

system. Hence this work considers hardware failures targeting

synapses of a neuromorphic system implemented on an FPGA.

Specifically, we consider a scenario in which a neuron tries to

establish homeostasis in the presence of synaptic failures by

altering the intrinsic electrical properties. The inbuilt nature

of the system also helps in addressing problems of sensor

failures.

There are many sources of errors in electronic systems

including single and multiple event upsets, aging faults, power

supply fluctuations, thermal instabilities, metal migration, hot

carrier injection, and oxide breakdowns which are becoming

very common in electronics systems [6]. These may lead

to soft and/or hard errors in the systems. As feature size

and operating conditions are scaled down, the sensitivity

of electronic devices to radiation at ground levels has also

increased [7].

Spiking neurons are core components of many computa-

tional models of the brain that aim to improve understanding

of brain function and hence its fault tolerance is of utmost

importance. So, in this work, we propose a novel way to

achieve fault tolerance in Spiking Neural Network (SNN)

implementation on FPGA. In SNNs, communication, and

computation happen by an exchange of spatiotemporal patterns

encoded as spikes as in biological neurons. Various researchers

have demonstrated fault tolerance in SNN hardware imple-

mentations [8]–[10]. Compared to these works, the work

proposed in this paper demonstrates higher fault tolerance and

the methodology is feasible in the presence of at least one

healthy synapse.

In biological systems, independent units perform computa-

tion in parallel. For real world applications, this parallelism

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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can be exploited to perform tasks orders of magnitude

faster than in software and hence we consider hardware

implementation of SNNs. In this work, we use FPGAs to

demonstrate fault tolerance inherent in SNNs, because they

combine computing capability, logic resources and memory

capacity in a single device. The potential of fault tolerance in

FPGA-based SNN networks has been identified in some of

the recent works [11], [12]. FPGA allows neural networks

to be evolved on hardware and new topologies/networks

executed faster [13]. In this paper, we focus on neural networks

implemented on Static Random Access Memory (SRAM)-

based FPGA since it is the most commonly used reconfig-

urable platform. SRAM-based FPGAs are particularly prone

to Single Event Upsets (SEUs) [14]. This creates an issue

for dependability for safety critical applications. Emerging

technologies for hardware implementations such as memristor

technology in FPGA like devices [15] are a promising solution

for future implementations. Memristors allow mapping of

a high-density integrated circuit with clock speeds in the

gigahertz range. A single memristor can perform functions of

multiple transistors, leading to the fabrication of a powerful

computer. Memristor is an attractive alternative to SRAMs

and flash storage. Memristor-based neural networks have been

reported in some of the recent researches [16]–[18]. Logic

circuits based on magnetic RAM (MRAM) can be an energy-

efficient replacement for SRAM-based FPGAs [19]. They offer

zero leakage and CMOS compatibilities.

In this work, we demonstrate homeostatic fault tolerance in

SNN implemented on an FPGA using (a) neuronal threshold

voltage adjustment, and (b) Dynamic Partial Reconfigura-

tion (DPR) of neuronal clocking schemes. This work considers

faults as a condition that results in a silent or near silent neuron

caused by low transmission probability (P R) of a synapse.

A neuron is a representation of a node in a system. Near

silent neuron presents a weak node in the system. The issues

might be hardware failures in the system. The proposed work

is a solution for all kinds of faults leading to failures in the

interconnections of the node (neuron). These may be sensor

failures, SEUs, stuck-at fault, interconnect fracture, noise, etc.

Faults in synapses that lead to reduced transmission prob-

ability may be due to an external cause such as sensor fail-

ures or internal faults such as SEUs in synaptic connections.

Repair is the ability of the system to restore firing rates.

The idea we propose is to use variable threshold voltage

adjustments for the neuron to handle low transmissions.

DPR is an FPGA-specific technological advancement which

aims at modifying the existing circuit mapped on the FPGA

without needing to turn off the circuit functioning in other

parts of the FPGA. Various works have demonstrated the

possibility of fault tolerance in FPGAs via DPR [20], [21].

We use Dynamic clock alteration, a variant of classical

DPR technique to establish the homeostatic repair in the

presence of faulty synapses. The proposed mechanisms modify

the threshold voltage or clock rate for the faulty neurons

to effectively restore the firing rate to the original value.

Additionally, this work compares the two approaches.

In many mobile robot navigation applications, one of the

primary tasks is to avoid obstacles. The work demonstrates

the effectiveness of the proposed bio-inspired homeostasis of

SNN implemented on FPGA in achieving a robust obstacle

avoiding robotic task. This obstacle avoiding robotic controller

is designed with the help of homeostatic fault tolerance com-

bined with and synaptic excitatory and inhibitory plasticity.

We provide a complete architecture establishing homeostasis

in an FPGA-based robotic controller having movements in

‘Forward’, ‘Right’, ‘Left’ and ‘Reverse’ directions. We also

propose an area-reduced model of the robotic car controller

establishing the same task. The equivalence between the two

models is demonstrated.

The rest of the paper is organized as follows. Section II

describes the background and motivation. Section III discusses

the basic building block of the bio-inspired architecture.

Section IV presents the proposed idea of neuronal self-tuning

for homeostatic regulation of firing rates. Section V describes

the two architectures of the robotic controller establishing

obstacle avoidance task. Section VI presents experimental

results establishing the effectiveness of the proposed schemes.

Finally, conclusions are derived in Section VII.

II. BACKGROUND AND MOTIVATION

A Spiking Neural Network (SNN) is a typical bio-inspired

neural network that performs information transfer based on

discrete-time spikes. When an SNN neuron receives an input

spike, its membrane potential increases slowly and gradu-

ally drops due to leakage of ion channels. When multiple

input spikes are received in rapid succession, the membrane

potential may increase and reach a specific value (threshold),

and the neuron fires a spike. There are multiple possible

levels of abstraction for SNN modeling. Hodgkin-Huxley

model [22] is the most biologically realistic neuron model.

Other models include Quadratic Integrate and Fire (QIF),

Exponential Integrate and Fire (EIF) [23], Izhikevich [24],

FitzHugh-Nagumo [25], Hindmarsh-Rose [26] and Integrate

and Fire (IF) model [27]. The Leaky Integrate and Fire (LIF)

model, a variation of IF model is a simplified model of a

biological neuron widely used in neuromorphic computing.

It represents a good trade-off between computational complex-

ity and biological realization. We use a LIF [28] model for

representing the neurons in the network. This representation

of a LIF neuron is shown in Eq. (1).

τmem

dv

dt
= −v(t) + Rmem

∑

i=1

m
Isyn

i (t) (1)

where Isyn , Rmem , Vth , τmem , v, and Vr are current injected

by a synapse, membrane resistance, threshold voltage, time

constant, membrane potential, and resting membrane poten-

tial respectively. Typical values are Isyn = 20n A, Rmem =

1M�, Vth = 15mV , τmem = 10ms, Vr = 0v. m represents the

number of synapses associated with a neuron. On reaching the

threshold voltage, the membrane potential is brought back and

held at 0V following a nominal refractory period (�abs = 2

clock cycles). The expression is evaluated using Euler method

of integration with a fixed time step of �t = 2−10s (an

approximation for 1 ms). Considering the above parameters

and a constant input current, solution for the above equation
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turns to be:

v(t) = Rmem × I [1 − ex p(−
t

τmem

)] (2)

The asymptotic value of the membrane potential is

Rmem × I . If this value is less than the spiking thresh-

old, Vth , no spike can be generated. If Rmem × I > Vth ,

the neuron fires. The typical value of membrane resistance

falls in the range of M�, hence we fixed this to be 1M�.

Additionally, the threshold voltage is selected to be 15mV ,

leading to the value of Isyn . The parameters are derived

by considering [8], [29]. SNN projects the mechanism of

the brain based on massively parallel arrays of neurons.

Hence to mimic the brain-like functionality, it is advisable to

implement the spiking neural network in hardware as it takes

advantage of inherent parallelism and very high execution

speed. In this work, the proposed methodology superimposed

on an obstacle avoiding robotic controller is implemented on

an FPGA.

Homeostatic plasticity is a mechanism which regulates

average activity in neural networks. Activity levels in nervous

system rely on many factors including various plasticity mech-

anisms, environmental variations, and developmental changes.

Homeostatic plasticity is a biological process in neurons that

serves to compensate for such disruptions. Researchers have

distinguished the effects of homeostatic regulations in many

species including neuronal cultures [30], [31] and organotypic

cultures [32], [33]. These studies provide evidence that intrin-

sic properties of the system are subject to activity-dependent

regulation that maintains an average electrical activity. Various

models of intrinsic homeostatic plasticity have also been

developed. It was proposed that neurons have a built-in sensor

mechanism that monitors electrical activity and adjusts con-

ductance densities to maintain a specific activity level [34].

In this work, we propose precisely, such an intrinsic home-

ostatic mechanism in hardware where a neuron monitors its

input activities and switches between predetermined intrinsic

parameters. To the best of our knowledge, this is the first

attempt to establish intrinsic homeostasis in hardware using

an SNN model.

Together with the motivation from the intrinsic homeo-

static mechanism, the proposed hardware architecture draws

inspiration from the behavior of interneurons. Interneurons

are a vital component in a neuron system which plays an

important role between sensory and motor neurons. This work

specifically targets inhibitory interneurons. In a biological

system, inhibitory neuron release neurotransmitters (glycine

and GABA) that bind to the corresponding receptors in the

postsynaptic neurons and triggers a negative change in the

membrane potential. When a muscle spindle is stretched,

the antagonist muscle group must be inhibited to prevent it

from working against the resulting contraction of the homony-

mous muscle [35]. Inhibitory interneurons in the spinal cord

aids in establishing this task. In this work, we derive the

working of inhibitory interneurons for establishing inhibitions

in directions requiring less activity for establishing obstacle

avoidance task.

Fig. 1. Basic Building Block of the Robotic Controller Neuron N1
receives n excitatory synaptic inputs representing distance from the obstacle.
Additionally, m inhibitory synaptic inputs are also received from the inter
neurons. Two tuning circuitries (T-1 (EX) and T-2 (IN)) establish homeostasis
and fault tolerance.

III. THE BASIC BUILDING BLOCK

The basic unit of a robotic controller architecture is shown

in Figure. 1. The architecture consists of a neuron (N1),

associated with a set of n excitatory synapses (EX) and

m inhibitory synapse (IN) (n = 60 and m = 40 in our

experiments). The excitatory synapses receive readings from

the sensor corresponding to the distance from the obstacle

(6bit data). The robotic field is a (10 × 10 meter) square

arena (can be varied). This distance (10 meters) is divided

into 60 steps as the robot moves. The distance is mapped in

binary where each step of the robot movement corresponds

to shifting a logic one to the distance vector. If the input to

a synapse is one, a Poisson spike train is provided to the

synapse. Otherwise, the Poisson spike input to the synapse

is disabled. In our experiments, we used Poisson spike trains,

which on an average, produce one spike per 4 clock cycles.

If the synapse receives a spike from the Poisson generators,

after a short delay, the synapse outputs a constant current

of 20n A to the LIF neuron for a duration of one clock cycle.

The inhibitory synapses receive input from other neurons in the

system. If the inhibitory synapse receives a spike input from

a neuron, after a short delay, the synapse outputs a constant

current of −20n A to the LIF neuron for a duration of two

clock cycles. This difference in delay is added to incorporate

the difference in time constants of excitatory and inhibitory

synapses. Inhibitory synapses generally have a higher time

constant [36]. In addition to the above units, two tuning

units are provided in the system for establishing homeostasis

and fault tolerance. The tuning unit (T-1(EX)) monitors the

current injected from the excitatory synapses and modulates

neuron intrinsic parameters similar to the intrinsic homeostatic

mechanism in the biological system. Similarly, the tuning

unit (T-2(IN)) sits between the inhibitory synapses and the

neuron. More details of the proposed tuning units are described

in section IV. One aspect of our model is that it operates at

an accelerated biological time scale similar to that in [14].
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IV. NEURON NETWORK INCORPORATING SELF-TUNING

In principle, a neuron could establish a constant firing rate

through various mechanisms. This work achieves homeostatic

regulation of firing rates using self-tuning of intrinsic para-

meters (threshold voltage and neuron clock frequency). The

novelty lies in the following aspects:

1) Variable threshold voltage of neuron: The neurons

in the system operate with different threshold voltages.

For example, if the neuron has a reduction in spiking

activity, the homeostatic regulatory mechanism comes

into action, thereby lowering the threshold voltage of

the neuron, causing the firing rate to increase.

2) Dynamically tunable neurons: Neurons with

DPR-based tuning unit have the capability of self-

tuning their operating frequencies. This is established

using dynamic partial reconfiguration of Phase Locked

Loop (PLL) module or the Mixed-Mode Clock

Manager (MMCM) module in the FPGA. For example,

if the neuron has a reduction in spiking activity,

the homeostatic regulatory mechanism comes into

action, thereby increasing the neuron clock frequency,

which increases the firing rate.

3) Variable operating frequency: If DPR-based tuning

scheme is employed, the various components of the sys-

tem operate at different clock frequencies. For example,

if the global clock frequency of the system is 20M H z,

the neurons in the system operate at a pre-specified

frequency up to 20M H z. In this work, the global clock

to the system is designed using a PLL macro and the

neuron clock generator is an MMCM module.

A. The Proposed Methodology of Neuronal Self Tuning

This work establishes self-tuning of neurons in two

ways (a) using threshold voltage adjustment of the neuron,

and (b) dynamic reconfiguration of neuron clock generator.

The operation of the proposed system can be summarized

as follows: All synapses associated with a neuron inject a

constant amount of current (Iin j : +I or −I) to the neuron.

Based on the probabilistic nature of the synapse, the total

current injected to the neuron varies with time. Considering

a time slot for observation, the maximum current injected

to the neuron remains constant in the absence of synaptic

faults or obstacles. In the case of synaptic failures/obstacles,

the maximum current injected to the neuron diminishes. All

neurons in the system monitor the maximum current injected

for a duration �t . Based on this observation, the neurons

decides whether or not to self-tune its intrinsic parameters.

If the maximum current injected during a time slot of �ti
is higher than or lower than the previous time slot �ti−1,

the neuron generates necessary signals to the neuron control

unit to modify the threshold voltage or clock frequency of the

neuron. This allows the neuron to maintain a constant firing

rate even if the total injected current reduces due to synaptic

failures. Additionally, this helps to maintain a stable firing rate

until the obstacle is 2.5 m away from the robot, followed by

a smooth reduction in firing rate (which is the more desirable

behavior).

Fig. 2. Illustration of proposed self-tuning methodology (A) The
maximum injected current falls at a time slot �t under one of the current
band Ii − I j . The current falling in each current band are mapped to
corresponding operating frequencies of the neural clock. As the maximum
injected current falls in higher order bands, corresponding mapped threshold
voltage/operating frequency of the neuron decreases. (B) The neuronal self-
tuning is performed following three phases, namely, (1) monitoring the
maximum current injected to the neuron and making a decision based on
observed maximum current, (2) modeling of tuning parameters (intrinsic
parameters), and (3) performing tuning.

The choice of time slot �t is decided based on two

measures: (1) How fast is it required to establish a repair?

If the neuron could determine the maximum current in a

shorter duration a faster repair is possible. (2) Secondly,

due to the random nature of synaptic fault and obstacles,

the total current injected to a neuron at an observation slot

may vary. This might trigger accidental tuning of neuron

intrinsic parameters. This may not be an issue for the threshold

voltage adjustment scheme, but is a concern for the DPR based

tuning scheme and may cause unstable operations. Although

no studies discuss the power consumed by an FPGA clock

management unit during a DPR, it is widely accepted that

DPR is a power consuming operation and should be avoided

if unnecessary [37]. Considering low power applications, it is

advisable to prevent unnecessary DPR and hence we provide

a sufficient duration (2µs in our experiments) to monitor the

maximum current injected to the neuron.

The self-repairing hardware paradigm presented in Figure. 2

shows three phases of the hardware cycle required to per-

form neuronal self-tuning. The first phase is the learning

and decision-making phase. The neuron learns the maximum

current injected into it. To illustrate the self-tuning concept we

first consider the case where x out of 100 synapses associated

with neuron N1 are faulty. The maximum current that can

flow to neuron N1 at any time during the existence of a fault

is (100−x)Iin j . The neuron monitors the total injected current

to obtain a baseline measurement. Based on the maximum

injected current, the neuron makes a decision whether or not

to undergo a threshold voltage/operating frequency change.

If the maximum injected current in slot �ti varies from that

in slot �ti−1, a change in neuron intrinsic parameters is

triggered. In the case of threshold voltage adjustment scheme,

the neuron lowers the threshold voltage if the total injected

current is decreased whereas, for frequency based tuning,

operating frequency of neuron is increased. The details and

range of tuning parameters for threshold voltage adjustment

scheme are discussed in Section IV-C.
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For DPR based clocking scheme, a frequency increase is

desired and the neuron formalizes the MMCM tuning para-

meters. The details and range of tuning parameters for neuron

clock frequency adjustment are discussed in Section IV-B. The

final phase is to perform threshold voltage adjustment or DPR.

The neuron writes the new V th value to the neuron threshold

voltage input or DPR parameters on the Dynamic Reconfig-

uration Port (DRP) ports. This configures a new threshold

voltage on the neuron or initiates a DPR at its associated

clock management unit. Note: the proposed schemes of neuron

tuning (threshold voltage or DPR based) works independently

and only one or the other is used (not both).

B. Self-Tuning Based on DPR of Neuronal Clocks

DPR in clock management tiles of the FPGA provides

a way for generating custom clocks on the fly depending

on the requirements of applications. The usual techniques

to generate such custom clocks is to use clock generation

circuitry such as the Phase Locked Loop (PLL) module or the

Mixed-Mode Clock Manager (MMCM) module [38], [39].

The MMCM (or PLL) module is enabled in the Clock Man-

agement Tiles (CMTs) of the FPGA. This approach of DPR

of clocking circuits is found to be useful in applications such

as dynamic power management, software defined radios and

random number generation [40]–[42]. We denote FC L K I N

the input clock signal to the MMCM and FC L K F X the

corresponding synthesized clock signal. We further define two

major attributes of the MMCM module - C L K F X MU LT I P LY

attribute with value M and C L K F X DI V I DE an attribute with

value D. The relation between the input and output clock

signals is given by Eq. (3).

FC L K F X = FC L K I N ×
M

D
(3)

The DPR capability of the FPGA allows modification of the

M and D values during runtime to synthesize different clock

frequencies. An MMCM controller generates the necessary

control signals for the DRP ports of the MMCM module to

write the target M and D values, which are passed on via the

data input bus. The possible ranges for M and D are specific to

the FPGA family used. FC L K I N is designed to be 20M H z in

our implementation. The tunable neurons in the system operate

in the range 10M H z − 20M H z and all other modules work

at 20M H z clock frequency.

The total current injected to a neuron will fall into different

current bands depending on the number of synaptic inputs.

Based on the number of bands, the mapping from maximum

injected current to the specific operating frequencies can be

established. We illustrate the proposed idea by dividing the

input current into seven bands. Based on the experimen-

tal observation, we have determined the required operating

frequencies of the neuron in the presence of various fault

percentages. This is depicted in Table I.

In reference to the degree of faults, the neuron

increase/decrease its clock frequency and hence establishes a

constant firing rate. Considering the modeling parameters and

Eq. (3), we get frequencies of 10M H z to 17M H z for different

current bands.

TABLE I

CURRENT BANDS TO CLOCK FREQUENCY MAPPING FOR NEURONAL

SELF TUNING: VALUES DESIGNED EMPIRICALLY

TABLE II

CURRENT BANDS TO THRESHOLD VOLTAGE MAPPING FOR NEURONAL

SELF TUNING: VALUES DESIGNED EMPIRICALLY

C. Self-Tuning Based on Threshold Voltage Adjustment

Although DPR based clock frequency synthesis works for

a wide range of values (7 series Xilinx FPGAs support

fractional (non-integer) multiplication and division parameters

for the clock synthesis) [38], [39], they are not suitable for

large-scale implementation. Each 7 series Xilinx FPGA has

up to 24 Clock management Tiles (CMTs), each consisting of

one MMCM and one PLL module. Hence we have a total of

48 dynamically reconfigurable clock management units which

impose a bottleneck on the number of tunable neurons. Hence,

to overcome this issue we have come up with the idea of a

tunable threshold voltage scheme in the neurons.

We define a standard threshold voltage (Vsth) of 15mV

in our design. The relation between the standard threshold

voltage and the instantaneous threshold voltage Vth of the

neuron is given by Eq. (4).

Vth = Vsth × R (4)

where R is a rational number. The maximum injected current

falls at a time slot �t under one of the current band Ii − I j .

Based on the current bands a new Vth is calculated during

the tuning phase. This is provided to the neuron threshold

input, thereby creating a time-varying value for the thresh-

old voltage. This value is updated at each time slot in

a 32-bit register holding the neuron threshold membrane

potential. We illustrate the proposed idea by dividing the input

current into seven bands. Based on experimental observation,

we have determined the required threshold voltage of the

neuron in the presence of various fault percentages. This is

depicted in Table II.

Fine tuning of the frequency or the voltage is not necessary

for establishing the homeostatic behavior. The usage of a

smooth function alters the threshold voltage or clock frequency
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Fig. 3. Complete circuitry of the robotic controller implemented on the FPGA The neurons F ,R,L and Rev corresponds to neurons driving motors for
forward, right, left and reverse directions of the robotic car respectively. N1, N2 and N3 are interneuron. E X represents excitatory synapses and I N corresponds
to inhibitory synapses. The controller priorities movements in direction in order of preference: Forward > Right > Lef t > Reverse. Inhibition acts to
suppress movements in directions of lower priority. (Tuning blocks are not shown in figure.)

at every small change of the input current to the neuron.

This leads to unnecessary switching power. Additionally, for

DPR based schemes, the smooth function would lead to greater

number of DPR to happen and should be eliminated (DPR is

treated as a power hungry operation). Fine-grained updates

of neuron parameters would also cause delays in the system.

Hence in our implementation, we divided the total injected

currents into a few manageable bands. The band structure

is derived empirically, to provide a smooth spiking behavior.

Fundamentally, this enables the control of the level of power

dissipation in hardware.

V. ARCHITECTURES FOR ROBOTIC CONTROLLER

ESTABLISHING OBSTACLE AVOIDANCE

The main aim of the proposed work is to implement fault

tolerant behavior of SNN in hardware. Once this is established

successfully, we apply the concept to a real-world task. The

emphasis of the selected application was on the fault recovery

aspect rather than establishing an obstacle avoidance task.

Advantages are the inherent fine-grained (distributed) repair

mechanism incorporated at level of individual synaptic inputs.

The proposed homeostatic SNN system implemented on an

FPGA performs an obstacle avoidance task. The architecture is

tested with a range of obstacle conditions and faulty synapses.

The homeostasis and fault tolerance is demonstrated in two

architectures. The complete architecture incorporates the fea-

tures of homeostasis and inhibitory interneurons to design

a robotic controller paying attention to biological features.

The reduced architecture is a simplification of the complete

architecture by incorporating certain observations leading to a

reduction in hardware overhead, power and delay features on

the FPGA.

A. Complete Architecture of the Robotic Controller

Establishing Obstacle Avoidance

Figure. 3 represents the complete architecture implemented

on an FPGA establishing the obstacle avoidance task. The

system consists of 4 motor neurons F (Forward), R (Right),

L (Left) and Rev (Reverse) generating spike trains for motor

movements in the forward, right, left and reverse directions

respectively. Each of the motor neurons receives 60 excitatory

inputs according to the distance from the obstacle. All of the

excitatory inputs to the neuron being low represent a close

encounter with the obstacle and all of them being high indi-

cates no obstacle in the path for a distance of 10 meters. In the

former case, the neuron spikes at a rate of 250spikes/10us,

and in the later case, we have a spike rate of 0. The speed of

the wheel is directly proportional to the activity of the motor

neuron, allowing movement in the absence of an obstacle.

In addition to the motor neuron, the system consists of three

inhibitory interneurons (N1,N2 and N3) establishing inhibition

in the directions of lower priority. The inhibitory neurons

are connected to the respective motor neurons by a set of

40 inhibitory synapses. The inhibitory neurons are connected

with their pre-synaptic neuron using excitatory synapses. For

example, the motor neuron F forms an excitatory synap-

tic connection with the inhibitory neuron N1. N1 forms

inhibitory synaptic interconnections with motor neurons R,

L and Rev, thereby inhibiting right, left and reverse move-

ments in the absence of an obstacle in the forward direc-

tion. Similarly, motor neuron R inhibit movements in left
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Fig. 4. Reduced architecture of the robotic controller implemented on the FPGA The neuron F ,R,L and Rev correspond to motor neurons driving
motors on forward, right, left and reverse directions of the robotic car respectively. The motors neurons directly inhibit their predecessor neurons. For example
neuron F inhibits R, L and Rev neurons. (Tuning blocks are not shown in figure.)

and reverse directions through interneuron N2 if there is

no obstacle in the right direction. This topology follows all

motor neurons in order of priority. In our experiment forward

direction has the highest priority and the reverse direction has

the lowest priority–(Forward > Right > Le f t > Reverse).

B. Reduced Architecture Establishing

Obstacle Avoidance Task

In general, neurons use either excitatory or inhibitory neu-

rotransmitter to communicate with their target neuron, i.e.

they are either glutamatergic or GABAergic, respectively.

As opposed to this observation, some neurons have been found

to produce both type of neurotransmitters (excitatory and

inhibitory) depending on their target regions or neurons. Some

neurotransmitters can cause both excitatory and inhibitory

behavior (acetylcholine and dopamine) [43], [44] . For hard-

ware, we try to utilize this fact in reducing the implementation

overhead. Based on this observation, although motor neurons

are generally excitatory, we combine inhibitory behavior to

this thereby avoiding the role of inhibitory interneuron. Thus,

in the reduced architecture, the motor neurons directly inhibit

the movements in directions of lower priority.

Another important reduction comes from the fact that we

design a shared synaptic approach. Dendrites of a neuron

receive inputs from multiple neurons [36], [45]. Hence we

incorporate this observation using a single synapse which

processes all inputs to a neuron. All the inhibitory impulses

are obtained through the same set of synapses. For example,

the neuron ’Rev’ gets inhibitory impulses from ‘L’, ‘R’ and

‘F’ neurons through the same set of synapses (We use a digital

OR gate for this purpose).

Finally, the set of 40 inhibitory synapses is replaced by a

single large synapse, which injects the same current as would

be provided by 40 separate synapses. This reduction gives a

more compact design, but a trade off may be reduced fault

tolerance. The reduced architecture incorporating these three

observations are presented in Figure. 4.

Although the same task is achievable by both the complete

and reduced schemes, the presence of higher number of

synapses increases the capability of repair. In the reduced

scheme, if the single inhibitory synapse is faulty, there is

no room for inhibition of movements in undesired directions,

and the system will fail. For environments which do not

possess serious faults in the system, the proposed scheme

of reduced inhibitory synapses can be used. The count of

excitatory and inhibitory synapses are selected based on the

requirement of the environment in which the robot car is to

be employed. Higher the synapses, higher is the reliability to

faults, but the cost is in hardware consumption. Hence there

is a trade-off between fault-tolerance and hardware overhead.

Therefore for more challenging environments such as space,

we can include additional synapses with extra hardware area

but with the capacity to have a higher tolerance to faults. This

suits such cases as it is not possible to replace such systems

once deployed. So hardware cost becomes less important and

reliability a higher priority.

VI. EXPERIMENTAL RESULTS

The proposed architecture of neuron self-tuning for a robotic

controller was implemented in Xilinx ISE 14.7 and simulated

using the Xilinx Isim simulator. The system is benchmarked

against a fault-free controller implemented on the FPGA.

We deliberately induced faults in the system to establish the

concept of fault recovery. In presence of faults of various

grades, the proposed system could successfully establish fault-

free behavior using the proposed neuronal self-tuning concept.

A. Homeostatic Regulation

Figure. 5 shows the homeostatic regulation of firing rate.

We consider the case (initial state) in which the Right and

Left directions are free of an obstacle. Then, the synapses

associated with Right direction are made faulty by introducing

faults ranging 0 to 100%. This leads to a reduction in current

associated with Right neuron and the current band changes
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Fig. 5. Illustration of proposed homeostatic regulation (A) Performance of Right neuron (B) Performance of Left neuron. Note: Results shown are for
threshold voltage based tuning. Similar results are achievable for DPR based tuning.

to establish homeostasis. During this experiment, we consider

the left direction to be free of an obstacle. The system could

achieve a constant rate up to 75% degradation in the synaptic

input. Thereafter, the forward neuron spike rate degrades and

that of the left neuron improves. We can see that in the

presence of neuron tuning (red), in the presence of faults, firing

rate is recovering thereby establishing intrinsic homeostasis.

In the absence of neuron tuning (blue), the neuron performance

degrades at a faster rate. The curve plotted in Red is rapid

compared to the one in Blue. This means that the tuned

behavior helps a sharper transition from one state to another,

while a robot moves in the field. The detection of obstacle

happens from a distance but the movement is stopped only

when the robot reaches 2.5 meters close to the obstacle.

(25% close to the obstacle. The range of the robot is con-

sidered as 10m.). The spikes in the right direction are lower

than the desired rate of 250 spikes/100µs, when the obstacle

is 25% close to the robot (similar to the case when a fault is

higher than 75%). Once the firing rate reduces considerably,

the left motor neuron starts to fire as shown in Figure. 5-B.

The rise in firing rate of the left neuron is also controlled

in the presence of neuron tuning. Hence we observe the left

neuron firing only if there is a sufficiently large fault in the

right neuron.

This is similar to a condition in which the robot approaches

an obstacle on the right, whereas no obstacle is present on the

left. The right motor neuron should cease to fire and the left

motor neuron should increase firing. The presence of neuron

self-tuning smoothes out this process.

B. Robotic Controller Implemented on FPGA Achieving
Obstacle Avoidance task

The robotic controller would detect the trigger for a par-

ticular direction if spike rate is 300 spikes/100µs for the

DPR based scheme (250 spikes/100µs for the threshold

voltage based scheme). In our experiments, we tested multiple

combinations of obstacles in different positions of the robotic

field. In Figure. 6, the movements of four motor neurons

employing DPR based neuron tuning is projected. The usage

of four bits in the paper does not mean that only four bits in

representing the obstacle presence/absence in the FPGA imple-

mentation. The presentation of ‘1000’ in the paper means the

condition in which the robot started from no obstacle to a

state of an obstacle in close proximity in the forward direction.

All the 16 states depicted in Figure. 6 shows the position of

robot movement robot movement from a state of no obstacle in

all directions to the state shown in the figure. That is ‘0000’

means 0 (60 bit long) applied to synapses of the Forward,

Right, Left and Reverse neuron. This indicates the field is free

of an obstacle for 10m in all directions. The presentation of

‘1000’ means that all the forward synapses have applied a logic

one. This is a short representation of the final state of the robot

synapses. The first one in‘1000’ indicates a transition from 0

to ‘all ones’ for synapses associated with the Forward neuron,

through all intermediate transitions. The remaining zeros indi-

cate no transition(0)in Right, Left or Reverse direction. Hence

the spikes on motor neuron ‘R’ increases leading to a right

movement. The encoding ‘1110’ corresponds to a movement

from a field of no obstacle to a close encounter of an obstacle
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Fig. 6. Illustration of proposed obstacle avoidance task with neuronal self tuning through DPR of neuron clock (A) Performance of Forward
neuron (B) Performance of Right neuron (C) Performance of Left neuron (D) Performance of Reverse neuron. The vertical line on top of the figure indicate
transition between different combinations of obstacles.

on the forward, right and left direction, leading to a reverse

movement in the robot car.

The spike outputs from the motor neurons are used to con-

trol the motors of the robot. We observe that the frequency of

the neuron spikes is not fixed and has fluctuations. A moving

mean algorithm can be used to smooth out the short-term

frequency fluctuations and highlight longer trends [8]. This

is given by Eq. (5).

f ′
=

1

n

∑

i=0

n−1
fm−i (5)

where f ′ is the average frequency which is used to control the

robot motor, m is the current time point, n is the size of the

neuron frequency subset, and fm−i is the neuron frequency at

the time point of (m − i).

Figure. 7 depicts the movements of four motor neurons

employing threshold voltage based neuron tuning. The plots

have a similar meaning as in Figure. 6. The plots in Figure.6

and Figure. 7 represent the raw spike data before averaging

Eq. (5) is applied. The averaging would further smooth out the

process. The motor directions are chosen based on majority

decision. We can see that the fluctuations while establishing

homeostasis are lesser in threshold voltage based neuron tun-

ing than the DPR based scheme, proving to be a more efficient

strategy. The DPR based scheme is designed to establish

homeostasis (on the dominating neuron) by delivering spikes

with a rate of 300spikes/100µS. Any glitches occurring while

establishing this rate is treated as ‘fluctuations while estab-

lishing homeostasis’. For the threshold voltage based scheme,

the homeostasis is achieved on the dominating direction when

the spike rate is 250spikes/100µS. Any glitches occurring

while establishing this rate for the threshold voltage based

scheme is referred to as ‘fluctuations while establishing home-

ostasis’. The spike rate for achieving homeostasis are selected

randomly. On comparing Figure. 6 and Figure. 7, We could see

more fluctuations on the dominating neurons in Figure. 6 than

Figure. 7. (For case 0111, the dominating neuron is Forward

neuron which has some fluctuations in Figure. 6 but is smooth

in Figure. 7).

The spikes present (Figure. 7) for the condition ‘0000’

for the Right neuron, does not mean the tendency to lean

towards the right. These spikes are sparse and hence these
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Fig. 7. Illustration of proposed obstacle avoidance task with neuronal self tuning through threshold voltage adjustment of neuron (A) Performance
of forward neuron (B) Performance of right neuron (C) Performance of left neuron (D) Performance of reverse neuron. The vertical line on top of the
figure indicate transition between different combinations of obstacles.

stochastic behavior are insufficient to control the movements

to the Right. We see some unwanted spikes in directions of less

priority. The glitches are not completely removed in our work

in order to encourage spontaneous activity in the network.

The glitches in the undesired directions can be completely

eliminated by increasing inhibitory synapse count. But, this is

not a necessary requirement due to the fact listed in the above

statement. In our application, we have used 40 synapses as

inhibitory.

As described in Section IV, the transition from one stage

to another is decided based on the maximum current injected

to the neuron. In our experiment, this is performed in 2µs.

Once the change in the band is detected, for threshold voltage

adjustment scheme, the threshold voltage is updated in one

single clock cycle. For DPR based scheme, a small dura-

tion (order of µs) is required before switching to the higher

desired band frequency. Hence in both the schemes, the neuron

tuning happens in µs, making the system highly responsive

in detecting the changes in the environment due to obstacles.

In real world applications, the obstacles approaching the robot

at this faster rate is quite unusual.

C. Statistical Comparison of Complete

and Reduced Architecture

In our experiments, we tried multiple combinations of

obstacles in different positions of the robotic field ranging

from the encoding ‘0000’ to ‘1111’ for the complete model

and the reduced model of robotic controller. A statistical test

was performed on the spike trains generated by the two models

subjected to the same input field condition. Table III shows

the result of average spiking activity in the four directions of

movement. We found the percentage change in average firing

activity of the two models subjected to the same test condition.

The results are close to the ‘0’ indicating the samples to be

statistically indistinguishable.

D. Hardware Results on Xilinx Artix-7 FPGA

The proposed methodology is implemented on the Xilinx

Artix-7 FPGA board. Recovery of firing rates in the proposed

methodology, implemented on the FPGA is monitored using

the Xilinx ChipScope Pro analyzer. Power estimation of the cir-

cuits was carried out using Xilinx XPower Analyzer and delay

estimation using Xilinx Timing Analyzer. Table IV reports the
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TABLE III

STATISTICAL COMPARISON OF FIRING ACTIVITY OF

COMPLETE AND REDUCED ARCHITECTURE

TABLE IV

HARDWARE OVERHEAD OF THE COMPLETE

ROBOTIC CONTROLLER ARCHITECTURE

TABLE V

TOTAL ON-CHIP POWER AND MAXIMUM OPERATING FREQUENCY

hardware resource footprint of the proposed models. Estimated

total on-chip power dissipation and the maximum operating

frequency of the overall proposed architectures is shown

in Table V. As evident from these reports, the proposed

neuronal tunability for homeostatic regulation of firing rate

of the robotic controller can be implemented with reduced

hardware overhead and power consumption.

VII. CONCLUSION

In this paper, we discussed three novelties. Firstly, we built a

homeostatic fault tolerant bio-inspired architecture for spiking

neural networks. We explored two methods for incorporating

fault tolerant homeostasis into a system. The proposed system

is adaptive to the changes in the system and does not require

dedicated units for detection and correction. Even if some of

the inputs are faulty, the system could establish the task by

enhancing the neuron features using the signals delivered by

the fault free interconnects. Secondly, the proposed idea is

demonstrated on an FPGA mapped with a robotic controller

application. Finally, we created a reduced model of the archi-

tecture establishing the same task. The robot would move

smoothly if the neuron inputs are at least 25% of the normal

signal. This is incorporated to avoid unusual behavior while

establishing movement in any direction and would take care of

noise equivalent to 75% reduction in synaptic input. Hence,

the system would work over a broad range of input values.

But the presence of obstacle and noise (together) would def-

initely fasten the transition and requires much more research

effort in investigating this complex behavior. We may require

improvements in the above architecture if the noise levels

are extremely high. We are currently working on real robot

implementation of FPGA based SNN which could analyze

the presence of noisy sensor data and is treated as a future

work. Inspirations derived from different biological processes

are incorporated in building this architecture. The proposed

design is appropriate for FPGA-based applications running in

environments that induce faults in systems, where reliability

is a critical factor. The work presented represents an initial

step towards a new form of fault tolerant designs, with low

overhead and high performance.
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