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Abstract—Fault tolerance is a remarkable feature of biolog-
ical systems and their self-repair capability influence modern
electronic systems. In this paper, we propose a novel plastic
neural network model, which establishes homeostasis in a spiking
neural network. Combined with this plasticity and the inspira-
tion from inhibitory interneurons, we develop a fault-resilient
robotic controller implemented on an FPGA establishing obstacle
avoidance task. We demonstrate the proposed methodology on
a spiking neural network implemented on Xilinx Artix-7 FPGA.
The system is able to maintain stable firing (tolerance £10%)
with a loss of up to 75% of the original synaptic inputs
to a neuron. Our repair mechanism has minimal hardware
overhead with a tuning circuit (repair unit) which consumes
only three slices/neuron for implementing a threshold voltage-
based homeostatic fault-tolerant unit. The overall architecture
has a minimal impact on power consumption and, therefore,
supports scalable implementations. This paper opens a novel way
of implementing the behavior of natural fault tolerant system in
hardware establishing homeostatic self-repair behavior.

Index Terms— Self-repair, homeostasis, fault tolerance, FPGA,
dynamic partial reconfiguration, bio-inspired engineering,
mixed-mode clock manager, phase locked loop.

I. INTRODUCTION

IO-INSPIRED solutions are playing an important role in

solving real-world engineering problems [1]. Healing is a
remarkable feature of the brain which leads to the restoration
of cognitive function following stroke or injury. Additionally,
the human brain is continuously undergoing modifications
to adapt to changes in its environment [2]. This follows
from the fact that the brain is capable of assessing its own
activity levels and performing adjustments to maintain a stable
operation. This work is based on the inspiration derived from
robust biological systems, which can detect and correct errors.
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Homeostasis is a property of a system to maintain relatively
stable equilibrium when subjected to continuous change. The
mechanisms that monitor excitation and maintain the func-
tional properties of neurons are by definition homeostatic [3].
Homeostasis can be established in two ways: one in which
neurons alter their intrinsic electrical properties and the other
by modifying synaptic properties to maintain a target level of
electrical activity. Recent work has shown that destabilizing
influences (e.g. decaying synapses) are counterbalanced by
homeostatic plasticity mechanisms that act to stabilize neural
and circuit activity [3], [4]. Synapses connecting between
neurons are the most vital information processing unit in
an Artificial Neural Network (ANN) system [5]. Any faulty
behavior in synapses affects the performance of the entire
system. Hence this work considers hardware failures targeting
synapses of a neuromorphic system implemented on an FPGA.
Specifically, we consider a scenario in which a neuron tries to
establish homeostasis in the presence of synaptic failures by
altering the intrinsic electrical properties. The inbuilt nature
of the system also helps in addressing problems of sensor
failures.

There are many sources of errors in electronic systems
including single and multiple event upsets, aging faults, power
supply fluctuations, thermal instabilities, metal migration, hot
carrier injection, and oxide breakdowns which are becoming
very common in electronics systems [6]. These may lead
to soft and/or hard errors in the systems. As feature size
and operating conditions are scaled down, the sensitivity
of electronic devices to radiation at ground levels has also
increased [7].

Spiking neurons are core components of many computa-
tional models of the brain that aim to improve understanding
of brain function and hence its fault tolerance is of utmost
importance. So, in this work, we propose a novel way to
achieve fault tolerance in Spiking Neural Network (SNN)
implementation on FPGA. In SNNs, communication, and
computation happen by an exchange of spatiotemporal patterns
encoded as spikes as in biological neurons. Various researchers
have demonstrated fault tolerance in SNN hardware imple-
mentations [8]-[10]. Compared to these works, the work
proposed in this paper demonstrates higher fault tolerance and
the methodology is feasible in the presence of at least one
healthy synapse.

In biological systems, independent units perform computa-
tion in parallel. For real world applications, this parallelism
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can be exploited to perform tasks orders of magnitude
faster than in software and hence we consider hardware
implementation of SNNs. In this work, we use FPGAs to
demonstrate fault tolerance inherent in SNNs, because they
combine computing capability, logic resources and memory
capacity in a single device. The potential of fault tolerance in
FPGA-based SNN networks has been identified in some of
the recent works [11], [12]. FPGA allows neural networks
to be evolved on hardware and new topologies/networks
executed faster [13]. In this paper, we focus on neural networks
implemented on Static Random Access Memory (SRAM)-
based FPGA since it is the most commonly used reconfig-
urable platform. SRAM-based FPGAs are particularly prone
to Single Event Upsets (SEUs) [14]. This creates an issue
for dependability for safety critical applications. Emerging
technologies for hardware implementations such as memristor
technology in FPGA like devices [15] are a promising solution
for future implementations. Memristors allow mapping of
a high-density integrated circuit with clock speeds in the
gigahertz range. A single memristor can perform functions of
multiple transistors, leading to the fabrication of a powerful
computer. Memristor is an attractive alternative to SRAMs
and flash storage. Memristor-based neural networks have been
reported in some of the recent researches [16]-[18]. Logic
circuits based on magnetic RAM (MRAM) can be an energy-
efficient replacement for SRAM-based FPGAs [19]. They offer
zero leakage and CMOS compatibilities.

In this work, we demonstrate homeostatic fault tolerance in
SNN implemented on an FPGA using (a) neuronal threshold
voltage adjustment, and (b) Dynamic Partial Reconfigura-
tion (DPR) of neuronal clocking schemes. This work considers
faults as a condition that results in a silent or near silent neuron
caused by low transmission probability (PR) of a synapse.
A neuron is a representation of a node in a system. Near
silent neuron presents a weak node in the system. The issues
might be hardware failures in the system. The proposed work
is a solution for all kinds of faults leading to failures in the
interconnections of the node (neuron). These may be sensor
failures, SEUs, stuck-at fault, interconnect fracture, noise, etc.

Faults in synapses that lead to reduced transmission prob-
ability may be due to an external cause such as sensor fail-
ures or internal faults such as SEUs in synaptic connections.
Repair is the ability of the system to restore firing rates.
The idea we propose is to use variable threshold voltage
adjustments for the neuron to handle low transmissions.
DPR is an FPGA-specific technological advancement which
aims at modifying the existing circuit mapped on the FPGA
without needing to turn off the circuit functioning in other
parts of the FPGA. Various works have demonstrated the
possibility of fault tolerance in FPGAs via DPR [20], [21].
We use Dynamic clock alteration, a variant of classical
DPR technique to establish the homeostatic repair in the
presence of faulty synapses. The proposed mechanisms modify
the threshold voltage or clock rate for the faulty neurons
to effectively restore the firing rate to the original value.
Additionally, this work compares the two approaches.

In many mobile robot navigation applications, one of the
primary tasks is to avoid obstacles. The work demonstrates
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the effectiveness of the proposed bio-inspired homeostasis of
SNN implemented on FPGA in achieving a robust obstacle
avoiding robotic task. This obstacle avoiding robotic controller
is designed with the help of homeostatic fault tolerance com-
bined with and synaptic excitatory and inhibitory plasticity.
We provide a complete architecture establishing homeostasis
in an FPGA-based robotic controller having movements in
‘Forward’, ‘Right’, ‘Left’ and ‘Reverse’ directions. We also
propose an area-reduced model of the robotic car controller
establishing the same task. The equivalence between the two
models is demonstrated.

The rest of the paper is organized as follows. Section II
describes the background and motivation. Section III discusses
the basic building block of the bio-inspired architecture.
Section IV presents the proposed idea of neuronal self-tuning
for homeostatic regulation of firing rates. Section V describes
the two architectures of the robotic controller establishing
obstacle avoidance task. Section VI presents experimental
results establishing the effectiveness of the proposed schemes.
Finally, conclusions are derived in Section VII.

II. BACKGROUND AND MOTIVATION

A Spiking Neural Network (SNN) is a typical bio-inspired
neural network that performs information transfer based on
discrete-time spikes. When an SNN neuron receives an input
spike, its membrane potential increases slowly and gradu-
ally drops due to leakage of ion channels. When multiple
input spikes are received in rapid succession, the membrane
potential may increase and reach a specific value (threshold),
and the neuron fires a spike. There are multiple possible
levels of abstraction for SNN modeling. Hodgkin-Huxley
model [22] is the most biologically realistic neuron model.
Other models include Quadratic Integrate and Fire (QIF),
Exponential Integrate and Fire (EIF) [23], Izhikevich [24],
FitzZHugh-Nagumo [25], Hindmarsh-Rose [26] and Integrate
and Fire (IF) model [27]. The Leaky Integrate and Fire (LIF)
model, a variation of IF model is a simplified model of a
biological neuron widely used in neuromorphic computing.
It represents a good trade-off between computational complex-
ity and biological realization. We use a LIF [28] model for
representing the neurons in the network. This representation
of a LIF neuron is shown in Eq. (1).

Tmem% =—o(t) + Rmemzmlsynl(t) (D

i=1

where Iyyn, Rinem, Vins Tmem, v, and V, are current injected
by a synapse, membrane resistance, threshold voltage, time
constant, membrane potential, and resting membrane poten-
tial respectively. Typical values are Iy, = 20nA, Ryem =
IMQ, Vi, = 15mV, tyem = 10ms, V. = Ov. m represents the
number of synapses associated with a neuron. On reaching the
threshold voltage, the membrane potential is brought back and
held at OV following a nominal refractory period (A ps = 2
clock cycles). The expression is evaluated using Euler method
of integration with a fixed time step of Ar = 270 (an
approximation for 1 ms). Considering the above parameters
and a constant input current, solution for the above equation
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turns to be:

v(t) = Ryem X< I[1 — exp(— )] 2)

Tmem

The asymptotic value of the membrane potential is
Rpyem x I. If this value is less than the spiking thresh-
old, V;;, no spike can be generated. If Ryem X I > Vip,
the neuron fires. The typical value of membrane resistance
falls in the range of MQ, hence we fixed this to be 1MQ.
Additionally, the threshold voltage is selected to be 15mV,
leading to the value of I;y,. The parameters are derived
by considering [8], [29]. SNN projects the mechanism of
the brain based on massively parallel arrays of neurons.
Hence to mimic the brain-like functionality, it is advisable to
implement the spiking neural network in hardware as it takes
advantage of inherent parallelism and very high execution
speed. In this work, the proposed methodology superimposed
on an obstacle avoiding robotic controller is implemented on
an FPGA.

Homeostatic plasticity is a mechanism which regulates
average activity in neural networks. Activity levels in nervous
system rely on many factors including various plasticity mech-
anisms, environmental variations, and developmental changes.
Homeostatic plasticity is a biological process in neurons that
serves to compensate for such disruptions. Researchers have
distinguished the effects of homeostatic regulations in many
species including neuronal cultures [30], [31] and organotypic
cultures [32], [33]. These studies provide evidence that intrin-
sic properties of the system are subject to activity-dependent
regulation that maintains an average electrical activity. Various
models of intrinsic homeostatic plasticity have also been
developed. It was proposed that neurons have a built-in sensor
mechanism that monitors electrical activity and adjusts con-
ductance densities to maintain a specific activity level [34].
In this work, we propose precisely, such an intrinsic home-
ostatic mechanism in hardware where a neuron monitors its
input activities and switches between predetermined intrinsic
parameters. To the best of our knowledge, this is the first
attempt to establish intrinsic homeostasis in hardware using
an SNN model.

Together with the motivation from the intrinsic homeo-
static mechanism, the proposed hardware architecture draws
inspiration from the behavior of interneurons. Interneurons
are a vital component in a neuron system which plays an
important role between sensory and motor neurons. This work
specifically targets inhibitory interneurons. In a biological
system, inhibitory neuron release neurotransmitters (glycine
and GABA) that bind to the corresponding receptors in the
postsynaptic neurons and triggers a negative change in the
membrane potential. When a muscle spindle is stretched,
the antagonist muscle group must be inhibited to prevent it
from working against the resulting contraction of the homony-
mous muscle [35]. Inhibitory interneurons in the spinal cord
aids in establishing this task. In this work, we derive the
working of inhibitory interneurons for establishing inhibitions
in directions requiring less activity for establishing obstacle
avoidance task.
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Fig. 1. Basic Building Block of the Robotic Controller Neuron N
receives n excitatory synaptic inputs representing distance from the obstacle.
Additionally, m inhibitory synaptic inputs are also received from the inter
neurons. Two tuning circuitries (T-1 (EX) and T-2 (IN)) establish homeostasis
and fault tolerance.

III. THE BASIC BUILDING BLOCK

The basic unit of a robotic controller architecture is shown
in Figure. 1. The architecture consists of a neuron (N1),
associated with a set of n excitatory synapses (EX) and
m inhibitory synapse (IN) (n = 60 and m = 40 in our
experiments). The excitatory synapses receive readings from
the sensor corresponding to the distance from the obstacle
(6bit data). The robotic field is a (10 x 10 meter) square
arena (can be varied). This distance (10 meters) is divided
into 60 steps as the robot moves. The distance is mapped in
binary where each step of the robot movement corresponds
to shifting a logic one to the distance vector. If the input to
a synapse is one, a Poisson spike train is provided to the
synapse. Otherwise, the Poisson spike input to the synapse
is disabled. In our experiments, we used Poisson spike trains,
which on an average, produce one spike per 4 clock cycles.
If the synapse receives a spike from the Poisson generators,
after a short delay, the synapse outputs a constant current
of 20n A to the LIF neuron for a duration of one clock cycle.
The inhibitory synapses receive input from other neurons in the
system. If the inhibitory synapse receives a spike input from
a neuron, after a short delay, the synapse outputs a constant
current of —20nA to the LIF neuron for a duration of two
clock cycles. This difference in delay is added to incorporate
the difference in time constants of excitatory and inhibitory
synapses. Inhibitory synapses generally have a higher time
constant [36]. In addition to the above units, two tuning
units are provided in the system for establishing homeostasis
and fault tolerance. The tuning unit (T-1(EX)) monitors the
current injected from the excitatory synapses and modulates
neuron intrinsic parameters similar to the intrinsic homeostatic
mechanism in the biological system. Similarly, the tuning
unit (T-2(IN)) sits between the inhibitory synapses and the
neuron. More details of the proposed tuning units are described
in section IV. One aspect of our model is that it operates at
an accelerated biological time scale similar to that in [14].
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IV. NEURON NETWORK INCORPORATING SELF-TUNING

In principle, a neuron could establish a constant firing rate
through various mechanisms. This work achieves homeostatic
regulation of firing rates using self-tuning of intrinsic para-
meters (threshold voltage and neuron clock frequency). The
novelty lies in the following aspects:

1) Variable threshold voltage of neuron: The neurons
in the system operate with different threshold voltages.
For example, if the neuron has a reduction in spiking
activity, the homeostatic regulatory mechanism comes
into action, thereby lowering the threshold voltage of
the neuron, causing the firing rate to increase.

2) Dynamically tunable neurons: Neurons with
DPR-based tuning unit have the capability of self-
tuning their operating frequencies. This is established
using dynamic partial reconfiguration of Phase Locked
Loop (PLL) module or the Mixed-Mode Clock
Manager (MMCM) module in the FPGA. For example,
if the neuron has a reduction in spiking activity,
the homeostatic regulatory mechanism comes into
action, thereby increasing the neuron clock frequency,
which increases the firing rate.

3) Variable operating frequency: If DPR-based tuning
scheme is employed, the various components of the sys-
tem operate at different clock frequencies. For example,
if the global clock frequency of the system is 20M H z,
the neurons in the system operate at a pre-specified
frequency up to 20M H z. In this work, the global clock
to the system is designed using a PLL macro and the
neuron clock generator is an MMCM module.

A. The Proposed Methodology of Neuronal Self Tuning

This work establishes self-tuning of neurons in two
ways (a) using threshold voltage adjustment of the neuron,
and (b) dynamic reconfiguration of neuron clock generator.

The operation of the proposed system can be summarized
as follows: All synapses associated with a neuron inject a
constant amount of current (/;j: +I or —I) to the neuron.
Based on the probabilistic nature of the synapse, the total
current injected to the neuron varies with time. Considering
a time slot for observation, the maximum current injected
to the neuron remains constant in the absence of synaptic
faults or obstacles. In the case of synaptic failures/obstacles,
the maximum current injected to the neuron diminishes. All
neurons in the system monitor the maximum current injected
for a duration Af. Based on this observation, the neurons
decides whether or not to self-tune its intrinsic parameters.
If the maximum current injected during a time slot of Ag;
is higher than or lower than the previous time slot A#_j,
the neuron generates necessary signals to the neuron control
unit to modify the threshold voltage or clock frequency of the
neuron. This allows the neuron to maintain a constant firing
rate even if the total injected current reduces due to synaptic
failures. Additionally, this helps to maintain a stable firing rate
until the obstacle is 2.5 m away from the robot, followed by
a smooth reduction in firing rate (which is the more desirable
behavior).
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Fig. 2. Illustration of proposed self-tuning methodology (A) The

maximum injected current falls at a time slot A¢ under one of the current
band /; — I;. The current falling in each current band are mapped to
corresponding operating frequencies of the neural clock. As the maximum
injected current falls in higher order bands, corresponding mapped threshold
voltage/operating frequency of the neuron decreases. (B) The neuronal self-
tuning is performed following three phases, namely, (1) monitoring the
maximum current injected to the neuron and making a decision based on
observed maximum current, (2) modeling of tuning parameters (intrinsic
parameters), and (3) performing tuning.

The choice of time slot Ar is decided based on two
measures: (1) How fast is it required to establish a repair?
If the neuron could determine the maximum current in a
shorter duration a faster repair is possible. (2) Secondly,
due to the random nature of synaptic fault and obstacles,
the total current injected to a neuron at an observation slot
may vary. This might trigger accidental tuning of neuron
intrinsic parameters. This may not be an issue for the threshold
voltage adjustment scheme, but is a concern for the DPR based
tuning scheme and may cause unstable operations. Although
no studies discuss the power consumed by an FPGA clock
management unit during a DPR, it is widely accepted that
DPR is a power consuming operation and should be avoided
if unnecessary [37]. Considering low power applications, it is
advisable to prevent unnecessary DPR and hence we provide
a sufficient duration (2us in our experiments) to monitor the
maximum current injected to the neuron.

The self-repairing hardware paradigm presented in Figure. 2
shows three phases of the hardware cycle required to per-
form neuronal self-tuning. The first phase is the learning
and decision-making phase. The neuron learns the maximum
current injected into it. To illustrate the self-tuning concept we
first consider the case where x out of 100 synapses associated
with neuron N; are faulty. The maximum current that can
flow to neuron Nj at any time during the existence of a fault
is (100 —x)I;;. The neuron monitors the total injected current
to obtain a baseline measurement. Based on the maximum
injected current, the neuron makes a decision whether or not
to undergo a threshold voltage/operating frequency change.
If the maximum injected current in slot At#; varies from that
in slot At;_j, a change in neuron intrinsic parameters is
triggered. In the case of threshold voltage adjustment scheme,
the neuron lowers the threshold voltage if the total injected
current is decreased whereas, for frequency based tuning,
operating frequency of neuron is increased. The details and
range of tuning parameters for threshold voltage adjustment
scheme are discussed in Section I'V-C.
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For DPR based clocking scheme, a frequency increase is
desired and the neuron formalizes the MMCM tuning para-
meters. The details and range of tuning parameters for neuron
clock frequency adjustment are discussed in Section IV-B. The
final phase is to perform threshold voltage adjustment or DPR.
The neuron writes the new Vith value to the neuron threshold
voltage input or DPR parameters on the Dynamic Reconfig-
uration Port (DRP) ports. This configures a new threshold
voltage on the neuron or initiates a DPR at its associated
clock management unit. Note: the proposed schemes of neuron
tuning (threshold voltage or DPR based) works independently
and only one or the other is used (not both).

B. Self-Tuning Based on DPR of Neuronal Clocks

DPR in clock management tiles of the FPGA provides
a way for generating custom clocks on the fly depending
on the requirements of applications. The usual techniques
to generate such custom clocks is to use clock generation
circuitry such as the Phase Locked Loop (PLL) module or the
Mixed-Mode Clock Manager (MMCM) module [38], [39].
The MMCM (or PLL) module is enabled in the Clock Man-
agement Tiles (CMTs) of the FPGA. This approach of DPR
of clocking circuits is found to be useful in applications such
as dynamic power management, software defined radios and
random number generation [40]-[42]. We denote Fcrkin
the input clock signal to the MMCM and Fcpxrx the
corresponding synthesized clock signal. We further define two
major attributes of the MMCM module - CLK FXyurripLy
attribute with value M and CLK F X p;ypEg an attribute with
value D. The relation between the input and output clock
signals is given by Eq. (3).

Fcrkrx = FeLkin X D (3)

The DPR capability of the FPGA allows modification of the
M and D values during runtime to synthesize different clock
frequencies. An MMCM controller generates the necessary
control signals for the DRP ports of the MMCM module to
write the target M and D values, which are passed on via the
data input bus. The possible ranges for M and D are specific to
the FPGA family used. Fcrxy is designed to be 20M Hz in
our implementation. The tunable neurons in the system operate
in the range 10M Hz — 20M Hz and all other modules work
at 20M H z clock frequency.

The total current injected to a neuron will fall into different
current bands depending on the number of synaptic inputs.
Based on the number of bands, the mapping from maximum
injected current to the specific operating frequencies can be
established. We illustrate the proposed idea by dividing the
input current into seven bands. Based on the experimen-
tal observation, we have determined the required operating
frequencies of the neuron in the presence of various fault
percentages. This is depicted in Table I.

In reference to the degree of faults, the neuron
increase/decrease its clock frequency and hence establishes a
constant firing rate. Considering the modeling parameters and
Eq. (3), we get frequencies of 10M Hz to 17M H 7 for different
current bands.

TABLE I

CURRENT BANDS TO CLOCK FREQUENCY MAPPING FOR NEURONAL
SELF TUNING: VALUES DESIGNED EMPIRICALLY

Percentage of Distance from Current injected Frequency

synaptic Fault obstacle (m) Imaz (MHz)
[0.00 — 3.33)% 10.00 — 9.67 [ (60.Iin; — 32.1in ) 10

[3.33 —15)% 9.67 — 8.50 (32.1in; —29.15n ) 12
15.00 — 26.67)% 8.50 — 7.33 (29.14n5 — 25.1in ) 13
26.67 — 36.67)% 7.33 — 6.33 (25.1in; — 21.1inj ) 14
36.67 — 46.67)% 6.33 — 5.33 (211405 — 19.1in ) 15
46.67 — 53.33)% 5.33 — 4.67 (19.14n5 — 14.1in ) 16
[53.33 — 100)% 4.97 — 0.00 (14.Iin; — 0) 17
Note: In our experiments I;,; = 20nA. Hence the band 60.1;y,; — 32.1;p;

corresponds to current in the range (1200 — 640) A.

TABLE II

CURRENT BANDS TO THRESHOLD VOLTAGE MAPPING FOR NEURONAL
SELF TUNING: VALUES DESIGNED EMPIRICALLY

Percentage of Distance from Current injected Neuron Vy
synaptic Fault obstacle (m) Inax (mV)
[0.00 — 3.33)% 10.00 — 9.67 (60.14n; — 39.1in; ) 11.2304
B333—15)% 9.67 — 8.50 | (39.1in; — 34.1in;) 7.3242
15.00 — 26.67)% | 8.50 — 7.33 | (34-Tin; — 29.1inj) 3.4179
26.67 — 36.67)% 7.33 — 6.33 (29.15n; — 25.1in; ) 3.1738
36.67 — 46.67)% 6.33 — 5.33 (25.1inj — 21.1in; ) 2.9296
46.67 — 53.33)% 5.33 — 4.67 (21. 1405 — 19.13n5) 2.6855
[53.33 — 100)% 4.97 — 0.00 (19.1in; — 0) 2.4414
Note: In our experiments I;,; = 20nA. Hence the band 60.1;y,; — 39.1;n;
corresponds to current in the range (1200 — 780) A.

C. Self-Tuning Based on Threshold Voltage Adjustment

Although DPR based clock frequency synthesis works for
a wide range of values (7 series Xilinx FPGAs support
fractional (non-integer) multiplication and division parameters
for the clock synthesis) [38], [39], they are not suitable for
large-scale implementation. Each 7 series Xilinx FPGA has
up to 24 Clock management Tiles (CMTs), each consisting of
one MMCM and one PLL module. Hence we have a total of
48 dynamically reconfigurable clock management units which
impose a bottleneck on the number of tunable neurons. Hence,
to overcome this issue we have come up with the idea of a
tunable threshold voltage scheme in the neurons.

We define a standard threshold voltage (Vi) of 15mV
in our design. The relation between the standard threshold
voltage and the instantaneous threshold voltage V;, of the
neuron is given by Eq. (4).

Vih = Vst X R “4)

where R is a rational number. The maximum injected current
falls at a time slot At under one of the current band ; — I;.
Based on the current bands a new V;; is calculated during
the tuning phase. This is provided to the neuron threshold
input, thereby creating a time-varying value for the thresh-
old voltage. This value is updated at each time slot in
a 32-bit register holding the neuron threshold membrane
potential. We illustrate the proposed idea by dividing the input
current into seven bands. Based on experimental observation,
we have determined the required threshold voltage of the
neuron in the presence of various fault percentages. This is
depicted in Table II.

Fine tuning of the frequency or the voltage is not necessary
for establishing the homeostatic behavior. The usage of a
smooth function alters the threshold voltage or clock frequency
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Fig. 3. Complete circuitry of the robotic controller implemented on the FPGA The neurons F,R,L and Rev corresponds to neurons driving motors for

forward, right, left and reverse directions of the robotic car respectively. N1, N2 and N3 are interneuron. E X represents excitatory synapses and /N corresponds
to inhibitory synapses. The controller priorities movements in direction in order of preference: Forward > Right > Left > Reverse. Inhibition acts to
suppress movements in directions of lower priority. (Tuning blocks are not shown in figure.)

at every small change of the input current to the neuron.
This leads to unnecessary switching power. Additionally, for
DPR based schemes, the smooth function would lead to greater
number of DPR to happen and should be eliminated (DPR is
treated as a power hungry operation). Fine-grained updates
of neuron parameters would also cause delays in the system.
Hence in our implementation, we divided the total injected
currents into a few manageable bands. The band structure
is derived empirically, to provide a smooth spiking behavior.
Fundamentally, this enables the control of the level of power
dissipation in hardware.

V. ARCHITECTURES FOR ROBOTIC CONTROLLER
ESTABLISHING OBSTACLE AVOIDANCE

The main aim of the proposed work is to implement fault
tolerant behavior of SNN in hardware. Once this is established
successfully, we apply the concept to a real-world task. The
emphasis of the selected application was on the fault recovery
aspect rather than establishing an obstacle avoidance task.
Advantages are the inherent fine-grained (distributed) repair
mechanism incorporated at level of individual synaptic inputs.
The proposed homeostatic SNN system implemented on an
FPGA performs an obstacle avoidance task. The architecture is
tested with a range of obstacle conditions and faulty synapses.
The homeostasis and fault tolerance is demonstrated in two
architectures. The complete architecture incorporates the fea-
tures of homeostasis and inhibitory interneurons to design
a robotic controller paying attention to biological features.
The reduced architecture is a simplification of the complete
architecture by incorporating certain observations leading to a

reduction in hardware overhead, power and delay features on
the FPGA.

A. Complete Architecture of the Robotic Controller
Establishing Obstacle Avoidance

Figure. 3 represents the complete architecture implemented
on an FPGA establishing the obstacle avoidance task. The
system consists of 4 motor neurons F' (Forward), R (Right),
L (Left) and Rev (Reverse) generating spike trains for motor
movements in the forward, right, left and reverse directions
respectively. Each of the motor neurons receives 60 excitatory
inputs according to the distance from the obstacle. All of the
excitatory inputs to the neuron being low represent a close
encounter with the obstacle and all of them being high indi-
cates no obstacle in the path for a distance of 10 meters. In the
former case, the neuron spikes at a rate of 250spikes/10us,
and in the later case, we have a spike rate of 0. The speed of
the wheel is directly proportional to the activity of the motor
neuron, allowing movement in the absence of an obstacle.

In addition to the motor neuron, the system consists of three
inhibitory interneurons (N1,N, and N3) establishing inhibition
in the directions of lower priority. The inhibitory neurons
are connected to the respective motor neurons by a set of
40 inhibitory synapses. The inhibitory neurons are connected
with their pre-synaptic neuron using excitatory synapses. For
example, the motor neuron F forms an excitatory synap-
tic connection with the inhibitory neuron N;. N; forms
inhibitory synaptic interconnections with motor neurons R,
L and Rev, thereby inhibiting right, left and reverse move-
ments in the absence of an obstacle in the forward direc-
tion. Similarly, motor neuron R inhibit movements in left
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Fig. 4.

Reduced architecture of the robotic controller implemented on the FPGA The neuron F,R,L and Rev correspond to motor neurons driving

motors on forward, right, left and reverse directions of the robotic car respectively. The motors neurons directly inhibit their predecessor neurons. For example
neuron F inhibits R, L and Rev neurons. (Tuning blocks are not shown in figure.)

and reverse directions through interneuron N, if there is
no obstacle in the right direction. This topology follows all
motor neurons in order of priority. In our experiment forward
direction has the highest priority and the reverse direction has
the lowest priority—(Forward > Right > Left > Reverse).

B. Reduced Architecture Establishing
Obstacle Avoidance Task

In general, neurons use either excitatory or inhibitory neu-
rotransmitter to communicate with their target neuron, i.e.
they are either glutamatergic or GABAergic, respectively.
As opposed to this observation, some neurons have been found
to produce both type of neurotransmitters (excitatory and
inhibitory) depending on their target regions or neurons. Some
neurotransmitters can cause both excitatory and inhibitory
behavior (acetylcholine and dopamine) [43], [44] . For hard-
ware, we try to utilize this fact in reducing the implementation
overhead. Based on this observation, although motor neurons
are generally excitatory, we combine inhibitory behavior to
this thereby avoiding the role of inhibitory interneuron. Thus,
in the reduced architecture, the motor neurons directly inhibit
the movements in directions of lower priority.

Another important reduction comes from the fact that we
design a shared synaptic approach. Dendrites of a neuron
receive inputs from multiple neurons [36], [45]. Hence we
incorporate this observation using a single synapse which
processes all inputs to a neuron. All the inhibitory impulses
are obtained through the same set of synapses. For example,
the neuron ’Rev’ gets inhibitory impulses from ‘L’, ‘R’ and
‘F’ neurons through the same set of synapses (We use a digital
OR gate for this purpose).

Finally, the set of 40 inhibitory synapses is replaced by a
single large synapse, which injects the same current as would
be provided by 40 separate synapses. This reduction gives a
more compact design, but a trade off may be reduced fault
tolerance. The reduced architecture incorporating these three
observations are presented in Figure. 4.

Although the same task is achievable by both the complete
and reduced schemes, the presence of higher number of
synapses increases the capability of repair. In the reduced
scheme, if the single inhibitory synapse is faulty, there is
no room for inhibition of movements in undesired directions,
and the system will fail. For environments which do not
possess serious faults in the system, the proposed scheme
of reduced inhibitory synapses can be used. The count of
excitatory and inhibitory synapses are selected based on the
requirement of the environment in which the robot car is to
be employed. Higher the synapses, higher is the reliability to
faults, but the cost is in hardware consumption. Hence there
is a trade-off between fault-tolerance and hardware overhead.
Therefore for more challenging environments such as space,
we can include additional synapses with extra hardware area
but with the capacity to have a higher tolerance to faults. This
suits such cases as it is not possible to replace such systems
once deployed. So hardware cost becomes less important and
reliability a higher priority.

VI. EXPERIMENTAL RESULTS

The proposed architecture of neuron self-tuning for a robotic
controller was implemented in Xilinx ISE 14.7 and simulated
using the Xilinx Isim simulator. The system is benchmarked
against a fault-free controller implemented on the FPGA.
We deliberately induced faults in the system to establish the
concept of fault recovery. In presence of faults of various
grades, the proposed system could successfully establish fault-
free behavior using the proposed neuronal self-tuning concept.

A. Homeostatic Regulation

Figure. 5 shows the homeostatic regulation of firing rate.
We consider the case (initial state) in which the Right and
Left directions are free of an obstacle. Then, the synapses
associated with Right direction are made faulty by introducing
faults ranging 0 to 100%. This leads to a reduction in current
associated with Right neuron and the current band changes
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Illustration of proposed homeostatic regulation (A) Performance of Right neuron (B) Performance of Left neuron. Note: Results shown are for

threshold voltage based tuning. Similar results are achievable for DPR based tuning.

to establish homeostasis. During this experiment, we consider
the left direction to be free of an obstacle. The system could
achieve a constant rate up to 75% degradation in the synaptic
input. Thereafter, the forward neuron spike rate degrades and
that of the left neuron improves. We can see that in the
presence of neuron tuning (red), in the presence of faults, firing
rate is recovering thereby establishing intrinsic homeostasis.
In the absence of neuron tuning (blue), the neuron performance
degrades at a faster rate. The curve plotted in Red is rapid
compared to the one in Blue. This means that the tuned
behavior helps a sharper transition from one state to another,
while a robot moves in the field. The detection of obstacle
happens from a distance but the movement is stopped only
when the robot reaches 2.5 meters close to the obstacle.
(25% close to the obstacle. The range of the robot is con-
sidered as 10m.). The spikes in the right direction are lower
than the desired rate of 250 spikes/100us, when the obstacle
is 25% close to the robot (similar to the case when a fault is
higher than 75%). Once the firing rate reduces considerably,
the left motor neuron starts to fire as shown in Figure. 5-B.
The rise in firing rate of the left neuron is also controlled
in the presence of neuron tuning. Hence we observe the left
neuron firing only if there is a sufficiently large fault in the
right neuron.

This is similar to a condition in which the robot approaches
an obstacle on the right, whereas no obstacle is present on the
left. The right motor neuron should cease to fire and the left
motor neuron should increase firing. The presence of neuron
self-tuning smoothes out this process.

B. Robotic Controller Implemented on FPGA Achieving
Obstacle Avoidance task

The robotic controller would detect the trigger for a par-
ticular direction if spike rate is 300 spikes/100us for the
DPR based scheme (250 spikes/100us for the threshold
voltage based scheme). In our experiments, we tested multiple
combinations of obstacles in different positions of the robotic
field. In Figure. 6, the movements of four motor neurons
employing DPR based neuron tuning is projected. The usage
of four bits in the paper does not mean that only four bits in
representing the obstacle presence/absence in the FPGA imple-
mentation. The presentation of ‘1000’ in the paper means the
condition in which the robot started from no obstacle to a
state of an obstacle in close proximity in the forward direction.
All the 16 states depicted in Figure. 6 shows the position of
robot movement robot movement from a state of no obstacle in
all directions to the state shown in the figure. That is ‘0000’
means 0 (60 bit long) applied to synapses of the Forward,
Right, Left and Reverse neuron. This indicates the field is free
of an obstacle for 10m in all directions. The presentation of
‘1000’ means that all the forward synapses have applied a logic
one. This is a short representation of the final state of the robot
synapses. The first one in‘1000’ indicates a transition from O
to ‘all ones’ for synapses associated with the Forward neuron,
through all intermediate transitions. The remaining zeros indi-
cate no transition(0)in Right, Left or Reverse direction. Hence
the spikes on motor neuron ‘R’ increases leading to a right
movement. The encoding ‘1110’ corresponds to a movement
from a field of no obstacle to a close encounter of an obstacle
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Fig. 6. Illustration of proposed obstacle avoidance task with neuronal self tuning through DPR of neuron clock (A) Performance of Forward

neuron (B) Performance of Right neuron (C) Performance of Left neuron (D) Performance of Reverse neuron. The vertical line on top of the figure indicate

transition between different combinations of obstacles.

on the forward, right and left direction, leading to a reverse
movement in the robot car.

The spike outputs from the motor neurons are used to con-
trol the motors of the robot. We observe that the frequency of
the neuron spikes is not fixed and has fluctuations. A moving
mean algorithm can be used to smooth out the short-term
frequency fluctuations and highlight longer trends [8]. This
is given by Eq. (5).

1 n—1
_Z f m—i
n

i=0

f! (%)
where [ is the average frequency which is used to control the
robot motor, m is the current time point, n is the size of the
neuron frequency subset, and f,,—; is the neuron frequency at
the time point of (m — 7).

Figure. 7 depicts the movements of four motor neurons
employing threshold voltage based neuron tuning. The plots
have a similar meaning as in Figure. 6. The plots in Figure.6
and Figure. 7 represent the raw spike data before averaging
Eq. (5) is applied. The averaging would further smooth out the
process. The motor directions are chosen based on majority

decision. We can see that the fluctuations while establishing
homeostasis are lesser in threshold voltage based neuron tun-
ing than the DPR based scheme, proving to be a more efficient
strategy. The DPR based scheme is designed to establish
homeostasis (on the dominating neuron) by delivering spikes
with a rate of 300spikes/1004S. Any glitches occurring while
establishing this rate is treated as ‘fluctuations while estab-
lishing homeostasis’. For the threshold voltage based scheme,
the homeostasis is achieved on the dominating direction when
the spike rate is 250spikes/1004S. Any glitches occurring
while establishing this rate for the threshold voltage based
scheme is referred to as ‘fluctuations while establishing home-
ostasis’. The spike rate for achieving homeostasis are selected
randomly. On comparing Figure. 6 and Figure. 7, We could see
more fluctuations on the dominating neurons in Figure. 6 than
Figure. 7. (For case 0111, the dominating neuron is Forward
neuron which has some fluctuations in Figure. 6 but is smooth
in Figure. 7).

The spikes present (Figure. 7) for the condition ‘0000
for the Right neuron, does not mean the tendency to lean
towards the right. These spikes are sparse and hence these
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figure indicate transition between different combinations of obstacles.

stochastic behavior are insufficient to control the movements
to the Right. We see some unwanted spikes in directions of less
priority. The glitches are not completely removed in our work
in order to encourage spontaneous activity in the network.
The glitches in the undesired directions can be completely
eliminated by increasing inhibitory synapse count. But, this is
not a necessary requirement due to the fact listed in the above
statement. In our application, we have used 40 synapses as
inhibitory.

As described in Section IV, the transition from one stage
to another is decided based on the maximum current injected
to the neuron. In our experiment, this is performed in 2us.
Once the change in the band is detected, for threshold voltage
adjustment scheme, the threshold voltage is updated in one
single clock cycle. For DPR based scheme, a small dura-
tion (order of us) is required before switching to the higher
desired band frequency. Hence in both the schemes, the neuron
tuning happens in us, making the system highly responsive
in detecting the changes in the environment due to obstacles.
In real world applications, the obstacles approaching the robot
at this faster rate is quite unusual.

C. Statistical Comparison of Complete
and Reduced Architecture

In our experiments, we tried multiple combinations of
obstacles in different positions of the robotic field ranging
from the encoding ‘0000° to ‘1111 for the complete model
and the reduced model of robotic controller. A statistical test
was performed on the spike trains generated by the two models
subjected to the same input field condition. Table III shows
the result of average spiking activity in the four directions of
movement. We found the percentage change in average firing
activity of the two models subjected to the same test condition.
The results are close to the ‘0’ indicating the samples to be
statistically indistinguishable.

D. Hardware Results on Xilinx Artix-7 FPGA

The proposed methodology is implemented on the Xilinx
Artix-7 FPGA board. Recovery of firing rates in the proposed
methodology, implemented on the FPGA is monitored using
the Xilinx ChipScope Pro analyzer. Power estimation of the cir-
cuits was carried out using Xilinx XPower Analyzer and delay
estimation using Xilinx Timing Analyzer. Table IV reports the
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TABLE III

STATISTICAL COMPARISON OF FIRING ACTIVITY OF
COMPLETE AND REDUCED ARCHITECTURE

Test Vector | Test Direction Average Firing activity Average Firing activity
F-R-L-Rev Complete Model (spikes/pis) | Reduced Model (spikes/jis)
0000 Forward 2.50 2.50
0001 Forward 2.48 2.48
0010 Forward 2.49 2.49
0011 Forward 2.49 2.49
0100 Forward 2.49 2.49
0101 Forward 2.49 2.49
0110 Forward 2.48 2.48
0111 Forward 2.48 2.48
1000 Right 2.49 2.48
1001 Right 2.49 2.49
1010 Right 2.49 2.49
1011 Right 2.49 2.49
1100 Left 2.49 2.49
1101 Left 2.48 2.48
1110 Reverse 2.49 2.49
Note: Test vector F-R-L-Rev=1010 indicate that there is obstacle in forward and left directions
and the path is clear for 10 meters in directions right and reverse. This indicate that the robot
has to take movement in the right direction. Note: Results shown are for threshold voltage
based tuning. Similar results are achievable for DPR based tuning.

TABLE IV

HARDWARE OVERHEAD OF THE COMPLETE
ROBOTIC CONTROLLER ARCHITECTURE

Methodology/Components | Slice [ Shice Reg | LUT | PLL/MMCM [ DSP
Vin based 3 5 3 0 0
umit/neurom
D PR based 17 22 28 1 0
(uming wmit/newrom
Vin based 5620 9821 7499 1 28
complete design
Vin based 3770 8756 3789 1 16
reduced desigm
D PR based 3798 8827 3852 5 16
redueed desigm
TABLE V

TOTAL ON-CHIP POWER AND MAXIMUM OPERATING FREQUENCY

Methodology On-chip power | Maximum operating
w) (requency (MIHz)
Vin based complete desigm 1.252 16.199
Vi based reduced desigm 1.240 25.515
D PR based reduced desigm 1.513 30.913

hardware resource footprint of the proposed models. Estimated
total on-chip power dissipation and the maximum operating
frequency of the overall proposed architectures is shown
in Table V. As evident from these reports, the proposed
neuronal tunability for homeostatic regulation of firing rate
of the robotic controller can be implemented with reduced
hardware overhead and power consumption.

VII. CONCLUSION

In this paper, we discussed three novelties. Firstly, we built a
homeostatic fault tolerant bio-inspired architecture for spiking
neural networks. We explored two methods for incorporating
fault tolerant homeostasis into a system. The proposed system
is adaptive to the changes in the system and does not require
dedicated units for detection and correction. Even if some of
the inputs are faulty, the system could establish the task by
enhancing the neuron features using the signals delivered by
the fault free interconnects. Secondly, the proposed idea is
demonstrated on an FPGA mapped with a robotic controller
application. Finally, we created a reduced model of the archi-
tecture establishing the same task. The robot would move

smoothly if the neuron inputs are at least 25% of the normal
signal. This is incorporated to avoid unusual behavior while
establishing movement in any direction and would take care of
noise equivalent to 75% reduction in synaptic input. Hence,
the system would work over a broad range of input values.
But the presence of obstacle and noise (together) would def-
initely fasten the transition and requires much more research
effort in investigating this complex behavior. We may require
improvements in the above architecture if the noise levels
are extremely high. We are currently working on real robot
implementation of FPGA based SNN which could analyze
the presence of noisy sensor data and is treated as a future
work. Inspirations derived from different biological processes
are incorporated in building this architecture. The proposed
design is appropriate for FPGA-based applications running in
environments that induce faults in systems, where reliability
is a critical factor. The work presented represents an initial
step towards a new form of fault tolerant designs, with low
overhead and high performance.
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