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Topological phases of matter possess intricate correlation patterns typically probed by entanglement
entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing
topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the
fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it
precisely captures the relevant correlations of the system. By invoking the concept of monogamy of
entanglement, we show that highly entangled states supported across a system bipartition are largely
disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an
entanglement qualifier that identifies the presence of topological edge states based purely on correlations
present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free
and interacting fermionic topological systems.
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Consider a two-dimensional gapped system prepared in a
pure state ρ partitioned into region A and its complement B.
For large enough regions with smooth boundaries, the
entanglement entropy corresponding to the reduced density
matrix ρA ¼ trBðρÞ is expected to take the form SðρAÞ ¼
ðαþ γÞj∂Aj − γ þOðj∂Aj−βÞ, where α; β; γ ≥ 0 are con-
stants and ∂A denotes the boundary of A [1]. The first term
describes the area law contribution that is generally consid-
ered to be nonuniversal since α depends on system specific
microscopics and can change adiabatically [2]. In contrast,
the second term γ is a universal constant called the topo-
logical entanglement entropy [3–5]. The numerical extrac-
tion of γ has become a feasible numerical instrument to
identify topologically ordered states in strongly correlated
systems [6].
Topological phases of fermions, commonly referred to as

topological insulators and superconductors, can have a
band structure that is characterized by nontrivial topologi-
cal indices [7] even if γ ¼ 0. A physical consequence of
this is the appearance of edge states at their boundaries [8],
that can be used as a means to identify topological phases
theoretically [9,10] or in the laboratory [11]. Edge states are
eigenstates of the Hamiltonian that are exponentially
localized at the boundary of the system and minimally
coupled to the rest of the system. Because of the equiv-
alence of the entanglement spectrum [12]—the spectrum
fϵjg of the virtual entanglement Hamiltonian HA defined
by ρA ¼ e−HA=trðe−HAÞ—with the physical energy

spectrum [13], virtual entanglement edge states are also
witnessed in the spectrum of ρA in topological phases. The
virtual edge states are also exponentially localized at the
partition boundary ∂A, thus, being minimally correlated to
the bulk states of A but highly entangled to the comple-
mentary subsystem B. While both the energy and entan-
glement spectra can be adiabatically tuned, topology
implies that the virtual edge states persist unless the bulk
energy gap closes. Hence, topological phases cannot be
adiabatically connected to a product state with α ¼ 0 [2].
However, to use this entropic criterion to identify topo-
logical phases requires full diagonalization of the model,
which is, in general, challenging, particularly in the
presence of interactions.
Here, we take an entirely different approach to identify

edge states and topological phases in both free and interact-
ing fermionic systems. In contrast to entropic witnesses that
address collective mode effects, we focus on two-point
correlations. These are conceptually simpler objects, and
at the same time ones that can be numerically much more
easily obtained by, e.g., tensor network [14] or Monte Carlo
methods [15,16]. We show that the high entanglement of
individual virtual edge states is efficiently captured by the
fermionic covariance matrix even in interacting models. Our
argument is based on the extremality property of Gaussian
fermionic states conjunct with the notion of the monogamy
of entanglement [17,18]. In terms of entanglement entropy,
we show how to single out the area law contributions of the
virtual edge states from two-point correlations, without the
need to study system-size scaling or needing to adiabatically
tune the Hamiltonian. Finally, we demonstrate that this
correlation based signature, unlike spectral signatures of
topological phases, is robust against perturbations, disorder,
and interactions.
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The covariance matrix.—First, we introduce the covari-
ance matrix that facilitates our study of edge state correla-
tions. A physical system that embodies N fermionic modes
with annihilation operators f1;…; fN can always be asso-
ciated with 2N Hermitian Majorana fermions γ1;…; γ2N , by
fj ¼ ðγ2j−1 þ iγ2jÞ=

ffiffiffi

2
p

, for j ¼ 1;…; N. The second
moments of such Majorana fermions of an arbitrary fer-
mionic density matrix ρ can be collected in the covariance
matrix Γ [13,19–21], whose elements are the two-point
correlations

Γj;k ¼ itrðρ½γj; γk�Þ: ð1Þ
This is a real 2N × 2N matrix which is well defined for
arbitrary fermionic states, including ground states of super-
conducting or interacting models, and allows us to treat them
all on an equal footing. Since it satisfies Γ ¼ −ΓT and
ΓTΓ ≤ 1, it has eigenvalues fμjg ∈ ½−1; 1� coming in pos-
itive and negative pairs. For an arbitrary bipartition of the
system in regions A and B, the covariance matrix can be
written as

Γ ¼
� ΓA ΓAB

−ΓT
AB ΓB

�

; ð2Þ

withΓAðBÞ reflecting the secondmoments of the reduced state
ρAðBÞ and ΓAB capturing correlations between A and B.
For free fermionic systems all ground states are Gaussian

states and, as such, are completely defined by the covariance
matrix Γ. The positive eigenvalues fμAj g of the covariance
matrix ΓA are in one-to-one correspondence with the entan-
glement spectrum fϵjg through the relation μAj ¼
ð1 − eϵjÞ=ð1þ eϵjÞ. For pure Gaussian states, one finds that
the singular values ξABj of ΓAB and the eigenvalues of ΓA

satisfy ðμAj Þ2 þ ðξABj Þ2 ¼ 1. The entanglement entropy can
be evaluated by summing over the contributions from each
mode SðρAÞ ¼ − 1

2

P

2N
j¼1ð1þ μAj =2Þ logð1þ μAj =2Þ: Thus,

the modes with μAj ¼ 0 (always coming in pairs) are
uncorrelated with the rest of A and are maximally entangled
with modes in B witnessed by ξABj ¼ 1. They correspond to
the virtual edge states that translate to maximally entangled
modes in the entanglement spectrum of topological free
fermion systems, which contribute a maximal entropy of
1
2
logð2Þ per mode [13].
Next, we turn to studying the properties of edge states of

interacting fermions by considering the highly correlated
modes with ξABj ≈ 1. To relate these states to the virtual
edge states, we employ the monogamy of entanglement.
This is a powerful general principle that allows us to detect
edge states from the eigenvalues of the covariance matrix Γ.
Entanglement monogamy.—Monogamy of entanglement

states that no mode in A maximally entangled with a mode
in B can be entangled with any other mode in A or B
[17,18]. In the language of covariance matrices, singular
values ξABj ¼ 1 of ΓAB imply an eigenvalue μAj ¼ 0 (note
that the converse is not necessarily true). Thus, such

uncorrelated modes within A must be decoupled from
the bulk states and appear as exponentially localized states
at the boundary of A.
To make this property more general and, thus, applicable

to realistic systems,we consider the concept ofmonogamy in
the presence of high entanglement between A and B that is
not necessarily maximal. We start by discussing a two-mode
subsystem. Let Ξ be any principal 4 × 4 submatrix of the
covariance matrix of an arbitrary bipartite fermionic state
with reduced state σ. Thismatrix can be brought into the form

Ξ ¼

2

6

6

6

4

0 a 0 b

−a 0 c 0

0 −c 0 d

−b 0 −d 0

3

7

7

7

5

¼
"

ΞA ΞAB

−ΞT
AB ΞB

#

: ð3Þ

This is a consequence of the real special orthogonal singular
valuedecomposition, applied toboth localmodes individually.
This covariance matrix corresponds to a pure maximally
entangled state exactly if jbj ¼ jcj ¼ 1, as only then
ΞTΞ ¼ 1. Invoking the Jordan-Wigner transformation, the
state σ can be written as σ ¼ ð1 − ϵÞωþ ϵη, where ω is a
maximally entangled state of minimum dimension,
minðjbj; jcjÞ > 1 − ϵ is the smallest singular value of ΞAB,
and η an orthogonal residual state. In other words, we can
argue about the weight of a maximally entangled state by
consideringonly the covariancematrix rather than the full state
σ of the system. In particular, if minðjbj; jcjÞ > 1 − ϵ, then

∥σ − ω∥1 ≤ 2ϵ; ð4Þ
with the trace distance defined as∥A∥1 ¼ trðjAjÞ for operators
A. Hence, by considering the eigenvalues of ΞAB, we can
deduce how close the state σ of the system is to a maximally
entangled state ω. The same argument applies to an arbitrary
number of modes. If 2k singular values of ΞAB are larger than
1 − ϵ, then one can identify a subspace embodying k pairs of
fermionic modes that are in trace distance closer than 2ϵ to k
maximally entangled pairs.
The almost maximally entangled modes are largely dis-

entangled from the remaining fermionic modes, as dictated
by the monogamy of entanglement [17,18]. To make this
notion more precise, let us first focus on the situation of the
reduced state supported on modes S1 and S2 being in a close
to maximally entangled state; this is meant in the sense that
this reduced state can be written as σ ¼ ð1 − ϵÞωþ ϵη as
above. Then, mode S1 will be little entangled with any other
individual mode of the system. In fact, the sum of all
entanglements of formation EFð1∶jÞ [22] between S1 and
any other mode Sj is upper bounded by

X

N

j¼2

EFð1∶jÞ ≤ logð2Þ½1 − ð1 − ϵÞ2�; ð5Þ

and, hence, is small if ϵ is close to zero. This is a consequence
of the following facts. The entanglement of formationEF and
the tangle τ [17,18] are related as E2

F ≥ τ. Then, the
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entanglement of formation is an entanglement monotone, so
thatEFð1∶2Þ ≥ 1 − ϵ holds true. Finally, wemake use of the
monogamy of entanglement inequality for the tangle as
discussed in Ref. [18].
The close to maximally entangled pair on S1 and S2 is

also monogamous and disentangled in a different sense.
These pairs are, as a whole, minimally entangled with all
other modes, in the sense that

EFð1; 2∶3;…; NÞ ≤ 2 logð2Þϵ: ð6Þ
This bound is derived by using the convexity of the
entanglement of formation and noting that the maximally
entangled (Dirac fermion) pair takes the value log(2) in the
chosen convention. Again, it is straightforward to general-
ize this argument to the case where 2k singular values are
larger than 1 − ϵ. Then, the respective kmodes are, at most,
2k logð2Þϵ entangled with the modes forming the comple-
ment of the system.
This result is general and applies to both free and

interacting fermionic systems alike. It states that, due to
their maximal correlations across ∂A, virtual edge modes
appear as largely disentangled from the rest of the system.
In 1D systems, this decoupling dictates that the edge states
appear as zero modes in the entanglement spectrum. In 2D
or 3D systems, they appear as gapless states freely
propagating at ∂A.
Entropic lower bound.—The existence of virtual edge

states implies a lower bound for the entanglement entropy
[23]. In terms of the correlation part of the covariance
matrix [24],

SðρAÞ ≥
1

2
∥ΓAB∥22 logð2Þ; ð7Þ

where the 2-norm is defined as ∥A∥22 ¼ trðA2Þ, the sum of
the squared singular values. Note that (7) is general,
holding for free and interacting systems alike. For its
interpretation, note that the contributions from the bulk
states to the entanglement entropy can be adiabatically
removed. But the fundamental properties of virtual edge
states are resilient against any adiabatic evolution of the
corresponding physical Hamiltonian [7]. Since topological
phases are characterized by ∥ΓAB∥22 ≠ 0, then the lower
bound (7) becomes nontrivial, dictating that the area law
coefficient α can never be made zero.
Entanglement qualifier.—We have shown above that

nearly maximally entangled modes of the system are
witnessed by singular values ξABj ≈ 1 of ΓAB. In analogy
with the entanglement gap [25], these are separated by a
covariance gap from the ξABj corresponding to nonuniversal
bulk states. This gives an efficient diagnostic tool to probe
the topological character of the system. To count the
number of such modes in a way robust to imperfections
and finite system sizes, we define the entanglement
qualifier Sq for some positive integer q as

Sq ¼ TrðΓ†
ABΓABÞq: ð8Þ

In the limit q → ∞, this quantity converges to M—the
number of maximally entangled modes in units of

Majorana modes (a Dirac mode counts as two Majorana
modes)—and, thus, detects the existence of physical edge
states from the ground state. In the presence of a covariance
gap, Sq gives the degeneracy of these states for large but
infinite values of q.
To demonstrate that the qualifierSq identifies the presence

of edge states and the size of their akin Hilbert space, we first
apply it toKitaev’s honeycomb latticemodel (2D topological
superconductor) [26] and Haldane’s model (2D Chern
insulator) [27], in the presence and absence of disorder. In
these free models, Γ contains all the information about the
ground state, while for interacting systems, this is not the
case. Nevertheless, we show, in the context of the 1D Su-
Schrieffer-Heeger (SSH) model [28], with interactions that,
even if the spectral properties fail to identify virtual edge
states, due to monogamy, the covariance matrix successfully
identifies their presence even for strong interactions.
Free fermionic models.—Kitaev’s model is equivalent to

free Majorana fermions γi on a honeycomb lattice coupled
to a Z2 gauge field. The time-reversal symmetry broken
variant is defined by the Hamiltonian [24]

H ¼ i
2

X

hi;ji
Ji;jui;jγiγj þ

i
2
K
X

⟪i;j⟫

ui;kuk;jγiγj; ð9Þ

where Ji;j and K are the nearest-neighbor and next-nearest-
neighbor hopping amplitudes. The link variables ui;j ¼ �1

are conserved quantities that define different vortex sectors
that support various topological phases characterized by
different Chern numbers ν [29,30]. We consider three
different regimes with a distinct edge spectrum: (i) the
ν ¼ 0 Abelian phase with no edge states, (ii) the ν ¼ 1
chiral non-Abelian phase with a single Majorana edge state,
and (iii) the ν ¼ 2 chiral Abelian phase in the full-vortex
sector with two Majorana edge states (see [24] for the
parameter regimes). Despite their different Chern numbers,
the topological entanglement entropy takes the same value
of γ ¼ logð2Þ for all of these cases and is, thus, unable to
distinguish between them [31]. The full spectrum of
eigenstates is readily obtained by exact diagonalization.
Constructing the full covariance matrix [24] and evaluating
the qualifier Sq for each of the cases (i), (ii), and (iii) for a
two component boundary ∂A, we find that it quickly
converges to the values M ¼ 0, M ¼ 2, and M ¼ 4,
respectively, as shown in Fig. 1 (Left). This is in exact
agreement with the Chern number of each phase [29].
Similar analysis is carried out for the Haldane model for
complex fermions fi,

H ¼
X

hi;ji
t1f

†
i fj þ

X

⟪i;j⟫

t2eiϕf
†
i fj þ H:c:; ð10Þ

where t1; t2 > 0, and ϕ ∈ ½−π; π�. When this model is
tuned to the Chern insulator phase characterized by ν ¼ 1
[24], Fig. 1 (left) shows the qualifier Sq converging to
M ¼ 4 consistent with the edge spectrum of a single Dirac
fermion per edge. The qualifier Sq also detects topological
edge states in the presence of local random disorder in the
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Hamiltonian couplings. Indeed, Fig. 2 (right) shows that, in
the disordered Kitaev model, the various topological phases
are accurately identified with distinct quantized values of
Sq. We observe that disorder leaves the highly entangled
states largely unaffected, mainly reducing, slightly, the
singular values of ΓAB from the exact values 1. Hence, a
large but finite value of q is appropriate for robustly
identifying the topological phases.
In the idealized case of exactly maximal entangled virtual

edge modes, one can take arbitrarily large values of q.
Nevertheless, this is not always the case for finite-size
systems or with the introduction of disorder, as shown
Fig. 1 (right). In finite-size systems, the edge states can
hybridize leading to smaller entanglement between them
and, hence, a smaller lower bound. Moreover, the entangle-
ment spectrum can exhibit even-odd effects in j∂Aj that can
wash out the lower bound completely [32]. Nevertheless, due
to the exponential localization of the edge states, the lower
bound can still be recovered in all cases via system-size
scaling. Even-odd effects should vanish polynomially in
j∂Aj, while decoupling of edge states occurs exponentially in
the distance between boundary components. In the above
examples, optimal choices of parameters are to take even cut
length and a square system.
Interacting fermion model.—Now, we turn to the case of

interacting fermions. We consider the 1D SSH model [28]
of spinful fermions on a chain of length L with staggered
hopping and on-site interactions of strength U,

H ¼
X

s

X

L

i¼1

−½tþ δtð−1Þi�fsi †fsiþ1 þ H:c:

þU
2

X

L

i¼1

ðn↑;i þ n↓;i − 1Þ2: ð11Þ

For periodic boundary conditions, the ground state is
unique, while for open boundary conditions and for
U ¼ 0, edges terminating on weak bonds host an edge mode
per spin component.We half fill the system and restrict to the

zero-spin sector which results in fourfold ground state
degeneracy. Interactions linearly lift the degeneracy by
hybridizing the spinful edge states, resulting in a ground
state with twofold degeneracy [32], as shown in Fig. 3 (left).
Let us consider the system in terms of correlations. When

U ¼ 0, the model is one of free fermions and the covariance
matrix Γ contains all the information about the ground
state. Partitioning a periodic system in half with a two-
component boundary, the qualifier Sq converges for large q
to M ¼ 4, consistent with two Dirac fermion edge modes
per strong bond cut by ∂A [24]. For U > 0, the covariance
matrix can still be readily evaluated from the eigenstates
obtained via exact diagonalization, though in contrast to the
free case, it does not contain all the information of
the ground state. As shown in Fig. 3 (right), while the
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FIG. 1. (Left) Convergence of qualifier Sq for the Kitaev and
Haldane models with a two-component boundary ∂A. For Kitaev’s
model, we find Sq → 2ν consistent with each phase supporting ν
Majorana edge states per boundary. For theHaldanemodel,wehave
Sq → 4ν as a Dirac mode corresponds to two Majorana modes.
(Right) System size L ¼ Lx ¼ Ly dependence of the qualifier Sq

for Kitaev’s model with ν ¼ 1, in the presence of disorder of
magnitude Δ ¼ 0.5. The data is averaged over 50 disorder
realizations. The model parameters are given in Ref. [24].

FIG. 2. (Left) Energy gap for the disordered vortex-free sector
of Kitaev’s model as a function of the coupling J and the disorder
Δ. The topological phases with ν ¼ 0 and ν ¼ 1 are separated by
a phase transition at Jc ¼ 0.5 for Δ ¼ 0. The data is for Lx ¼
Ly ¼ 30 averaged over 50 disorder realizations of J and K [24].
(Right) The same phase diagram diagnosed by Sq showing
extended regions where S240 ¼ 2jνj identifies the topological
phases even for strong disorder. The nonquantized behavior for
Δ > 1 identifies the thermal metal phase [30].

FIG. 3. (Left) Spectrum of the twelve lowest many-body states
of the SSH model with interactions U for L ¼ 6 and open
boundaries terminating on weak bonds, δt ¼ 0.75. The two black
lines are twofold degenerate. The ground state degeneracy
reduces from fourfold (U ¼ 0) to twofold (U > 0). (Right)
The fourfold degenerate squared singular values ξABj

2 of ΓAB

with periodic boundary conditions and equipartition (see Fig. 2 in
Ref. [24]). While the degeneracy in the energy spectrum is lifted
linearly with U all the M maximally entangled modes remain
highly entangled and well separated from bulk entangled states
by the covariance gap. Increasing δt increases the entanglement
of the edge states due to the decrease of the correlation length
(equivalent to increasing the system size).
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degeneracy of the energy is lifted, all four virtual Majorana
modes that are highly entangled across ∂A behave iden-
tically in the covariance spectrum, a behavior not captured
by the entanglement entropy [32]. They remain at high
entanglement and are separated from the bulk states by the
covariance gap. This also holds in the extreme case, where
U is large enough to cause the energies of the edge states to
cross the bulk energies. This behavior of the qualifier Sq is
consistent with the topological character of the system
remaining unchanged. Indeed, there are no topological
phase transitions and the winding number [33,34] remains
the same when U is introduced [24]. In other words,
interactions only change, adiabatically, the edge spectrum
and the edge modes remain well defined. Thus, the
covariance matrix can faithfully detect edge states and,
thus, also identify topological phases in the presence of
interactions, where Γ no longer fully characterizes the
ground state nor is in one-to-one correspondence with the
entanglement spectrum.
Conclusions.—Here, we employed the covariance matrix

to characterize topological phases in free and interacting
fermion systems. We have shown that, due to the
monogamy of entanglement [17,18], the number of highly
entangled modes probes the number of topologically
induced edge states, regardless of their energy. Hence,
the covariance matrix, similar to the Green’s function [9],
provides complementary information to the entanglement
spectrum [10,12]. We demonstrated that the high entangle-
ment of the virtual edge states, unlike their spectrum, is a
robust characteristic under perturbations that leave the
topological phase unchanged, such as disorder or inter-
actions. This gives a systematic and unambiguous way to
study edge states and, thus, the topological character of
fermionic systems in theoretical and numerical investiga-
tions as well as in experiments.
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