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Abstract. We report the measurements of electrostatic field structures associated with an
electrostatic shock formed in laser–produced counter–streaming plasmas with proton imaging.
The thickness of the electrostatic structure is estimated from proton images with different proton
kinetic energies from 4.7 MeV to 10.7 MeV. The width of the transition region is characterized
by electron scale length in the laser–produced plasma, suggesting that the field structure is
formed due to a collisionless electrostatic shock.

1. Introduction

Shock waves are commonly observed in the universe, space plasmas, and laboratory plasmas.
In particular, collisionless shocks play significant roles in particle acceleration, for example,
in Earth’s bow shock and supernova remnant shocks. In collisionless shocks, collisions between
particles do not account for the formation mechanism and particle–field interactions are essential.
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Figure 1. The target design and
geometry of diagnostics for proton
imaging. Two Mylar (CHO) disks
were located in parallel separated
by 3 mm, and one side of the
target was irradiated by the drive
laser. The laser–produced plasmas
were diagnosed by a proton beam
generated by focusing a short–pulse
laser on an Au disk placed at 14.5
mm away from the plasma. The
protons were detected by the stack of
radiochromic films (RCFs) located at
127 mm from the proton source.

Therefore, the shock thickness is much smaller than ion–ion mean–free–path and a large
electromagnetic field exists at the shock front. These shocks have been studied by observing
emissions from astrophysical objects[1], and by in–situ measurements using satellites in space
plasmas[2].

Laboratory experiments with high–power laser systems can be an alternative to observations
or in–situ measurements by satellites[3]. Collisionless shocks have been produced and
investigated in counter–streaming laser–produced plasmas[4]. They have been measured by
optical diagnostics such as interferometry, shadowgraphy, optical pyrometry, and Thomson
scattering to obtain the fundamental plasma parameters: density, temperature, charge state,
and flow velocity[5]. However, the measurement of an electromagnetic field is indispensable for
collisionless shock experiments.

Proton imaging is one of the methods to measure the field structures[6]; it is widely used for
measuring the electric and magnetic fields in inertial confinement fusion experiments[7] and the
field in laser–produced plasmas[8].

In this paper, we present the measurement of electric field structures formed at a shock with
a proton beam generated by irradiating a thin solid foil by a short–pulse laser beam.

2. Experiment

The experiment was performed with the Jupiter laser facility at Lawrence Livermore National
Laboratory. Double–disk Mylar (CHO) targets are used to produce counter–streaming plasmas
as shown in Fig. 1. Each disk measures 2 × 2 mm and 0.5 mm in thickness, and two disks are
separated by 3 mm. One of the disks (drive disk) was illuminated by a laser beam (drive laser),
delivering 120 J on average in a 1.5 ns square pulse at a wavelength of 527 nm, with a focal
spot of 500 µm in diameter. The other disk (second disk) was ablated by the radiation from the
laser–produced plasma early in time, and by the plasma arriving later in time as described in
the Refs. [4].

A laser pulse (160 J in 0.7 ps, wavelength of 1057 nm) was focused on an Au disk with a
thickness of 25 µm to produce high–energy protons for radiography. The distance between the
disk and the object plane, where the target was located, was l = 14.5 mm. The proton beam
images electric and magnetic fields formed in the laser–produced plasmas on radiochromic films
located at an imaging plane with a distance L+ l = 127 mm from the Au disk, where L is the
distance between the object and the radiochromic films. The radiochromic films were stacked
to detect protons in different energy ranges: 4.7, 7.0, 8.8, and 10.7 MeV with 10% energy width
for each film.
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Figure 2. (a) The proton image taken at t = 20 ns at the proton energy of 4.7 MeV. (b) The
line–out at x ∼ 15 mm [square in (a)].

3. Result

Figure 2(a) shows the proton image at t = 20 ns at the proton energy of 4.7 MeV. A caustic
structure is observed at x ∼ 15 mm in front of the second disk. In general, this sudden change
in proton intensity indicates a large electromagnetic field[6]. The line–out of the caustic for
Fig. 2(a) is shown in Fig. 2(b). The widths of the caustics depend on the proton energy, i.e.,
high–energy protons make a thinner structure as shown in Fig. 3.

4. Discussion

The observed caustic structure corresponds to a shock front as discussed in previous works[4],
and the left– and right–hand sides of this structure are upstream and downstream of a shock,
respectively. Here, we assume that the protons are deflected by an electric field not by a magnetic
field. If the shock is formed by a self-generated magnetic field due to electromagnetic Weibel
instability, the shock thickness should be much larger (c/ωpi > 10 mm [9]) than experimental
observation. Also, a spherically symmetric flat–top potential is assumed in the downstream
region at the vicinity of a shock.

The position x on the imaging plane is expressed using the position x0 on the object plane and
the deflection angle α(x0) as x = L (x0/l + α(x0))[6]. The deflection angle α of the proton beam
by a spherically symmetric flat–top potential is expressed as α(x0) = (eφ0x0/2W

√
aδ)F (ξ̃) =

(eφ0(ξ̃δ + a)2W
√
aδ)F (ξ̃)[6], where ξ̃ = (x0 − a)/δ, δ is the transition thickness, a is the

curvature radius of the potential structure, W is the proton energy, eφ is the potential energy,
and F (ξ̃) = (2/π)

∫
∞

−∞
dη/((η2 + ξ̃)2 + 1). In case of caustic formation on the imaging plane,

∂x/∂x0 = 0 is satisfied. Therefore, 1/l+ (eφ0/2Wδ
√
aδ)[δF (ξ̃) + (ξ̃δ + a)F

′

(ξ̃)] = 0. Generally,
this equation has two solutions (ξ̃1 and ξ̃2), however, the caustic positions x(ξ̃1) and x(ξ̃2) can
not be resolved in this experiment because of small separation between them, and these two
caustics are observed as a single peak in the proton intensity. Therefore, the thickness of an
electric field at the shock front (δ) is comparable to

δ ≈ |x(ξ̃2)− x(ξ̃1)|. (1)

The thicknesses of the caustics in different energy bins are shown in Fig. 3 obtained as full
widths at half maximums of the caustics for the energies of 4.7, 7.0, 8.8, and 10.7 MeV. The
experimental data are fitted with Eq. (1) for various thicknesses. If this caustic is formed due
to an electrostatic shock, the thickness is characterized by electron inertial length c/ωpe ∼ 2 µm
[ne ∼ 5 × 1018 cm−3 evaluated from the interferometry (not shown)][9]. The solid and dotted
lines show the fitted results with δ = 0.01 µm ∼ λD, where λD is the Debye length, and 0.2 µm
∼ c/ωpe, respectively. The fitted result with larger thickness of δ = 10 µm (dotted line) shows
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Figure 3. Caustic thicknesses as a function of
proton energy. The thickness is evaluated as a
full width at half maximum of each line–out as
shown in Fig. 2. The best–fit results using various
thickness δ are shown with solid (δ = 10 nm ∼ λD),
dashed (δ = 2.0 µm ∼ c/ωpe), and dotted (δ = 10
µm) lines.

large deviation from the experimental data, while the results from small thickness δ < c/ωpe

shows good agreement with the experimental data, indicating that the structure is defined in an
electron scale. Note that the ion inertial length is over hundreds of micron and is much larger
than the thickness estimated here. Moreover, the ion–ion mean–free-path of counter–streaming
plasmas is ∼200 µm[4] using the velocity of v = 3 mm/20 ns = 150 km/s. This small thickness
of the electric field structure suggests that the caustic is formed by an electrostatic shock in
collisionless counter–streaming plasmas.

5. Summary

We measured an electrostatic field structure formed in counter–streaming laser–produced
plasmas with proton imaging technique. The thickness of the electrostatic structure is estimated
from proton images with different proton kinetic energies from 4.7 MeV to 10.7 MeV. The width
of the transition region is comparable to or less than the electron inertial length of laser–produced
plasmas, suggesting that the field structure is formed due to a collisionless electrostatic shock.
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