This is a repository copy of *Influence of mixed gel structuring with different degrees of matrix inhomogeneity on oral residence time*.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/99941/

Version: Supplemental Material

Article:

https://doi.org/10.1016/j.foodhyd.2016.05.014

© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse
Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Caption of Figures

Figure 1. G’ (closed symbols) and G” (open symbols) of A) 1κ (●), B-1κ1CA1 (■), M-1κ1SAI (▲), S-1κ1CA1 (○), 2κ (♦) gels and B) 4κ (●), B-2κ2CA1 (■), M-2κ2SAI (▲), S-2κ2CA1 (♦), 2κ (♦) gels, as a function of strain at frequency of 1 Hz, respectively.

Figure 2. G’ (closed symbols) and G” (open symbols) of different biopolymer gels at 1Hz and 0.05% strain.

Figure 3. Texture profile analysis curves of A) 1κ (black solid line), B-1κ1CA1 (blue dotted line), M-1κ1SAI (green thick line), S-1κ1CA1 (red dashed line), 2κ gels (gray solid line) and B) 4κ (black solid line), B-2κ2CA1 (blue dotted line), M-2κ2SAI (green thick line), S-2κ2CA1 (red dashed line), 2κ gels (gray solid line), respectively.

Figure 4. Penetration test curves of A) 1κ (black solid line), B-1κ1CA1 (blue dotted line), M-1κ1SAI (green thick line), S-1κ1CA1 (red dashed line), 2κ gels (gray solid line) and B) 4κ (black solid line), B-2κ2CA1 (blue dotted line), M-2κ2SAI (green thick line), S-2κ2CA1 (red dashed line), 2κ gels (gray solid line), respectively.

Figure 5. Maximum break force of gels (N) as a function of matrix inhomogeneity.

Figure 6. Cryo-SEM images of A) 2κ, B) 4κ, C) M-1κ1SAI and D) M-2κ2SAI gels. 1 and 2 represents the micrographs at lower (10,000×, scale bar 10 μm) and higher (25,000×, scale bar 4 μm) magnifications respectively.
Figure 7. TEM images of (A) 2κ, (B) B-1κ1CAI and (C) S-1κ1CAI gels. Scale bar represents 500 nm.

Figure 8. Cryo-SEM images of (A) B-1κ1CAI and B) B-2κ2CAI beads included within the κ-carrageenan continuous phase. Scale bar represents 1 mm.

Figure 9. Average (n=2) descriptive sensory scores. A) 1κ (black solid line), B-1κ1CAI (blue dotted line), M-1κ1SAI (green thick line), S-1κ1CAI (red dashed line), 2κ gels (gray solid line) and B) 4κ (black solid line), B-2κ2CAI (blue dotted line), M-2κ2SAI (green thick line), S-2κ2Cal (red dashed line), 2κ gels (gray solid line), respectively.

In both graphs the parenthesis letters signify: (M) mouth, (AF) after feeling, (V) visually, (H) hand.

Figure 10. Number of chews (participant’s average) in relation with A) the time at swallow of the different gels created and difficulty perceived, and B) the time at swallow and the level of inhomogeneity.

Figure 11. Principal component analyses with the attributes results. TP: trained panel; black: texture analyser; black italic: participants eating time and difficulty perceived; bold black: rheology and grey box: samples names.